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Abstract

There has been a lot of recent work on Bayesian methods faforeement
learning exhibiting near-optimal online performance. Thain obstacle facing
such methods is that in most problems of interest, the optwlation involves
planning in an infinitely large tree. However, it is possibbeobtain stochastic
lower and upper bounds on the value of each tree node. Thidemnas to use
stochastic branch and bound algorithms to search the tiieeefly. This paper
proposes two such algorithms and examines their complaxityis setting.

1 Introduction

Various Bayesian methods for exploration in Markov decigioocesses (MDPs) and
for solving known partially-observable Markov decisioropesses (POMDPSs), were
proposed previously (c.f. [Poupart et al., 2006, Duff, 20Rass et al., 2008]). How-
ever, such methods often suffer from computational traétalproblems. Optimal
Bayesian exploration requires the creation of an augmevizid model in the form of
a tree [Duff, 2002], where the root node is the current bedtate pair and children are
all possible subsequent belief-state pairs. The size di¢lief tree increases exponen-
tially with the horizon, while the branching factor is infi@iin the case of continuous
observations or actions.

In this work, we examine the complexity of efficient algonitk for expanding the
tree. In particular, we propose and analyse stochasticlseaethods similar to the
ones proposed in [Bubeck et al., 2008, Norkin et al., 1998]ated methods have been
previously examined experimentally in the context of Bégeseinforcement learning
in [Dimitrakakis, 2008, Wang et al., 2005].

The remainder of this section summarises the Bayesian iplgfimmework. Our
main results are presented in Sect. 2. Section 3 concludeswdiscussion of related
work. Technical proofs and related results are presentdeidppendix.

1.1 Markov Decision Processes

Reinforcement learning [c.f. Puterman [1994,2005]] icdite-time sequential deci-
sion making problem, where we wish to act so as to maximisexipected sum of
discounted future rewardéleyerk, wherer; € R is a stochastic reward at tinhe
We are only interested in rewards from timn® T > 0, andy € [0, 1] plays the role of



a discount factor. Typically, we assume tiyandT are known (or have known prior
distribution) and that the sequence of rewards arises froarkov decision process

T

Definition 1 (MDP) A Markov decision process is a discrete-time stochasticgss
with: A state s€ § at time t and a rewardire R, generated by the process y, and an
action g € 4, chosen by the decision maker. We denote the distributienmaxt states
S+1, which only depends on and a, by Ws+1|s,a). Furthermore (iri;1|s,a) is

a reward distribution conditioned on states and actionmafly, W(ri+1,5+1|s,a) =
H(res1s, @ )M(S 1S, @)

In the above, and throughout the text, we usually take to meanPy(-), the distri-
bution under the procesgs for compactness. Frequently such a notation will imply a
marginalisation. For example, we shall wiités k|, &) to mean:

H(St4ks - - SrafSs @)
S+Ls St +k-1
The decision maker takes actions according to a patjayhich defines a distribution
T(a|s) over 4, conditioned on the stat, i.e. a set of probability measures over
indexed bys. A policy Ttis stationary iffi{a; = a|s =s) = (ay = alsy = s) for all
t,t’. The expected utility of a policy selecting actions in the MDR, from timet to T
can be written as thealue function

T
\/tﬁ'u(s) = Enp (kzl\/(fwk‘st) ) 1)

whereEy, denotes the expectation under the Markov chain arising &oting policy
1ton the MDPU. Whenever it is clear from context, superscripts and sujscshall be
omitted for brevity. Theptimalvalue function will be denoted By* £ max;V™. Ifthe
MDP is known, we can evaluate the optimal value functiongyoiin time polynomial
to the sizes of the state and action sets [Puterman, 19%},2@Mbackwards induction
(value iteration).

1.2 Bayesian Reinforcement Learning

If the MDP is unknown, we may use a Bayesian framework to greour uncer-
tainty [Duff, 2002]. This requires maintaining a beli&f about which MDPu € o
corresponds to reality. More precisely, we define a meatsgace a7 ,90), where
o is a (usually uncountable) set of MDPs, d@hitlis a suitables-algebra. With an ap-
propriate initial densitgo (L), we can obtain a sequence of densigigg), representing
our subjective belief at time by conditioningg; (1) on the latest observations:

H(re1, Sealss @) & (W)
Jor W(rera,sealss @) & (W) dyl

In the following, we writeEg to denote expectations with respect to any befief

() = 2

1.3 Belief-Augmented MDPs

In order to optimally select actions in this framework, iniscessary texplicitly take
into account future changes in the belief when planning {(2302]. The idea is to
combine the original MDP’s statg and our belief stat& into ahyper-state



Definition 2 (BAMDP) A Belief-Augmented MDR (BAMPD) is an MDP with a set
of hyper-state€) = s x B, where’B is an appropriate set of probability measures on
M ands, 4 are the state and action sets of allguw/ . At time t, the agent observes
the hyper-statex = (s,&) € Q and takes action@ac 2. We write the transition
distribution asv(w41|ux,a ) and the reward distribution ag(ry|ux ).

The hyper-statex has the Markov property. This allows us to treat the BAMDP as
an infinite-state MDP with transitions(w 1|ux,a), and rewards/(rijax).> When
the horizonT is finite, we need only require expand the tree to délptht. Thus,
backwards induction starting from the set of terminal hysteteQt and proceeding
backwards tal —1,...,t provides a solution:

Vi () = max, (16 +y 3 V(|02 (). @
WeQni1

where Q) is the set of hyper-states at tinme We can approximately solve infinite-
horizon problems if we expand the tree to some finite deptligihave bounds on the
value of leaf nodes.

1.4 Bounds on the Value Function

We shall relate the optimal value function of the BAMDP;(w), for somew(s, ),
to the value function¥" of MDPsp € a1 for somert The optimal policy foru is
denoted ast* (i). ThemeanMDP resulting from belie€ is denoted ag; and has the
propertiesye (s+1/s, a) = Eg[M(sals, @), Be(rerals a) = Eg [M(rsals, &)l

Proposition 1 Dimitrakakis [2008] For anyw = (s,§), the BAMDP value functionV
obeys:

[ g wduz v @ = [ v oemdn @

Proof By definition,V*(w) > V™(w) for all w, for any policytt It is easy to see that

the lower bound equa\séﬁ@)(w), thus proving the right hand side. The upper bound
follows from the fact that for any functiof, max [ f(x,u)du < [max f(x,u)du.

If a1 is not finite, then we cannot calculate the upper bound(os) in closed form.
However, we can use Monte Carlo sampling: Given a hypeeatat (s, &), we drawm
MDPs from its belie€: p, ..., pm ~ &,2 estimate the value function for eagh \7m =

Vwrf(“k)( s), and average the sampleg; = Lsm 1% k- Letv§ £ [, Eu(WV; (Sw )dp_
Then, limy o[V ] = W) almost surely ané& [V ] = V*.

Lower bounds can be calculated via a similar procedure. Wtz calculatlng
the optimal policyrt* (i ) for the mean MDRy arising from¢. We then compumﬁfk =
T (1)

Vi, the value of that policy for each sampieand estimate(’,, = % Sk W

1Because of the way that the BAMDAS constructed from beliefs over , the next reward now depends
on the next state rather than the current state and action.

2In the discrete case, we sample a multinomial distributtomfeach of the Dirichlet densities indepen-
dently for the transitions. For the rewards we draw indepah@&ernoulli distributions from the Beta of each
state-action pair.



Figure 1. A belief tree, where the rewards are ignored foméioity, with actions
a2 = {a',a?} and states = {s!,s?}.

2 Complexity of belief tree search

We now present our main results. Detailed proofs are givethénappendix. We
search trees which arise in the context of planning undeeniaiaty in MDPs using
the BAMDP framework. We can use value function bounds onghénodes of a par-
tially expanded BAMDP tree to obtain bounds for the inneresthrough backwards
induction. The bounds can be used both for action selectidria further tree expan-
sion. However, the bounds are estimated via Monte Carlo kagasomething that
necessitates the use of stochastic branch and bound teettoigxpand the tree.

We analyse a set of such algorithms. The first is a search teed @rpth that
employs exact lower bounds. We then show that if only sta@hlbsunds are available,
the complexity of fixed depth search only increases logauithlly. We then present
two stochastic branch and bound algorithms, whose contplexdependent on the
number of near-optimal branches. The first of these usesceamples on leaf nodes
only, while the second uses samples obtained in the lastofidife parents of leaf
nodes, thus using the collected samples more efficiently.

2.1 Assumptions and Notation

We present the main assumptions concerning the tree s@aioting out the relations
to Bayesian RL. The symbols andv have been overloaded to make this correspon-
dence more apparent. The tree that has a branching factarsatpnThe branching is
due to both action choices and random outcomes (see Fighlis, The nodes at depth
k correspond to the set of hyper-stafes. x} in the BAMDP. By abusing notation, we
may also refer to the components of each nade (s,§) ass(w), &(w).

We define a branch as asetof policies(i.e. the set of all policies starting with
a particular action). The value of a branbtis V? £ maxpV™ The root branch
is the set of all policies, with valug*. A hyper-statew is b-reachable ifte b
S.tPry(w]ox) > 0.Any branchb can be partitioned at artyreachablev into a set of
branche8(b, w). A possible partition is anlg = {Tte b : i = argmax 1(a|w) } for any
bi € B(b,w). We simplify this by considering only deterministic poési We denote
thek-horizon value function by°(k) £ Maxep V' (wx). Foreach tree node= (s,£),
we define upper and lower bounds(w) £ E¢ |V (s)], vi(w) £ E¢[V™ *)(s)], from
(4). By fully expanding the tree to depthand performing backwards induction (3),
using eithery orv, as the value of leaf nodes, we obtain respectively upperame!



Algorithm 1 Flat oracle search
1: Expand all branches until depkh= log, e/[3 orAL > By —¢.
2: Select the root brandbi = argmayV°(k).

Algorithm 2 Flat stochastic search

1: FSSEARCH(tx,k,m)
: LetQu = {wl,, :i=1,...,¢} be the set of alk-step children oto
: for we Qy do

Drawmsamplesf®; = VI, p~ &(w)

W= %,
end for
. Calculatev®
return b* = argmay/®.

O NOOO AL

boundsV (k),V(k) on the value of any branch. Finally, we uséw) for the set of
immediate children of a node and the short-han@y for ¢¥(w), the set of all children
of w at depthk. We assume the following:

Assumption 1 (Uniform linear convergence) There existy € (0,1) andp > 0s.t. for
any branch b, and depth kA2 VP (k) < By, (k) — VP < By .

Remark 1 For BAMDPs with ¢ € [0,1] andy < 1, Ass. 1 holds, from boundedness
and the geometric series, wifl= 1/(1—y), since \’(k) and \} (k) are the k-horizon
value functions with the value of leaf nodes boundely/iii — ).

We analyse algorithms which search the tree and then seiéattion) brancH*.
For each algorithm, we examine the number of leaf node etrahsrequired to bound

the regrev/* — V",

2.2 Flat Search

With exact bounds, we can expand all branches to a fixed deytfiten select the
branchb*, with the highest lower bound. This is Alg. 1, with complexitiven by the
following lemma.

Lemma 1 Alg. 1 on a tree with branching factag, y € (0,1), sampleso (¢*+'°%¢/P)
times to bound the regret ey

Proof Bound thek-horizon value function error with Ass. 1 and note that thame
g+lleaves. g

In our case, we only have a stochastic lower bound on the wdleach node. Algo-
rithm 2 expands the tree to a fixed depth and then takes neukgunples from each
leaf node.

Lemma 2 Calling Alg. 2 with k= [log,&/2B], m= 2[log,(¢/2B)] - logp, we bound
the regret bye usingo ((p”'ogvs/zBlogy(s/ZB) : Iog(p) samples.



Algorithm 3 Stochastic branch and bound 1
1: Let £g be the root.
2. forn=1,2,...do
3 forwe Lpdo
4 M4+, L~ &(W), VR, = V)i (S(w)).
5 W= % ¥ i
6: end for
7. Gy =argmax,Vy.
8
9

Lny1 = C(GR)U Ln\ G}y

Proof The regret now is due to both limited depth and stochastitig bound each
by €/2, the first via Lem. 1 and the second via Hoeffding's inequali g

Thus, stochasticity mainly adds a logarithmic factor to thacle search. We now
consider two algorithms which do not search to a fixed depihsblect branches to
deepen adaptively.

2.3 Stochastic Branch and Bound 1

A stochastic branch and bound algorithm similar to thoseréad here was originally
developed by Norkin et al. [1998] for optimisation problenfs each stage, it takes
an additional sample at each leaf node, to improve their uppend estimates, then
expands the node with the highest mean upper bound. AlgoBthses the same basic
idea, averaging the value function samples at every leaé nod

In order to bound complexity, we need to bound the time reglimtil we discover
a nearly optimal branch. We calculate the number of timesb@stimal branch is
expanded before its suboptimality is discovered. SinyiJavk calculate the number of
times we shall sample the optimal node until its mean uppendddbecomes dominant.
These two results cover the time spent sampling upper baefmisdes in the optimal
branch without expanding them and the time spent expandidgsin a sub-optimal
branch.

Lemma 3 If N is the (random) number of samplésfrom random variable \& [0, ]
we must take until its empirical medf £ z}‘zlvi > EV — A, then:

E[N] <1+p°A~2 (5)
PIN > n] < exp(—2B~2n?A?). (6)

Proof The firstinequality follows from the Hoeffding inequalitpéan integral bound
on the resulting sum, while the second inequality is provieectly via a Hoeffding
bound. g

By settingA to be the difference between the optimal and second optinaaich, we
can use the above lemma to bound the number of tiie leaf nodes in the optimal
branch will be sampled without being expanded. The conversklem is bounding
the number of times that a suboptimal branch will be expanded



Algorithm 4 Stochastic branch and bound 2

1: for we £, do

2 = m Yolec(w) Zri*’lvfd
end for

. Use (3) to obtaiVy for all nodes.

: Setwy to root.

:ford=1,...do A

ag = argmay 3 ueoy Wi-1(j/a)Vu (w)
0 ~ wd-1(jlag)

if Wy € Ln then

10: Lny1= C(04)ULn\y

11: Break

12.  endif

13: end for

© X NN R®

Lemma 4 If b is a branch with \P = V* — A, then it will be expanded at least to depth
ko = log,A/B. Subsequently,

P(K > k) < 0 (exp{—2B72[(k—ko)A?] }). )

Proof In the worst case, the branch is degenerate and only onedsaifdn-zero prob-
ability. We then apply a Hoeffding bound to obtain the debiesult.

2.4 Stochastic Branch and Bound 2

The degeneracy is the main problem of Alg. 3. Alg. 4 not onlygagates upper
bounds from multiple leaf nodes to the root, but also re-upger bound samples from
inner nodes, in order to handle the degenerate case wheremalpath has non-zero
probability. (Nevertheless, Lemma 3 applies without madiibn to Alg. 4). Because
we are no longer operating on leaf nodes, we can take adwanfabe upper bound
samples collected along a given trajectory. However, if ae ail of the upper bounds
along a branch, then the early samples may bias our estim#&bdesFor this reason, if
a leaf is at depttk, we only average the upper bounds along the branch to dggth
The complexity of this approach is given by the following leax

Lemma5 Ifbis s.t. VP =V* — A, it will be expanded to deptipk> log,A/B and
P(K > k) S exp(—2(k—ko)*(1-¥?), k> ko

Proof There is a degenerate case where only one sub-branch hasrmprobabil-
ity. However we now re-use the samples that were obtainedeaiqus expansions,

thus allowing us to upper bound the bias k:))\f(ltl;) This allows to use a tighter
Hoeffding bound and so obtain the desired outcomepg

This bound decreases faster withFurthermore, there is no dependencéafter the
initial transitory period, which may however be very longhéelgain is due to the fact
that we are re-using the upper bounds previously obtain@thier nodes. Thus, this
algorithm should be particularly suitable for stochastiatpems.



2.5 Lower Bounds for Bayesian RL

We can reduce the branching factgr (which is |2 x § x & | for a full search) by
employing sparse sampling methods [Kearns et al., 1999] {toz |exp1/(1—v)]}.
This was essentially the approach employed by [Wang et@05R However, our
main focus here is to reduce the depth to which each braneaislsed.

The main problem with the above algorithms is the fact thahwest reachky =
[log,A] to discardA-optimal branches. However, since the hyper-statarises from
a Bayesian belief, we can use an additional smoothnessnyope

Lemma 6 The Dirichlet parameter sequentgg/ry, with n 2 K, @i, is a c-Lipschitz
martingale with ¢=1/2(n + 1).

Proof Simple calculations show that, no matter what is obserigd1/n 1) =
Wi /ne. Then, we bound the differend® .« /ne .k — Wt /ne| by two different bounds,
which we equate to obtaig. ]

Lemma 7 If u, {1 are such thafj 7 — T lo < €and|r —Fljo < €, for somee > 0, then
[vr—=vT| < ﬁ for any policyrt

Proof By subtracting the Bellman equations férV and taking the norm, we can
repeatedly apply Cauchy-Schwarz and triangle inequalii®btain the desired result.

The above results help us obtain better lower bounds in tweswhirst we note that
initially 1 /k converges faster tha, for largey, thus we should be able to expand less
deeply. Laterny is large so we can sample even more sparely.

If we search to deptlk, and the rewards are ii®,1], then, naively, our error is
bounded bys %, ¥" = ¥*/(1—y). However, the mean MDPs for> k are close to the
mean MDP ak due to Lem. 6. This means th@tcan be significantly smaller than
1/(1—vy). In fact, the total error is bounded Iy, , ¥"(n—k)/n. For undiscounted
problems, our error is bounded By- k in the original case and by — k[1+log(T /k)]
when taking into account the smoothness.

3 Conclusions and related work

Much recent work on Bayesian RL focused on myopic estimatéslicexpansion of
the belief tree up to a certain depth. Exceptions includeifaat et al., 2006], which
uses an analytical bound based on sampling a small set efbelhd [Wang et al.,
2005], which uses Kearn’s sparse sampling algorithm [Keatral., 1999] to expand
the tree. Both methods have complexity exponential in th&zbo, something which
we improve via the use of smoothness properties inducedebBalyesian updating.

There are also connections with work on POMDPs problemsqRobal., 2008].
However this setting, though equivalent in an abstracteseissnot sufficiently close
to the one we consider. Results on bandit problems, empdhie same value func-
tion bounds used herein were reported in [Dimitrakakis,&0@hich experimentally
compared algorithms operating on leaf nodes only.

Related results on the online sample complexity of BayeRiawere developed by
[Kolter and Ng, 2009], who employs a different upper boundurs and [Asmuth et al.,
2009], who employs MDP samples to plan in an augmented MDBesz@milarly to



Auer et al. [2008] (who consider the set of plausible MDPg) ases Bayesian con-
centration of measure results [Zhang, 2006] to prove mistadunds on the online
performance of the algorithm.

Interestingly, Alg. 4 resembles HOO [Bubeck et al., 2008tha way that it tra-
verses the tree, with two major differences. (a) The seasddapted testochas-
tic trees. (b) We use means of samples of upper bounds, rathreugper bounds
on sample means. For these reasons, we are unable to simfdterthe arguments
in [Bubeck et al., 2008].

We presented complexity results and counting arguments foumber of tree
search algorithms on trees where stochastic upper and lmueids satisfying a smooth-
ness property exist. These are the first results of this tydepartially extend the results
of [Norkin et al., 1998], which provided an asymptotic corgence proof, under sim-
ilar smoothness conditions, for a stochastic branch anddbaigorithm. In addition,
we introduce a mechanism to utilise samples obtained at imvies when calculating
mean upper bounds at leaf nodes. Finally, we relate our eaitplresults to those
of [Kearns et al., 1999], for whose lower bound we provide alsimprovement. We
plan to address the online sample complexity of the propafgatithms, as well as
their practical performance, in future work.
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A Proofs of the main results

Proposition 1 By definition,V*(w) > V™(w) for all w, for any policym. The lower
bound follows trivially, since

@) 2 [V (s)gu( du (8)

The upper bound is derived as follows. First note that forfangtionf, max, [ f(x,u)du<
J max f(x,u)du. Then, we remark that:

V() = max [ Vi(sa)8a(k) dh (%)
< [ manys)Eo(w du (9b)
_/Vu Eu) ) (90)

Lemma 1 For anyb’ with Vi <V, we haveV® <V + By < VP + By < VP + By,
This holds forb = b*. Thus, in the worst case, the regret that we suffer if thergt®x
someb’ : VP > Vb ise =P _vb < B\ To reach depthk in all branches we need

n=yK , ¢ < ¢ expansions. Thus, we requke= '°?§;</B andn < @ %R g



Lemma 2 The total number of samples ksn, the number of leaf nodes times the
number of samples at each leaf node. The search is until depth

k= ﬂogys/zpﬂ < 1+log,e/2B (10)
and the number of samples is
m= 2log,(g/2p)loge. (11)

The complexity follows trivially. Now we must prove that shbounds the expected
regret withe. Note thafBy¥ < £/2, so for all branchels:

VP—VvP<g/2. (12)

The expected regret can now be written as
ER< % FERVE <V +e/4PEE <V +e/4) (13)
+ERVE >V + /4P > VP +e/4). (14)

From the Hoeffding bound (21)
P(VL -VL>¢/d) < eXp(——mB 22k 2)

and with a union bound the total error probability is bounbleg exp(—2mB-2y~2g2).
If our estimates are withig/4 then the sample regret is boundecp, while the other
terms are trivially bounded by 1, to obtain

ER< 2+{q¥exp< “mp2y e 2) +Z.} (15)

Substitutingm andk, we obtain the stated result. g

Lemma 3

E[N] = innlp(\”/(j) >V +e)PV(n) <V + ) (16)
n=1 |J=
n-1

< z nexp<—2[32 Z ) z nexp( —B2 (n+1)) 17

n=1 j=1
Let us now sep = exp(—B~2e2). Observe thahp"™D < np™, sincep < 1. Then,

n2
note thatf np”zdn: 0 (%gp). So we can bound the sum by
2 ® _ 2
p" exp(—B %) B
1 1 = . 1

2Iogp1 ) * 2B—2¢2 <t (18)

This proves the first inequality. For the second inequaliyhave:

i np"(™Y <14
n=1

P(N > n) (/\V ) >V +s> < ﬁ exp(—2kB~2?) (19)
k=1

=exp(—B%*n(n+1)) < exp(—n’p~2%?). (20)

This completes the proof for the first case. The second casymmetric. g

10



Lemma 4 In order to stop expanding a sub-optimal brabcht depthk, we must have
V8(k) < V*, since in the worst casé; (k) = V* for all k. SinceVP =V* — A, this only

happens whekis greater thalkg £ [IogyA/Bw , which is the minimum depth we must

expand to. Subsequently, we shall note that the probabiigtopping isP(V (k) >
A — By < exp(—2(A — By¥)?B~2). We can not do better due to the degenerate case
where only one leaf node of the branch has non-zero probabili

The probability of not stopping at depktis bounded by:

P(K>k) < ﬁ exp(—2(A—By)?p?) < exp<282 im ij)2>
i=ko i=
2 2. Bh
corl 5 (o )]
By — Y — 28y — Y (1+y)
= B(A2 =PI —20A -y (L+y).
|

Lemma 5 Similarly to the previous lemma, there is a degenerate caseeronly one
sub-branch has non-zero probability. However this algorite-uses the samples that
were obtained at previous expansions. When at depile average the bounds from

[k/2] tok. Since, in the worst case, we cannot stop uati ko = [IogyA/Bw , we shall

bound the probability that we stop at some defthk 2ky. Then the mean upper bound
bias is at most:

1 & o By 1yt A 1y
o, "kl 1oy Kok 1oy

The procedure continues only if the sampling error excéedsy, so it suffices to
boundP(X, > X« +¢€), whereXy = Zﬁ,[k/z] Vu (k) and X, =V + hy for € = A(1—

Ty (xk>xk+s><exp( Ztore ) Sincegl i (BY)7 — 1L

P(X¢ > Xk +€) < exp( A2 1 y2 M ) By settinge = A — h, we can bound this by

2(k—ko)2(1— V) 1yt N\
exp<— (1— 2k (1_m))

For largek, this is approximately (exp(—k?)). &

Lemma 6 It is easy to see th& (Wi1/n+1|&) = Wi/ne. This follows trivially when
no observations are made singg.1 = Y;. When one observation is madg, 1 =
1+ne. ThenE(Wri1/neal&) = [We+ & (W)]/Mea = [We +We/ne] /(L +10) = W /.
Thus, the matrixr, is a martingale. We shall now prove the Lipschitz propertyr F
allk>0,yx > 0:

W/ (M +K) < Wy /e < (W +K) /N

is upper bounded b&{?‘nﬂg and; K and thus byw

o _ uh
Note tha4 Nk Nt (ne+k) e (ne-+Kk)

i .
Equating the two terms, we obta‘iﬁ%‘; — % < 2<nt—k+k) ]

11



Lemma 7 The transitions, P induced by any policy obeyP — P||« < €. By repeated
use of Cauchy-Schwarz and triangle inequalities:

IV =Vlleo=|[r=F+y(PV—-PV)|,
< e =Flo-+v[[PV =PV,
<e+y|[PVv—(P-PV|,
<e+y ([P V)|, +[[PVIL.)
<E+Y(IPlloo IV =Vleo + [1Plloo [V ]| )

~ 1
§s+y(HV—VHm+s-1—y)

whereP = P — P, for which of course hold§P||., < €. Solving gives us the required
result. g

B Hoeffding bounds for weighted averages

Hoeffding bounds can also be derived for weighted averages.us first recall the
standard Hoeffding inequality:

Lemma 8 (Hoeffding inequality) If %, = %z{‘:lxi, with % € [bi,b; + hj] drawn from
some arbitrary distribution;fandx, £ % ¥i E[x], then, for alle > O:

202
P()?nz%Jrs)gexp(—znn—sz). (21)
Yicah

We have a weighted sumg, = S, wiX, ST, w = 1. If we setv; = nw, then we can
write the above a§ Y, vix.. So, if we lets = vix and assume thaf € [b,b-+h], then
Xi € [vib+ vi(b+ h)]. Substituting into (21) results in

P (%> x+¢) Sexp<+zwz>. (22)

Furthermore, note that

. — 2¢?
P(%h > X+¢€) < exp 1z ) (23)

sincew? < w; for all i, asw; € [0,1]. Thusy;w? < 3;w = 1. Note thaty;w? = 1 iff
w;j = 1 for some;.
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