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Abstract
Several mechanisms have been proposed for incentivizing
truthful reports of a private signals owned by rational agents,
among them the peer prediction method and the Bayesian
truth serum. The robust Bayesian truth serum (RBTS) for
small populations and binary signals is particularly interest-
ing since it does not require a common prior to be known to
the mechanism. We further analyze the problem of the com-
mon prior not known to the mechanism and give several re-
sults regarding the restrictions that need to be placed in order
to have an incentive-compatible mechanism. Moreover, we
construct a Bayes-Nash incentive-compatible scheme called
multi-valued RBTS that generalizes RBTS to operate on both
small populations and non-binary signals.

Introduction
We are interested in techniques for collecting informa-
tion from different sources, such as in crowdsourcing
(Surowiecki 2005), opinion polls (Campbell 1996) or mea-
surements from sensor data (Aberer et al. 2010). Besides
techniques for filtering and aggregating the information that
has been submitted, an important aspect is also to incentivize
the agents providing the information to do so with the best
possible accuracy. In this paper, we consider game-theoretic
techniques for deriving such incentive schemes.

In situations where a group of agents makes forecasts
about an event that will eventually become common knowl-
edge, strictly proper scoring rules can be used as a tool for
truth elicitation (Savage 1971)(Gneiting and Raftery 2007).
In this setting, truth telling is a dominant strategy. Moreover,
as it is indicated in (Lambert and Shoham 2009), proper
scoring rules can be also used to truthfully elicit averages,
medians and modes of an unknown quantities.

However, it is often the case that one wants to obtain opin-
ions about events that will happen in a distant future, or in-
formation about events whose outcomes are hard to verify
(Prelec 2004)(Faltings, Jurca, and Li 2012). We consider a
scenario that can be described by a group of agents that ob-
serve a certain phenomenon. An agent i receives a signal
Si = si, updates her belief Pr(Sj |Si = si) about what an-
other agent j has observed, and reports her observation si
to the center through an information report xi (see Figure
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Figure 1: The setting analyzed in this paper1.

1). Moreover, the center might also ask agent i to submit a
prediction yi about the frequencies of signal values in the
population, .i.e. her belief Pr(Sj |Si = si). In order to ob-
tain the true observations, the center incentivizes agents to
make honest reports. As it cannot verify agents’ observa-
tions directly, the incentive schemes have to be based on a
comparison of reports.

The peer prediction method (Miller, Resnick, and Zeck-
hauser 2005) is a mechanism based on the comparison of re-
ports that is able to elicit true signal values: the main idea is
to extract an agent’s posterior belief from her reported value
and score it using a proper scoring rule and a report obtained
from her peer agent2. Due to the usage of proper scoring
rules, truth telling is a Bayes-Nash equilibrium. However,
the method assumes that:

• the setting has a specific structure, where the state of the
word is modeled as a random variable T and observations
are modeled as random variables Si which are condition-
ally independent given T . The associated probabilities
form a prior belief.

• the prior belief is common knowledge, i.e. agents share it
and it is known to the mechanism.

Several works investigate modifications of the peer predic-
tion method. Instead of applying proper scoring rules, Ju-
rca and Faltings (Jurca and Faltings 2006)(Jurca and Falt-

1User icons: David Hopkins (http://semlabs.co.uk/).Database
icon: Barry Mieny (http://barrymieny.deviantart.com/).

2A peer agent is some other agent assigned to the agent that is
being scored by the mechanism.
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ings 2007) constructed budget minimizing payment schemes
using automated mechanism design. They prove that if an
agent is scored on the comparison of several reports rather
than just one, then the minimum budget required to achieve
incentive compatibility decreases. The results also indicate
that small deviations of agents’ beliefs from the common
prior may lead to large increases in payments. If the mecha-
nism can distinguish the time before observations are made
from the time after the observations are made, it is possi-
ble to exploit the temporal structure to elicit binary signals
even when the prior is private and subjective (Witkowski
and Parkes 2012a). The key idea is that agents first report
their private prior belief about what other agents will ob-
serve, then observe a binary signal, and after the observation
report their signal values.

The Bayesian truth serum (BTS) (Prelec 2004) assumes a
setting similar to the one used in the peer prediction method,
but does not require the common prior to be known to the
mechanism. Instead, agents are obliged to provide two re-
ports: the information report (their observation) and the pre-
diction report (the prediction of what other agents have ob-
served). BTS is Bayes-Nash incentive-compatible for large
populations of agents. Moreover, Prelec and Seung (Pr-
elec and Seung 2006) describe how to extract the true state
of the world using the BTS score even when the majority
is wrong, and they provide experimental evidences which
show that the BTS score performs better than the majority
rule in selecting truth. The robust Bayesian truth serum
(RBTS) (Witkowski and Parkes 2012b) corrects the main
drawback of BTS: its inadequacy to operate on small popu-
lations. RBTS is Bayes-Nash incentive-compatible for small
populations, but it applies only when binary information is
being elicited.

In this paper, we consider incentive schemes that operate
both on small populations and non-binary signals for sce-
narios where agents share a common prior belief not known
to the mechanism. We start by showing that a mechanism
cannot be incentive-compatible if it elicits only an infor-
mation report (which corresponds to the agent’s observa-
tion) and no assumptions are placed on an agent’s beliefs3.
This motivates the usage of a prediction report, which corre-
sponds to the agent’s prediction of frequencies of observed
values. In particular, we focus on decomposable payment
schemes, meaning that the incentives are the sum of an in-
formation score and a prediction score, where the informa-
tion score is independent of the prediction report and the
prediction score is independent of the information report.
We show that even with two reports there is no decom-
posable incentive scheme that does not require additional
assumptions about an agent’s beliefs. However, as posi-
tive results we show two different sufficient conditions on
an agent’s beliefs that enable incentive-compatible elicita-
tion schemes. For the self-dominant condition, we show
an incentive-compatible scheme that uses only an informa-
tion report. For the weaker self-predicting condition, we

3Jurca and Faltings (Jurca and Faltings 2011) prove a similar
result: in general, without knowing prior beliefs, one cannot con-
struct a mechanism that is Bayes-Nash incentive-compatible.

construct a decomposable payment scheme for non-binary
values that is Bayes-Nash incentive-compatible, and gen-
eralizes the original RBTS scheme (Witkowski and Parkes
2012b).

We believe that the points made in this paper will con-
tribute to the characterization of incentive-compatibile pay-
ment schemes, especially when it comes to providing suffi-
cient and necessary conditions for payment schemes to be
Bayes-Nash incentive-compatible.

The Setting
Instead of defining a setting using a specific underlying
model, as it is done in (Prelec 2004)(Miller, Resnick, and
Zeckhauser 2005)(Witkowski and Parkes 2012b), one can
describe it in more general terms: with prior beliefs about
observations and posterior beliefs about what other agents
have observed. We use the following setting:

• There are n ≥ 2 agents who report their observations to
the center. Based on the quality of their observations, the
agents receive a score. The agents are risk-neutral and
seek to maximize their expected score. The scoring func-
tion is denoted by τ and it depends on reports made by all
the agents.

• The agents observe a same phenomenon, and their ob-
servations are modeled as random variables Si that take
values from {0, ...,m− 1}.
• The agents share a common prior belief about the possible

observations, i.e. for a possible observation s and two
agents i and j we have Pr(Si = s) = Pr(Sj = s).

• Once an agent observes her value, she updates her poste-
rior belief about what other agents have observed. The
updating process is the same for every agent, i.e. for
any three agents i, j and k, if agents i and j observe
the same value si = sj = s, then Pr(Sk = sk|Si =
s) = Pr(Sk = sk|Sj = s). Since the updating process
is universal, we can simplify our notation by denoting a
posterior belief Pr(Sk = sk|Si = si) by psi(sk).

• The prior and posterior beliefs are fully mixed, meaning
that 0 < Pr(Si = si) < 1 ∧ 0 < Pr(Sj = sj |Si =
si) < 1, ∀si, sj ∈ {0, ...,m − 1}. Moreover, the random
variables are stochastically relevant: the distribution of Sj

conditional on Si is different for different realizations of
Si (Miller, Resnick, and Zeckhauser 2005), i.e. ∀si 6=
s̃i,∃sj : Pr(Sj = sj |Si = si) 6= Pr(Sj = sj |Si = s̃i).

Beliefs about Peers
The mechanisms we are investigating are based on compar-
ing reports that different agents make about the same phe-
nomenon. Clearly, there are cases where such comparisons
don’t make sense. For example, if agents all interpret the
phenomenon differently, or use different scales for measure-
ment, their reports cannot be compared directly. Further-
more, what matters is not the true situation, but what agents
believe about other agents: to provide the right incentives, it
is sufficient that they believe other agents to be comparable
to themselves, even if in reality they may be very different.
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In this paper, we consider two different assumptions about
the strength of these beliefs. The strongest assumption we
consider is the self-dominant assumption, where an agent i
believes that the value x she observes is also the most likely
value observed by another agent k:
Pr(Sk = x̃|Si = x) < Pr(Sk = x|Si = x),∀x 6= x̃ (1)

An example where this assumption holds is when all agents
are in the same restaurant and are asked to count the num-
ber of customers. A general class of cases where the self-
dominant assumption holds is when agents believe that they
observe the exact same signal only perturbed by unbiased
noise.

As many settings do not satisfy this assumption, we intro-
duce a weaker assumption, the self-predicting assumption.
Here an agent i believes that another agent k is most likely
to observe a certain value x when she herself also observes
this value:
Pr(Sk = x|Si = x̃) < Pr(Sk = x|Si = x),∀x̃ 6= x (2)
An example where this assumption holds is when agents

are customers of a particular restaurant and are asked to
report the speed of the restaurant’s service based on how
quickly they receive their meal. In that case, agent i mod-
els the prior probability (her belief) of getting a meal within
certain amount of time using a categorical distribution (e.g.
the service can be slow, normal or fast). Once her meal is
served, she updates her belief using Bayesian inference: the
parameters of the categorial distribution are updated using
it’s conjugate prior (Dirichlet distribution) so the updating
process satisfies the expression (2). The posterior distri-
bution represents agent i’s belief about what other agents
have reported. A general class of cases where the self-
predicting assumption holds is when agents believe that they
observe different samples drawn from the same random dis-
tribution, provided the agents use Bayesian updating and the
phenomenon follows one of many natural probability distri-
butions including categorical or multinomial distributions.
In the example above, agents know that serving times are
drawn from the same distribution so if they obtain unusually
slow service they might still believe that other agents are get-
ting faster service. This makes the self-predicting assump-
tion weaker than the self-dominant assumption, and widely
applicable to practical scenarios. Note that, when signals
Si are binary, the self-predicting assumption holds when-
ever the self-dominant assumption is satisfied. Moreover,
the self predicting assumption is satisfied in the original (bi-
nary) RBTS setting (Witkowski and Parkes 2012b).

An example where neither of the two assumptions hold is
when agents report observations about different or even anti-
correlated phenomena, for example the number of customers
in the restaurant they are in, which is not necessarily the
same for all agents. It may also fail to hold if other agents’
measurements are believed to be inaccurate and biased in
some way. In this case, none of the methods we discuss in
this paper can be applied.

Mechanisms Based on One Report
We begin our analysis with the mechanisms that elicit only
the observed values. In other words, agents are asked to

provide only the privately owned signal: the corresponding
report is called information report. Since the center only
knows the reported values, one can expect that there does
not exist a mechanism which would elicit honest reports in
the general case. Before we formally show this, let us take a
closer look at peer payment schemes.
Definition 1. A payment scheme is 1-peer if the score de-
pends only on the reports of the agent that is being scored
and her peer agent.

Let us denote reported values by xi. As it is stated in
the setting section, a scoring function depends on all the re-
ported values, i.e. τ(x1, ..., xn, xagent) where we put the
report of the agent that is being scored at the last position.
On the other hand, 1-peer payment schemes represent re-
stricted version of general scoring function as they have a
form τ(xpeer, xagent). Nevertheless, their structure allows
easier theoretical analysis.
Lemma 1. If it is possible to construct a payment scheme
that requires only the information report and is Bayes-Nash
incentive-compatible when no restrictions are placed on the
updating process, then it is possible to construct a Bayes-
Nash incentive-compatible 1-peer payment scheme.

Proof. Let τ be a Bayes-Nash incentive-compatible pay-
ment scheme. The expected score of an agent i for reporting
xi, provided that all other agents are honest (i.e. xk = sk
where sk is a value observed by agent k), is equal to:∑
sj ,sk1

,...

Pr(Sj = sj , Sk1
= sk1

, ...|Si = si)τ(sj , sk1
, ., xi)

=
∑
sj

(Pr(Sj = sj |Si = si)·

·
∑

sk1
,...

Pr(Sk1
= sk1

, ...|Sj = sj , Si = si)τ(sj , sk1
, ., xi))

=
∑
sj

Pr(Sj = sj |Si = si)τ̃(sj , xi) (3)

Notice that τ̃(sj , xi) depends on Pr(Sk1 = sk1 , Sk2 =
sk2 , ...|Sj = sj , Si = si). However, the original scheme
is incentive-compatible in the general case, so it must
be incentive-compatible when the updating process keeps
Pr(Sk1

= sk1
, Sk2

= sk2
, ...|Sj = sj , Si = si) fixed, but

alters Pr(Sj = sj |Si = si). This implies the existence of a
1-peer payment scheme that is incentive-compatible in gen-
eral because τ̃ is incentive-compatible for arbitrary beliefs
Pr(Sj = sj |Si = si).

Lemma 1 is useful if one wants to prove impossibility re-
sults: if incentive compatibility is required for the general
case, it is enough to consider 1-peer payment schemes4.
Theorem 1. If only an information report is being elicited
and no restrictions are placed on the updating process, there
exists no payment scheme that is Bayes-Nash incentive-
compatible. Moreover, even if the self-predicting assumption

4However, Lemma 1 does not imply that it is enough to observe
1-peer payment schemes in order to achieve incentive compatibility
when certain restrictions are put on the updating process.
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holds, there exists no payment scheme that is Bayes-Nash
incentive-compatible.

Proof. Let us assume that there exists a Bayes-Nash
incentive-compatible payment scheme that works on a gen-
eral set of beliefs. Due to Lemma 1, we restrict our attention
to 1-peer payment schemes. Let p0 = Pr(Sj |Si = 0), ...,
pm−1 = Pr(Sj |Si = m− 1) be some arbitrary distribution
functions. Since the payment scheme should be incentive-
compatible for arbitrary distribution functions, it should also
be incentive-compatible when p1(1) > p0(1) > p0(0) >
p1(0) and pk(k) > pl(k), k, l ∈ {0, 1, ...,m − 1}, l 6= k.
Notice that these distributions satisfy the self-predicting as-
sumption. Due to incentive compatibility, we have:

p0(0)[τ(0, 0)− τ(0, 1)] + p0(1)[τ(1, 0)− τ(1, 1)]+

+
∑
i>1

p0(i)[τ(i, 0)− τ(i, 1)] > 0 (4)

p1(0)[τ(0, 1)− τ(0, 0)] + p1(1)[τ(1, 1)− τ(1, 0)]+

+
∑
i>1

p1(i)[τ(i, 1)− τ(i, 0)] > 0 (5)

To simplify the notation, let ∆i = τ(i, 0) − τ(i, 1). The
above expressions are then equal to:

p0(0)∆0 + p0(1)∆1 +
∑
i>1

p0(i)∆i > 0 (6)

−p1(0)∆0 − p1(1)∆1 −
∑
i>1

p1(i)∆i > 0 (7)

Let us consider new set of beliefs p
′

0, p
′

1, p2, ..., pm−1,
where p

′

0 and p
′

1 are equal to: p
′

0(0) = p1(1), p
′

0(1) =

p1(0), p
′

1(0) = p0(1), p
′

1(1) = p0(0), p
′

0(k) = p1(k)

and p
′

1(k) = p0(k) for k 6= 0, 1. Notice that the new set
of beliefs satisfy the self-predicting assumption. Since the
incentive compatibility also has to hold for the new posterior
beliefs, we have:

p1(1)∆0 + p1(0)∆1 +
∑
i>1

p1(i)∆i > 0 (8)

−p0(1)∆0 − p0(0)∆1 −
∑
i>1

p0(i)∆i > 0 (9)

The last 4 inequalities give us:

(p0(0)− p0(1))(∆0 −∆1) > 0 (10)
(p1(1)− p1(0))(∆0 −∆1) > 0 (11)

Because we set p1(1) > p0(1) > p0(0) > p1(0), it cannot
be that both (10) and (11) are satisfied. That is, we have a
contradiction.

The significance of Theorem 1 is that it motivates the
usage of mechanisms that require an additional report.
Namely, as we show in the next section, under the same set
of assumptions (i.e. the self-predicting assumption), there
exists a mechanism that requires 2 reports and is Bayes-Nash
incentive-compatible. To make our analysis complete, we
also give a sufficient condition for existence of an incentive-
compatible payment scheme that requires only one report.

Proposition 1. If the self-dominant assumption holds, then
there exists an incentive-compatible payment scheme that re-
quires only the information report.

Proof. Let us analyze the following 1-peer payment scheme:

τ(xpeer, xagent) = 1xpeer=xagent
(12)

where 1xpeer=xagent
is an indicator variable (equal to 1 when

xpeer = xagent, otherwise it is equal to 0). An agent who
aims to maximize her reward will choose to report:

argmax
xagent

E(τ(x1, ..., xn, xagent)) =

= argmax
xagent

Pr(Speer = xagent|Sagent = sagent) =

= sagent (13)

where sagent is the agent’s true observation.

Mechanisms Based on Two Reports
Theorem 1 motivates us to introduce an additional report,
the prediction report. The prediction report represents an
agent’s prediction of frequencies of observed values, i.e.
it is a probability distribution function over possible ob-
servations of other agents. Provided that an agent is hon-
est, her prediction report is her belief about what other
agents have reported. Let us denote the information re-
port by xi and the prediction report by yi. In general,
a scoring function depends on all the reported values, i.e.
τ(x1,y1, ..., xm−1,ym−1, xagent,yagent). However, we
restrict our attention to decomposable payment schemes that
reward information reports and prediction reports indepen-
dently.
Definition 2. A payment scheme is a decomposable payment
scheme if an agent’s total score is calculated as the sum of
her information score and her prediction score, where the
information score does not depend on the agent’s predic-
tion report and the prediction score does not depend on the
agent’s information report. More precisely:

τtotal(x1,y1, ..., xm−1,ym−1, xagent,yagent) =

= τ(x1,y1, ..., xm−1,ym−1, xagent)︸ ︷︷ ︸
information score

+

+ τ(x1,y1, ..., xm−1,ym−1,yagent)︸ ︷︷ ︸
prediction score

(14)

Having the decomposable structure where an agent’s in-
formation score is independent of her prediction report and
her prediction score is independent of her information re-
port simplifies the analysis of the incentives (scores) as they
do not influence each other. Notice that RBTS is an ex-
ample of decomposable payment scheme. For the limit
case, when number of agents approaches infinity, BTS con-
verges to a decomposable payment scheme since a single
agent does not have large impact on the frequencies of sig-
nal reports nor on the average of prediction reports. We
keep the notion of 1-peer payment schemes from the pre-
vious section, i.e. 1-peer payment schemes represent a re-
stricted version of general scoring functions and have a form
τ(xpeer,ypeer, xagent,yagent).
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The structure of decomposable schemes allows us to an-
alyze information and prediction scores separately. The
prediction score elicits an agent’s beliefs about what other
agents have reported. Since the outcome is known to the
mechanism (the mechanism knows what other agents have
reported), truthful elicitation of the prediction report can be
achieved using proper scoring rules.
Lemma 2. There exists a decomposable scheme that is
Bayes-Nash incentive-compatible if and only if there ex-
ists an information score that is Bayes-Nash incentive-
compatible.

Proof. Let us associate every agent with her peer agent, and
let R be a proper scoring rule. Consider the following scor-
ing function:

τ(x1,y1, ..., xn,yn,yagent) = R(yagent, xpeer) (15)
Provided that the peer agent is honest (xpeer = speer), the
best strategy for the agent that is being scored is to report
yagent = pagent (her posterior belief about what other
agents have observed). Therefore, the payment scheme is
incentive-compatible. Since there exists a payment scheme
that elicits honest prediction reports regardless of the updat-
ing assumptions, the existence of a decomposable scheme
that is Bayes-Nash incentive-compatible depends only on
the existence of an information score that is Bayes-Nash
incentive-compatible. Hence, we proved the statement.

Thanks to Lemma 2, we can restrict our analysis to
the information score in order to see whether there ex-
ists a decomposable payment scheme that is incentive-
compatible. Moreover, because we can assume that agents
are incentivized to provide honest prediction reports, our
notation for the information score can be changed to
τ(x1,p1, ..., xn,pn, xagent). To simplify our analysis, we
prove the statement analogous to the one made in Lemma 1.
Lemma 3. If it is possible to construct a decomposable pay-
ment scheme that is Bayes-Nash incentive-compatible when
no restrictions are placed on the updating process, then it
is possible to construct a Bayes-Nash incentive-compatible
1-peer decomposable payment scheme.

Proof. Due to Lemma 2, we restrict our analysis to the infor-
mation score. Let τ be a Bayes-Nash incentive-compatible
payment scheme. The expected score of an agent i for re-
porting xi, provided that all other agents are honest (i.e.
xk = sk and yk = psk , where sk is a value observed by
agent k), is equal to:∑
sj ,sk1

,...

Pr(Sj = sj , Sk1
= sk1

, ...|Si = si)·

· τ(sj ,psj , sk1
,psk1

, ..., xi))

=
∑
sj

(Pr(Sj = sj |Si = 0)·

·
∑

sk1
,...

Pr(Sk1
= sk1

, .|Sj = sj , Si = si)τ(sj ,psj , ., xi))

=
∑
sj

Pr(Sj = sj |Si = 0)τ̃(sj ,psj , xi) (16)

Notice that τ̃(sj ,psj , xi) depends on Pr(Sk1 = sk1 , Sk2 =
sk2 , ...|Sj = sj , Si = si). However, the original scheme
is incentive-compatible in the general case, so it must
be incentive-compatible when the updating process keeps
Pr(Sk1

= sk1
, Sk2

= sk2
, ...|Sj = sj , Si = si) fixed, but

alters Pr(Sj = sj |Si = si). This implies the existence of a
1-peer payment scheme that is incentive-compatible in gen-
eral because τ̃ is incentive-compatible for arbitrary beliefs
Pr(Sj = sj |Si = si).

As in the previous section, we first provide the impossi-
bility result: if no restrictions are placed on the updating
process, even though it is the same for all agents, we cannot
guarantee incentive compatibility in general.
Theorem 2. If no restrictions are placed on the updating
process, there exists no decomposable payment scheme that
is Bayes-Nash incentive-compatible when observations Si

take more than two values (m ≥ 3).

Proof. Let us assume that there exists a Bayes-Nash
incentive-compatible payment scheme that works on general
set of beliefs. Because of Lemma 2, we restrict our atten-
tion to 1-peer payment schemes for information reports. Let
p0 = Pr(Sj |Si = 0), ..., pm−1 = Pr(Sj |Si = m − 1) be
some arbitrary distribution functions. Due to the incentive
compatibility, we have:

p0(0)(τ(p0, 0, 0)− τ(p0, 0, 1))+

+ p0(1)(τ(p1, 1, 0)− τ(p1, 1, 1))+

+
∑
i>1

p0(i)(τ(pi, i, 0)− τ(pi, i, 1)) > 0 (17)

p1(0)(τ(p0, 0, 1)− τ(p0, 0, 0))+

+ p1(1)(τ(p1, 1, 1)− τ(p1, 1, 0))+

+
∑
i>1

p1(i)(τ(pi, i, 1)− τ(pi, i, 0)) > 0 (18)

This gives us:

(p0(0)− p1(0))∆0(p0) + (p0(1)− p1(1))∆1(p1)+

+
∑
i>1

(p0(i)− p1(i))∆i(pi) > 0 (19)

where ∆i(pi) = (τ(pi, i, 0)− τ(pi, i, 1)). Since the mech-
anism should be incentive-compatible for arbitrary distribu-
tion functions, it should also be incentive-compatible for the
following two cases:

1. When p0(0) = p1(0)−ε, p0(k) = p1(k) for k 6= 0,m−
1, and p0(m − 1) = p1(m − 1) + ε, where ε > 0. We
denote this distribution by p−

0 .
2. When p0(0) = p1(0)+ε, p0(k) = p1(k) for k 6= 0,m−

1, and p0(m − 1) = p1(m − 1) − ε, where ε > 0. We
denote this distribution by p+

0 .

Note that due to the stochastic relevance assumption, we
cannot put p0 = p1. From (19) and the fact that p0(m−1)−
p1(m−1) = (1−

∑
i<m−1 p0(i))−(1−

∑
i<m−1 p1(i)) =∑

i<m−1(p1(i)− p0(i)), we obtain:

−ε · (∆0(p−
0 )−∆m−1(pm−1)) > 0 (20)
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ε · (∆0(p+
0 )−∆m−1(pm−1)) > 0 (21)

In other words:

∆0(p−
0 ) < ∆m−1(pm−1) (22)

∆0(p+
0 ) > ∆m−1(pm−1) (23)

Let us consider a new p++
1 equal to: p++

1 (0) = p1(0) + 2ε,
p++
1 (k) = p1(k) for k 6= 0,m − 1, and p++

1 (m − 1) =
p1(m − 1) − 2ε. By applying the previous steps on p++

1 ,
we obtain:

∆0(p+
0 ) = ∆0(p++−

0 ) < ∆m−1(pm−1) (24)

∆0(p+++
0 ) > ∆m−1(pm−1) (25)

Hence we have a contradiction (expressions (23) and (24)).
Therefore, there exists no decomposable payment scheme
that is incentive-compatible for arbitrary updating process.

The impossibility result obtained by Theorem 2 forces
us to introduce additional assumptions on the updating pro-
cess so that we can construct incentive-compatible payment
scheme. Before giving a sufficient condition for existence
of an incentive-compatible payment scheme, we describe a
novel payment scheme: the multi-valued RBTS.
Multi-valued RBTS. The multi-valued RBTS has two
steps:

1. Each agent i is asked to provide two reports:
• Information report xi which represents agent i’s re-

ported signal.
• Prediction report yi which represents agent i’s predic-

tion about the frequencies of signal values in the overall
population.

2. Each agent i is linked with her peer agent j = i + 1
(mod n) and is rewarded with a score:

1

yj(xi)
· 1xj=xi︸ ︷︷ ︸

information score

+ R(yi, xj)︸ ︷︷ ︸
prediction score

(26)

where 1xj=xi is the indicator variable and R is a strictly
proper scoring rule.
The multi-valued RBTS has the following property.

Theorem 3. If the self-predicting assumption is satisfied,
the multi-valued RBTS is Bayes-Nash incentive-compatible.

Proof. Let us rewrite the self-predicting assumption as
px̃i

(xi) = Pr(Sk = xi|Si = x̃i) < Pr(Sk = xi|Si =
xi) = pxi(xi),∀xi 6= x̃i. By Lemma 2 we know that proper
scoring rules can be used as the prediction score. There-
fore, it is enough to examine the properties of the informa-
tion score.
Let us examine the behavior of a rational agent. Since we
want to show that the truth telling is a Bayes-Nash equi-
librium, we can assume that her peer is honest. Thus,
the peers’s prediction report is equal to her posterior belief
about what other agents have reported, which means that
yspeer (xagent) = pspeer (xagent). Also, honesty of the peer

implies that speer = xpeer. This means that the expected
value of the agent’s information score is equal to:
E(τ(x1,y1, ..., xn,yn,xagent)) =

=
psagent

(xagent)

yspeer (xagent)

∣∣∣∣
speer=xagent

=
psagent

(xagent)

pxagent(xagent)
(27)

By taking into account the assumption px̃i
(xi) <

pxi
(xi),∀xi 6= x̃i, we get that the expectation of the in-

formation score is maximized for:
argmax
xagent

E(τ(x1,y1, ..., xn,yn, xagent)) =

= argmax
xagent

psagent
(xagent)

pxagent(xagent)
= sagent (28)

Therefore, the maximal value of the information score is
achieved when the agent reports her true observation.

Note that the direct consequence of Theorem 3 is that the
self-predicting assumption represents a sufficient condition
for existence of an incentive-compatible decomposable pay-
ment scheme.
Example 1. To illustrate how the described protocol elicits
honest reports, consider two agentsA andB that are observ-
ing the same phenomenon and, hence, share a common prior
and have the same updating process. Suppose that they mea-
sure the event that takes values from {0, 1, 2} and that their
belief system is the one shown in Table 1. Notice that the
self-predicting assumption is satisfied.

Table 1: Agents’ prior and posterior beliefs

Si 0 1 2
Pr(Si) 0.1 0.5 0.4
Pr(Sj = 0|Si) 0.3 0.2 0.2
Pr(Sj = 1|Si) 0.4 0.6 0.3
Pr(Sj = 2|Si) 0.3 0.2 0.5

The center interested in their observations wants to elicit
their true measurements so is applying the multi-valued
RBTS with the quadratic scoring rule:

R(yagent, xpeer) =
1

2
+ yagent(xpeer)−

− 1

2

∑
x

y2
agent(x) (29)

Suppose that agent A measures 0; she updates her belief
about what her peer has observed. Since agents do not
collude, she assumes that agent B is honest and, hence,
reports her true observations (i.e. xB = sB and yB =
Pr(SA|SB = sB)). Agent A calculates that the expected
prediction score for reporting yA = Pr(SB |SA = 0) is
equal to:

E(τpred(yA)) = Pr(SB = 0|SA = 0)R(yA, 0)+

+ Pr(SB = 1|SA = 0)R(yA, 1)+

+ Pr(SB = 2|SA = 0)R(yA, 2) =

= 0.3 · 0.63 + 0.4 · 0.73 + 0.3 · 0.63 = 0.67 (30)
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Since R is a proper scoring rule, she knows that the
maximum of the expectation is achieved when yA =
Pr(SB |SA = 0). For example, if yA were equal to
yA(0) = 0.5, yA(1) = 0.2 and yA(2) = 0.3, the
agent would calculate E(τpred(yA)) = 0.63, which is less
than for the truthful report. Therefore, agent A reports
Pr(SB |SA = 0) as her prediction report.
In order to choose the best signal value to report, agent A
calculates what her expected payoff is for different values of
her information report. For example, E(τinfo(xA = 0)) is
calculated as:

E(τinfo(xA = 0)) =
Pr(SB = 0|SA = 0)

yB(0)

=
Pr(SB = 0|SA = 0)

Pr(SA = 0|SB = 0)
= 1 (31)

Similarly, she obtains E(τinfo(xA = 1)) = 0.67 and
E(τinfo(xA = 2)) = 0.6. Therefore, the best option for
agent A is to report 0, which is her true observation.

Finally, note that:

Corollary 1. The multi-valued RBTS is Bayes-Nash
incentive-compatible in the original RBTS setting.

Proof. The original RBTS setting is a specific case of the
setting introduced in this paper. Moreover, the original
RBTS setting satisfies the self-predicting assumption (see
Lemma 5 in (Witkowski and Parkes 2012b)). Therefore, the
multi-valued RBTS is Bayes-Nash incentive-compatible in
the original RBTS setting.

Conclusion
This paper provides a new insight into incentive mechanisms
for truthful information elicitation based on information and
prediction reports as proposed in the (robust) Bayesian truth
serum. The focus of the paper is put on decomposable in-
centive schemes where the information score is independent
of the prediction report and the prediction score is indepen-
dent of the information report. We constructed a new pay-
ment scheme for non-binary variables that is Bayes-Nash
incentive-compatible provided the self-predicting assump-
tion is satisfied. The introduced payment scheme can be also
applied for the original (binary) RBTS setting and hence is
more general than the original RBTS mechanism.

In order to allow incentive-compatible schemes, we intro-
duced two different assumptions, the self-dominant and self-
predicting assumptions. Future work should include further
characterization of settings for which incentive compatibil-
ity can be achieved. For example, it is an open question
whether the self-predicting assumption is also a necessary
condition for the existence of incentive-compatible mecha-
nisms, or whether there are other sufficient conditions that
would also admit such mechanisms.
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