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Abstract
Biased decision making by machine learning systems is in-
creasingly recognized as an important issue. Recently, tech-
niques have been proposed to learn non-discriminatory clas-
sifiers by enforcing constraints in the training phase. Such
constraints are either non-convex in nature (posing computa-
tional difficulties) or don’t have a clear probabilistic interpre-
tation. Moreover, the techniques offer little understanding of
the more subjective notion of fairness.
In this paper, we introduce a novel technique to achieve non-
discrimination without sacrificing convexity and probabilis-
tic interpretation. Our experimental analysis demonstrates the
success of the method on popular real datasets including
ProPublica’s COMPAS dataset. We also propose a new notion
of fairness for machine learning and show that our technique
satisfies this subjective fairness criterion.

1 Introduction
Algorithmic decision making powered by state of the art
machine learning techniques is quickly gaining popular-
ity in many diverse application areas including the ones
which have larger social impact. Some examples of these
applications are calculating risk scores of criminal recidi-
vism, stop-and-frisk programs, predictive policing, uni-
versity admissions, bank loan approvals and jobs(salary)
screening/recommendation (Northpointe 2012),(Hvisten-
dahl 2016),(Miller 2015). There have been strong evidences
that the trained systems often show significant bias against
certain social groups for e.g. against a certain race while cal-
culating recidivism risk score (ProPublica 2017) or against a
certain gender while recommending jobs and salaries (Datta,
Tschantz, and Datta 2015). This has led to a widespread con-
cern that machine learning systems not only appear discrim-
inatory (which may have legal/financial consequences) but
can potentially create (or enhance) imbalance in the soci-
ety (ACM 2017),(WhiteHouse 2016). Consequently, there
has been a lot of recent research towards making machine
learning fair, accountable and transparent. In this paper, we
focus mainly on the issues of non-discrimination and fair-
ness.

The first objective, in this paper, is to design classifiers
that are non-discriminatory. An ideal non-discriminatory
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classifier is perhaps the one in which prediction is statis-
tically independent of the sensitive attribute (for e.g. race,
gender etc). However, as we discuss in the paper, this ob-
jective is not always practical as it may cause considerable
loss in utility. Another less strict non-discrimination crite-
rion that finds its roots in legal literature and has recently
gained popularity in machine learning literature is the p-
rule criterion. The p-rule criterion requires that the ratio of
the probabilities of favoring two different social groups is
at least p. A solution that looks promising is to omit the
sensitive attribute from both training and decision making
phases. However, this solution doesn’t work (Calders, Kami-
ran, and Pechenizkiy 2009). The reason being that other
non-sensitive attributes are often correlated with the sensi-
tive attributes (because of historical bias) and algorithms can
learn this bias even without access to sensitive attributes.
The two broad ideas in advanced approaches (Kamishima
et al. 2012), (Zafar et al. 2017b), (Zafar et al. 2017c) are :
i) using a regularizer term that penalizes discrimination; and
ii) enforcing non-discrimination constraints on the learning
objective. A general problem in these approaches is that they
are non-convex in nature or achieve convexity at the cost of
probabilistic interpretation.

The second objective, in this paper, is to offer a fairness
interpretation of the trained classifiers. Fairness being a sub-
jective issue, it may not be acceptable to say that a classi-
fier which is non-discriminatory is also fair. The designer of
the systems should, however, be able to offer an explanation
that in what sense her classifier is fair. Fairness in machine
learning is a far less studied issue, with most works using the
terms fairness and non-discrimination interchangeably. Un-
like p-rule criterion for non-discrimination, there is no pop-
ular notion of fairness in machine learning. Very recently,
there has been some work towards defining the notions of
envy-freeness (Zafar et al. 2017a), Rawlsian and merito-
cratic fairness (Joseph et al. 2016a),(Joseph et al. 2016b),
(Jabbari et al. 2017) in machine learning.

To meet both these objectives, we propose a novel tech-
nique called the weighted sum of logs technique. Instead of
aiming to directly minimize the difference in the probabil-
ities of favoring individuals of different groups to enforce
non-discrimination, we assign different weights to the favor-
ing probabilities and minimize the negative of the weighted
sum of their logs (subject to accuracy constraints). By us-



ing the logarithm and avoiding to use the difference between
probabilities distributions, we manage to keep our problem
convex. Unlike (Zafar et al. 2017b), we use the analytical
expressions for these probabilities as a function of model pa-
rameters and don’t use any proxy during the training phase.
Thus, our algorithm has an easy to understand probabilis-
tic interpretation. The solution is not limited to binary val-
ued sensitive attributes and naturally extends to non-binary
discrete values. We show through experiments on two real
datasets that our technique can efficiently achieve given p-
rule criterion with very little drop in accuracy. The technique
is applicable to any learning algorithm for probabilistic dis-
criminative models. The idea of weighted sum of logs can
also be extended to the slightly different settings of minimiz-
ing mistreatment (difference in false positive or false nega-
tive rates for different social groups), which otherwise needs
a convex-concave formulation (Zafar et al. 2017c). We next
define a notion of fairness that we call as the ‘weighted pro-
portional fairness’ in machine learning. We show that our
weighted sum of logs technique guarantees weighted pro-
portional fairness for a given set of weights.

The summary of our novel contributions in this paper are
as follows :

1. We compare the two popular definitions of non-
discrimination : demographic parity (Calders, Kami-
ran, and Pechenizkiy 2009) and equalized odds (Hardt
et al. 2016) by analyzing the trade off between non-
discrimination and accuracy of respective classifiers. We
show that the structure of the real world (data) poses re-
strictions on this trade off.

2. We propose a technique called the “weighted sum of logs”
for learning non-discriminatory and fair classifiers.

3. We define a new notion of fairness for machine learning,
called the “weighted proportional fairness” and show that
our technique satisfies the weighted proportional fairness
criterion.

4. We discuss heuristics that can be used to tune our
weighted sum of logs idea to satisfy a given non-
discrimination requirement.

5. We show through experiments that our technique gives
a performance competitive to the state-of-the art work
by (Zafar et al. 2017b). While Zafar et al. have to sac-
rifice probabilistic interpretation to achieve convexity and
similar performance, our classifier does this while retain-
ing both these desired properties. Unlike Zafar et al., our
classifier also comes with a guarantee on subjective fair-
ness.

2 Related Work
In very recent past, there has been a large amount of research
in making machine learning fair and non-discriminatory.
The works that are most relevant to our work are (Calders
and Verwer 2010),(Kamishima et al. 2012), (Zafar et al.
2017b) and (Zafar et al. 2017c). (Calders and Verwer
2010) propose three approaches for making naı̈ve Bayes
classifier discrimination free. In first approach, they mod-
ify the conditional probabilities of the classifier. In the sec-

ond approach, they train two different models for two dif-
ferent social groups (for e.g. male and females). In the
third approach, they introduce a latent variable for the ac-
tual class that would have been present in the training set
if the set was discrimination-free. The extension of these
approaches to classifiers other than naı̈ve Bayes is not dis-
cussed. (Kamishima et al. 2012) also consider settings sim-
ilar to ours. They propose a regularization technique based
on mutual information of the sensitive attribute and the pre-
diction class for probabilistic discriminative classifiers. The
idea in this technique is to learn different parameter sets for
different groups, while using a regularizer that penalizes the
increase in probability of favoring conditional on the group
membership. The regularizer term is non-convex but has a
clear probabilistic interpretation. The overall training pro-
cess is slow also because of multiple models being learned.
(Zafar et al. 2017b) propose an interesting solution by mod-
eling the problem as a constrained optimization problem of
minimizing the loss of the classifier (as usual, for e.g. nega-
tive likelihood) but also subject it to the constraints that the
absolute difference in probabilities of favoring different so-
cial groups doesn’t exceed a given threshold. As this would
lead to a non-convex problem, they use the covariance be-
tween the sensitive attribute and the dot product of attribute
values and the parameter vector as a proxy. They minimize
the loss subject to the constraints that the absolute value
of the covariance doesn’t exceed a certain threshold. While
the technique works well, the use of proxy term strips the
model of a meaningful probabilistic interpretation (which is
a highly desired property in machine learning). (Zafar et al.
2017c) target a slightly different setting in which the goal is
to limit mistreatment. They define mistreatment as the dif-
ference in false positive (or false negative) rates for different
groups. The resulting constrained problem is non-convex in
nature and they use a special DCCP (convex-concave) pack-
age to solve the problem.

Another line of research is on pre-processing of the train-
ing data (Kamiran and Calders 2009), (Kamiran and Calders
2012), (Dwork et al. 2012) to enable fair learning. Most no-
table among these is the concept of ε-predictability (and fair-
ness) (Feldman et al. 2015) to measure and correct bias in
the training data. This line of research is significantly dif-
ferent from ours because we are interested in developing al-
gorithms that can be used to learn fair classifiers irrespec-
tive of the data being fed and can provide direct control on
accuracy-fairness trade-off during training phase.

Finally, theoretical work of (Dwork et al. 2012) discusses
a notion of individual fairness to guarantee that people who
are similar in non-sensitive characteristics are treated in
same way, (Hardt et al. 2016) discusses an approach to mod-
ify a learned classifier (post training) to make its decision
look non-discriminatory and (Kleinberg, Mullainathan, and
Raghavan 2017) studies the theoretical trade off and incom-
patibility of different notions of non-discrimination.

There has also been a significant amount of work in
computational social science towards achieving fairness
in data collection, social networks etc (Olteanu et al.
2016),(Tufekci 2014),(Morstatter and Liu 2017),(Hajian,
Bonchi, and Castillo 2016).



3 Preliminaries
We consider the settings of learning to predict a discrete
target variable ym, for a sample m with a set of features
Xm ∈ Rd. Every sample has a discrete valued sensitive at-
tribute zm /∈ Xm. The examples of such sensitive attributes
include race, color, religion, gender etc.

Let’s, for easier understanding, assume that the protected
attribute is binary valued. For e.g., if the protected attribute
is gender, then it may take values ‘male’ (0) or ‘female’ (1).
Further, assume that the prediction space is binary i.e. ym ∈
{+1,−1}. We will be using + for +1 and − for −1 in the
rest of the paper.

World Bias Matrix The world bias matrix is a 2×2 matrix
W , where Wij = W [i][j] is the probability of the true class
of a data sample being i ∈ {+,−}, given that the value of
the protected attribute is j ∈ {0, 1}.

The world bias matrix represents the inherent real world
bias in the true class of a test1 sample for different values of
the protected attribute. We will be using notations W [i][j]
and Wij interchangeably.

Classifier Confusion Matrix The confusion matrix of a
classifier is a 2 × 2 matrix C, where Cij = C[i][j] is the
probability of the predicted class ŷ of a test data sample be-
ing i ∈ {+,−}, given that the true class y is j ∈ {+,−}.

It remains to define what makes a classifier non-
discriminatory. There are various ways to measure the differ-
ence in the treatment received by different groups, leading to
different ways of defining non-discrimination. The strongest
definition of non-discrimination is the demographic parity.

Demographic Parity (Calders, Kamiran, and Pech-
enizkiy 2009) Demographic parity requires that the pre-
diction of a classifier is independent of the sensitive attribute
i.e.

P (ŷ = +|z = 1) = P (ŷ = +|z = 0)

A weaker definition of non-discrimination is equalized
odds.

Equalized Odds (Hardt et al. 2016) Equalized odds re-
quires that the prediction of a classifier is independent of the
sensitive attribute conditional on the true class i.e.

P (ŷ = +|y, z = 1) = P (ŷ = +|y, z = 0), y ∈ {0, 1}

There are several other (more restrictive) ways of defining
non-discrimination such as equal false negative rate for dif-
ferent values of sensitive attribute (Zafar et al. 2017c), which
are important in specific application scenarios. In this pa-
per, we limit ourselves to the above two common notions of
non-discrimination namely demographic parity and equal-
ized odds.

Discussion Judging which of these two definitions should
be used to measure and enforce non-discrimination, is a
policy-making issue. In many scenarios, demographic par-
ity is an important definition : specially when the decisions
involved are the ones that can have a potentially big impact

1We use the word ‘test’ samples for the data instances on which
classifier is actually used for prediction.

on the society in the long term or can even create a feed-
back cycle of injustice by affecting the training data sam-
ples to be seen in future. Moreover, implementing equal-
ized odds is not easy with only access to historical “la-
bels”, which may not be representative of the ground truth.
In this paper, we strive to develop techniques that can meet
stronger requirements of non-discrimination and not settle
for weaker ones. In the rest of the paper, we call a clas-
sifier non-discriminatory iff it satisfies demographic parity.
Our goal is to design classifiers that are as accurate and as
non-discriminatory as possible on the test samples. Before
discussing how to achieve this, we look at the loss that an
approach satisfying demographic parity must have to face as
compared to an approach that only satisfies equalized odds.

4 Accuracy-Discrimination Trade-off
Classifier Bias Matrix The bias matrix of a classifier is
a 2 × 2 matrix D, where Dij = D[i][j] is the probability
of the classifier predicting the class ŷ of a data sample as
i ∈ {+,−}, given that the value of the protected attribute is
j ∈ {0, 1}.
Lemma 1 The bias matrix of a classifier satisfying equal-
ized odds is :

D = CW

where C is the confusion matrix of the classifier and W is
the world bias matrix.
Proposition 1 If the world is not biased, any classifier with
arbitrary confusion matrix and satisfying equalized odds, is
also non-discriminatory.

The above proposition follows by setting W [+][1] =
W [+][0], which gives equal values forD[+][1] andD[+][0].
Proposition 2 If the world is biased, a classifier with iden-
tity confusion matrix and satisfying only equalized odds, can
not be non-discriminatory.

Clearly, if the classifier is always accurate i.e. if the confu-
sion matrixC is identity, then the bias matrix of the classifier
is equal to the world bias matrix. Thus, unless the world is
non-discriminatory, a perfectly accurate classifier satisfying
equalized odds will surely be discriminatory.
Proposition 3 If the world is biased, a classifier satisfying
equalized odds is non-discriminatory if and only if

C[+][+] = C[+][−]
This subsumes the naı̈ve ways of achieving non-

discrimination, for e.g., always classifying as +, always
classifying as − and classifying randomly i.e. C[+][+] =
C[−][−] = 0.5.

Impossibility of Non-Discrimination Proposition 3 ef-
fectively renders a non-discriminatory classifier useless for
practical purpose by requiring the predicted class to be inde-
pendent of the true class. Thus, we arrive at a negative con-
clusion that any practically useful classifier satisfying equal-
ized odds in a biased world can’t be non-discriminatory.
Note that while we discussed only the settings with binary
sensitive attribute and binary classification, the conclusions
can be generalized to non-binary setting by simply increas-
ing the dimensionality of the bias and confusion matrices.



Approximately Non-Discriminatory Classifiers Propo-
sition 3 only establishes the impossibility of achieving per-
fect non-discrimination in a biased world. We next explore
the possibility of existence of classifiers that are approxi-
mately non-discriminatory in biased world and still useful
in practice.

p-rule A popular way to measure and limit discrimination,
called the p-rule (Biddle 2006), is given as follows.

min
(P (ŷ = +|z = 1)

P (ŷ = +|z = 0)
,
P (ŷ = +|z = 0)

P (ŷ = +|z = 1)

)
≥ p

where P (ŷ = +|z = 1) is the probability of the classi-
fier predicting the class of a test sample as +, given that the
value of the protected attribute is 1 and P (ŷ = +|z = 0)
is the probability of the classifier predicting the class of a
test sample as +, given that the value of the protected at-
tribute is 0. p is set to a positive value less than 1. A p-rule
value2 equal to 1 implies non-discriminatory classifier sat-
isfying demographic parity. The general requirement under
law is to have p-rule value above 0.8 for the classifier to be
considered reasonably non-discriminatory.

Theorem 1 If the world satisfies p-rule, then any classi-
fier with arbitrary confusion matrix and satisfying equalized
odds satisfies the p-rule.

Theorem 2 If the world doesn’t satisfy p-rule, then the fol-
lowing holds for a classifier satisfying equalized odds :
If W+1

W+0
< p, then the classifier satisfies the p-rule if and only

if

−(1− p)
W+0 − pW+1

≤ C[+][+]

C[+][−]
− 1 ≤ −(1− p)

W+1 − pW+0

If W+0

W+1
< p , then the classifier satisfies the p-rule if and

only if

−(1− p)
W+1 − pW+0

≤ C[+][+]

C[+][−]
− 1 ≤ −(1− p)

W+0 − pW+1

C[+][+]
C[+][−]−1 is the relative difference between probabilities

of predicting a + class for a true + class sample and pre-
dicting a + class for a true − class sample. Thus, this quan-
tity can be seen as measuring the level of ‘correlation’ in
the classifier’s predicted class and the true class. Theorem 2
provides bounds on this correlation. This correlation directly
affects the accuracy of the classifier. Clearly, depending on
the bias in the world (inversely proportional), the theorems
require some accuracy to be sacrificed but also provide hope
for getting around the impossibility result and building use-
ful and approximately non-discriminatory classifiers. These
results will help us justify the drop in accuracy that we will
observe later in our experimental analysis. It may be noted
that the condition in Theorem 2 is never satisfied by a per-
fectly accurate classifier and always satisfied by a useless
classifier, making Propositions 2 and 3 special cases.

2We refer to the left hand side of the inequality in p-rule as the
p-rule value.

There is another (less common) way to measure and limit
discrimination and is called the CV-score (Calders and Ver-
wer 2010). CV-score measures the absolute difference in
probabilities of the classifier favoring different groups in-
stead of the ratio. Similar conclusions about trade off be-
tween accuracy and CV-score can also be drawn (see ex-
tended version of the paper).

5 Weighted Sum of Logs Technique
Our technique, called the weighted sum of logs technique,
can be used to lower discrimination in classifiers. This tech-
nique is applicable to probabilistic discriminative models.
More specifically, we will be discussing the logistic re-
gression classifier in the paper. Let θ be the variable (non-
discriminatory parameter weight vector) for logistic regres-
sion that we are interested in learning and θv be the parame-
ter weight vector (discriminatory) learned with vanilla logis-
tic regression. Here, vanilla logistic regression may also in-
volve the regularized (for e.g. L2) version of logistic regres-
sion classifier. We limit our discussion to the case of only a
single sensitive attribute z, which takes discrete values. For
e.g., if z is race, then we may be interested in lowering dis-
crimination w.r.t. black, white and asian groups.

To learn the optimal non-discriminatory θ, we solve the
following optimization problem :

maximize
θ

N∑
i=1

wg(i) · log P̂+
i (θ)

subject to L(θ) ≤ (1 + δ)L(θv)

(1)

where wg(i) is the empirical estimate of historical bias in the
training data (of size N ) against the group (for e.g. race) of
the ith individual. More precisely,

wg(i) =

N∑
m=1

1zm=g(i) · 1ym=−

N∑
m=1

1zm=g(i)

· 1
N∑
m=1

1zm=g(i)

(2)

log P̂+
i (θ) is the log of the empirical estimate of favorable

bias of the classifier towards i, i.e.,

log P̂+
i (θ) = − log(1 + e−X

T
i θ) (3)

L(θ) is the negative log likelihood given by :

L(θ) = 1

N

N∑
i=1

log(1 + e−yi(X
T
i θ))

It is important to note the difference between wg(i)
and P̂+

i (θ). wg(i) is only the historical estimate of un-
favorable bias against a group and hence depends only
on the true class present in training data. On the other
hand, P̂+

i (θ) is the empirical estimate of the favorable
bias of the classifier being learned and hence depends on
the predicted class. wg(i) is a constant, independent of the
optimization variable θ but P̂+

i (θ) depends directly on θ.



Also note that maximize
θ

N∑
i=1

wg(i) · log P̂+
i (θ) is equivalent

to minimize
θ

N∑
i=1

−wg(i) · log P̂+
i (θ). Thus, we have a convex

optimization problem in θ.

The constraints restrict the optimization space to the set
of classifier that don’t suffer a loss more than (1 + δ) times
the loss the vanilla classifier which doesn’t enforce non-
discrimination. δ is a hyper-parameter which allows to set
the desired level of drop in accuracy that a decision maker
is willing to suffer to maximize the non-discrimination ob-
jective. We will show through experiments on real datasets
that one can use this formulation to tune the classifier for
satisfying a given p-rule. The reason why this technique
works in practice can be intuitively understood in the fol-
lowing manner. If the training data shows historical bias
i.e. weights wg(i) are different for different groups, then
the optimizer gets different utility gains from increasing
the log P̂+

i (θ) for individuals of different groups. In other
words, the group with higher weight (wg(i)) is compensated
more by increasing log P̂+

i (θ) of its individuals more than
others. The weightwg(i) will be higher for historically disfa-

vored and minority group. The first term

N∑
m=1

1zm=g(i)·1ym=−

N∑
m=1

1zm=g(i)

in the weight measures disfavoring bias against the group.
The second term 1

N∑
m=1

1zm=g(i)

can be seen as a normaliza-

tion factor for the whole group since there are equal number
of log terms in the numerator for that group. This factor will
make the weight higher for the group which has less samples
in the training data.

Before moving to the experiments results, we look at an
interesting fairness interpretation of our technique.

6 Fairness Interpretation
So far, we have used demographic parity and equalized
odds as definitions of only non-discrimination and not dis-
cussed the issue of “fairness”. The definitions of non-
discrimination in machine learning often find their moti-
vation (Barocas and Selbst 2016),(Zarsky 2016),(Roemer
2009) in the need for preventing the automatic decision
making systems from disfavoring (or appearing to disfavor)
particular social groups because this has social, legal and
even financial consequences. However, the definition of fair-
ness in machine learning remains largely unclear. Fairness
is a very subjective issue and using the terms fairness and
non-discrimination interchangeably perhaps over simplifies
the issue. But both non-discrimination and fairness are im-
portant issues. A classifier that enforces non-discrimination
must be able to offer a fairness interpretation of its training
process and its decisions (even if the explanation is subjec-
tive). In this paper, we draw inspiration from literature on
rate control in communication networks (Kelly 1997) to of-
fer fairness interpretation of a machine learning classifier.

A machine learning classifier f is said to be proportion-

ally fair if for any other allowed classifier u,

N∑
i=1

(Pu)
+
i − (Pf )

+
i

(Pf )
+
i

≤ 0 (4)

where (Pc)+i is the probability of classifier c favoring i as
discussed in Section 5 (Equation 3). The inequality can also
be seen as the empirical average of the proportional changes
in favoring probabilities being non-positive. Thus, in expec-
tation no other allowed classifier can cause a positive pro-
portional change in probability of favoring an individual.

In simpler words, if out of two allowed actions, an action
causes small relative disadvantage to the one individual as
compared to the other action but much more relative advan-
tage to another individual, then the action is proportionally
fair. There are two interesting points that should be noted
about this definition. The first is that it takes the summation
of relative changes and prefers the classifier that gives best
global (across all individuals) impact. The second is that it
calculates this global impact based on relative changes in
probabilities and not absolute changes. It can be shown that
such a classifier is Pareto optimal and has many other in-
teresting game theoretic properties (which are outside the
scope of this paper : see (Bertsimas, Farias, and Trichakis
2011)).

This definition of proportional fairness can be extended
to weighted proportional fairness as follows. A classifier f
is called to be weighted proportionally fair if for any other
allowed classifier u,

N∑
i=1

wi
(Pu)

+
i − (Pf )

+
i

(Pf )
+
i

≤ 0 (5)

Here wi’s are interpreted as costs paid by different indi-
viduals in history. Thus, if an individual belongs to a social
group that has been more unfairly treated in history (i.e. has
paid more cost), gets more weight while calculating the sum.
As cost is a subjective term (i.e. hard to measure), our defini-
tion of weight proportional fairness also remains subjective
as expected.

Weighted Sum of logs : The weighted sum of logs tech-
nique guarantees a classifier that is weighted proportionally
fair among all classifiers that suffer a loss not more than
(1 + δ) times the loss of the vanilla classifier. This im-
plies that if a decision maker is confined to a set of machine
learning classifiers that are no worse than a certain threshold
of the vanilla classifier (because of utility concerns), then
the classifier learned by our technique is guaranteed to be
weighted proportionally fair among all such allowed classi-
fiers. The weights are the historical bias in the training data
against different social groups to which individuals belong.

Having discussed the fairness interpretation of the
weighted sum of logs technique, we now discuss the ex-
perimental results to evaluate the practical suitability of the
technique in lowering discrimination.
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Figure 1: Comparison of different weighted sum of logs heuristics
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Figure 2: Comparison with baseline

7 Experimental Evaluation
Heuristics

As mentioned earlier, the weighted sum of logs technique
needs to be tuned for meeting a given p-rule requirement
while ensuring as little drop in accuracy as possible. We
evaluate three additional techniques that can used for this.

Negative Weighted Sum of Logs as Regularizer - In this
heuristic, instead of solving a constrained problem, we di-
rectly minimize the following objective :

minimize
θ

L(θ) + γ ·
N∑
i=1

−wg(i) · log P̂+
i (θ)

The parameter γ is analogous to the parameter δ in Equa-
tion 1 and controls the trade-off between accuracy and non-
discrimination.

Exponentially scaled weights - Recall that it is because
of the difference in the historical weights wg(i) that the
optimizer gets different utility gains by increasing favor-
ing bias towards different groups. However, this difference
may not be sufficient to meet a given p-rule requirement on
the trained classifier. In this heuristic, we introduce another
hyper-parameter k, which is used to make the difference in
weights wg(i) of different groups more pronounced. Specif-
ically, we replace the weight wg(i) by (wg(i))

k.
For an example, if we consider the above mentioned reg-

ularizer version, then our optimization problem becomes :

minimize
θ

L(θ) + γ ·
N∑
i=1

−(wg(i))k · log P̂+
i (θ)

Note that as k increases, the overall magnitude of weighted
sum becomes small. Hence, γ needs to be scaled up appro-
priately to balance the effect.

Binarized weights - Since tuning hyper-parameter k
causes additional overhead, we also evaluate another heuris-
tic which is an extreme case of exponentially scaled weights.
It is applicable to the case when sensitive attribute is binary
valued i.e. domain(g(i)) = domain(z) = {0, 1}. In this
heuristic, we set the weight for one of the groups as 1 and
the other as 0. For e.g. if wfemale > wmale, then wfemale is
set to 1 and wmale to 0. The optimization problem is thus :

minimize
θ

L(θ) + γ ·
N∑
i=1

−1wg(i)>w1−g(i)
· log P̂+

i (θ)

Note that in all of these heuristics, a common hyper-
parameter γ continues to provide direct control on accuracy
similar to the hyper-parameter δ in the original technique.

Datasets
We work with two datasets in our experimental evaluation.
The first dataset is the ProPublica’s COMPAS dataset (Lar-
son et al. 2016). It contains data from Broward County,



Florida, compiled by ProPublica. The goal is to predict
whether a convicted individual would commit a crime again
in the following 2 years or not. The dataset has personal
information about the offenders such as gender, race, age
and criminal history etc. The prediction class is whether
or not these individuals actually recidivated within 2 years
after the screening. We call recidivating as negative class
and not recidivating as positive class. We consider offenders
whose race was either black or white. The dataset was fil-
tered for quality reasons such as missing values etc. In this
sample of 6150 points, 61% while people belonged to the
positive class and 49% black people belonged to the positive
class. Total number of black examples is 3696 and number
of white examples is 2454. A vanilla logistic regression clas-
sifier trained on this data classifies 74% of while examples
and 48% of black examples as belonging to positive class.

The second dataset is the popular Adult Income
dataset (UCI 1996). This dataset has 45, 222 instances and
14 attributes such as age, occupation, working hours per
week and work class etc. The prediction classes are whether
a subjects incomes is above or below 50K USD. We call in-
come above 50K USD as positive class and below 50K USD
as negative class. Gender is treated as a sensitive attribute
in this dataset. We use a random sample of size 10, 000 in
our experiments. In this sample, 12% of females belonged
to the positive class and 31% of males belonged to the pos-
itive class. Total number of female examples are 3303 and
total number of male examples is 6397. A vanilla logistic
regression classifier trained on this data classifies 24% of
males and 8% of females as belonging to positive class.

Results
Results of our experiments are presented in Figures 1 and
2. All the results presented in this paper are k-fold cross-
validated. In Figure 1a, we compare the performance of the
different techniques we discussed on the COMPAS dataset.
‘Constraints’ refer to the original optimization problem dis-
cussed in Section 5. The regularized version of the prob-
lem is called ‘Regularizer’. In both these techniques, we
used exponentially scaled weights as discussed earlier. Fi-
nally, the corresponding versions with binarized weights are
called ‘Constraints : Binary Weights’ and ‘Regularizer : Bi-
nary Weights’ respectively. As one can see in the figure that
all four techniques give competitive results with the bina-
rized weights technique being at marginal advantage over
the rest. We manage to bring up the p-rule value from about
64% to 90% while bringing the accuracy down marginally
from around 67% to 66%. A similar trend can be observed
on the Adult dataset as well. The results are given in Fig-
ure 1b. On this dataset also, all four techniques given com-
petitive results. We can bring up the p-rule value from about
34% to 90% at the cost of a small drop in accuracy (from
around 85% to 82%). It should be noted that a drop in accu-
racy was indeed expected as discussed earlier in Theorem 2
because world in these datasets is biased.

We also compare our approach with the techniques pro-
posed in (Zafar et al. 2017b), which have been briefly dis-
cussed in Section 2. There are two heuristics proposed in
that paper : minimizing loss subject to constraints on co-

variance and minimizing covariance subject to constraints
on loss. We refer to these two techniques as AISTATS-17a
and AISTATS-17b respectively. We used the publicly avail-
able implementation by the authors for comparison. Our im-
plementation uses the same set of libraries and code for op-
timization and cross validation etc. Thus, the experimen-
tal conditions are identical. As we can see in Figure 2a,
both techniques are competitive on COMPAS data with our
method being marginally better than the baseline. The same
is true about the Adult dataset as clear from Figure 2b. It
should be noted that (Zafar et al. 2017b) had also com-
pared their method with the non-convex regularization ap-
proach proposed in (Kamishima et al. 2012) and had ob-
served a similar trend about the two approaches giving iden-
tical results. By transitivity, we can compare our approach
with (Kamishima et al. 2012).

Hence, the experimental results confirm that our method
can achieve non-discrimination without significant loss in
accuracy, with performance being comparable to the other
methods. However, our method achieves this without sacri-
ficing convexity and probabilistic interpretation, while guar-
anteeing weighted proportional fairness.

It may be worth noting that the weights used in the op-
timization problem are constants, independent of the op-
timization variable and depend only on the training data.
These weights need not be recomputed during every itera-
tion. Thus, the weights cause no computational overhead.
Finally, binarized version not only gives competitive perfor-
mance but also has computational advantages. First, it has
only one parameter, making hyper-parameter tuning through
cross-validation fast. Second, it sets one of the terms in
weighted sum of logs to 0 and thus, avoids computing it.

8 Conclusions

In this paper, we addressed an important problem of gender,
race, religion based discrimination by machine learning sys-
tems. With many incidents of discrimination being noticed
frequently, the problem is getting attention of not only com-
puter science researchers and government organizations but
also general public and users of the machine learning pow-
ered services. In this paper, we discussed the definitions of
non-discrimination and compared their inherent accuracy-
(non) discrimination trade-off. We defined a notion of fair-
ness in machine learning called the proportional fairness. We
further discussed the idea of weighted proportional fairness
that gives more weight to the group that has been treated
unfairly in the past. We proposed a novel technique called
the weighted sum of logs that uses a convex fairness cri-
terion to enforce non-discrimination. Our formulation has
a clear probabilistic interpretation and results in a convex
optimization problem, thus avoiding the issues in previous
approaches. We showed that this technique also guarantees
a weighted proportionally fair classifier. We demonstrated
through experiments on very relevant datasets that our tech-
nique achieves non-discrimination without much loss in ac-
curacy.
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