
Resource-based Planning with Timelines

Debdeep Banerjee1,2 and Jason Jingshi Li3
Quintiq1, The Australian National University2, EPFL3

debdeep.banerjee@quintiq.com, jason.li@epfl.ch

Abstract
Real world planning applications typically involve mak-
ing decisions that consumes limited resources, which
requires both planning and scheduling. In this paper
we propose a new approach that bridges the gap be-
tween planning and scheduling by explicitly modeling
the problem in terms of resources, state variables and
actions. We show that it is an intuitive way to formulate
real world problems with complex constraints, and that
solutions can be found by compiling the problem into a
constraint satisfaction problem.

Introduction
Real world planning problems typically involve actions with
complex temporal constraint, where different consequences
of the action come to effect at different phases of the same
actions. Consider the example of the turning of a spacecraft
in order to point at a target as described in (Smith, 2003).
The reaction control system (RCS), must fire the thrusters
to provide angular velocity, then the spacecraft coasts until
it points to the destination target, then the RCS thrusters are
fired again to stop the angular motion of the spacecraft. It
means the firing of the thrusters happens in the beginning
and the end, and is controlled by the controller. Each time
the thrusters are fired, propellants are consumed and it cre-
ates vibrations which may prevent some other operation on
the spacecraft. It is a complex action that has influences on
various domain objects at different times. A challenge for
the automated planning research is to create formalisms that
efficiently model and solve problems involving such actions.

The main representation language for the planning com-
munity are PDDL and its variants (AIPS-98 Planning Com-
petition Committee, 1998; Fox and Long, 2003). In gen-
eral, the planning models are based on a description of the
world in terms of propositional and numeric variables, a
set of functions that defined over them, and a set of ac-
tions that changes the state of the world. Although PDDL
is widely used in the planning research community and is
Turing-Complete, it is difficult to use it to model many prac-
tical problems due to its lack of support for modeling dif-
ferent kind of resources and temporal constraints that oc-
cur in many real world settings. In particular, as argued in

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Smith, 2003), complex actions that have intermediate ef-
fects are particularly difficult.

Alternatively, one can represent the problem as a schedul-
ing problem in terms of the available resources and the du-
rative activities that have different requirements over these
resources. Alternative options to achieve the goals are repre-
sented by different modes of action execution. However, the
scheduling approach lacks a high-level representation lan-
guage, and in-depth domain knowledge is needed to model
the problems.

In this paper, we aim to bridge the gap between plan-
ning and scheduling. Our approach is to frame a planning-
scheduling problem in terms of resources, state-variables
and actions over a timeline. The actions describe how the
resources and state variables evolve over time. Throughout
the paper we use a manufacturing setting to illustrate our
approach. We show that our approach is an easier way of
modeling a planning problems with complex constraints that
appear in typical industry-related problems; provides a sim-
ple and intuitive semantics for actions and state transitions;
and one can encode the problem as a constraint satisfaction
problem (CSP) in a straight forward manner.

The work in this paper can be considered as extension of
of (Banerjee, 2009), where the former work describes mod-
eling temporal planning problems using actions and tran-
sitions. The approach in this paper explicitly models re-
sources, and creates an action representation to allow for
delayed effects. The constraint model for resource transi-
tion in our paper is related to the support-link scheduling
described in (Banerjee and Haslum, 2011). The main con-
tribution of this paper is to show that everything can fit to-
gether under a unifying framework that allow us to model
resource-based planning problems, and we empirically eval-
uate our approach with a new solver for such problems.

Our approach is related to the ANML language, where
both approaches describe a planning problem in terms of ac-
tions and multi-valued state variables. The key difference
being that ANML provides temporal qualifiers to repre-
sent expressive actions, whereas we represent actions by a
set of transitions. Although this restricts our representation
from describing more expressive actions effects in ANML,
it helps us to develop an efficient and straight forward way to
encode and solve real world, resource-based planning prob-
lems as constraint satisfaction problems.

Figure 1: Illustration of a factory with 3 cutting machines
(CM), 2 painting machines (PM), 2 dryers (DR) and 2 as-
sembly areas(ABS)

The Setting
We consider the class of planning problem that require the
manipulation of some scarce resource. A problem is a tuple
< R,S,A,H, I,G >, where R denotes the resources in-
volved in the problem, S the set of state variables, A the set
of actions, H the planning horizon, I the initial state, and
G the set of goal states. We will illustrate our modeling ap-
proach through the following example in a practical setting.

Example
Consider a simple manufacturing plant with 4 areas: cutting,
painting, drying and assembly. In the cutting area there are a
number of cutting machines that are used to produce a fixed
type of parts from raw materials; the painting area has some
painting machines to paint the parts with a specific color; the
drying area has some drying units to dry the recently painted
parts; and finally the assembly area where the parts are being
assembled together on a number of assembly desks. Cutting
area, painting area and assembly areas of factory floors are
connected via conveyor belts, each part after being cut in the
cutting machine, travels via these conveyor belts from one
location to other location. Each order (o) consists of a num-
ber of different order-parts (op), each of which that needs to
be cut, painted, dried and assembled with other parts. Auto-
mated conveyor-belts move the order parts from one area to
another. An order is completed if all its parts are assembled.

The cutting machines are used to cut the raw material into
parts. The machine has its own configuration time and of-
fload time, where it needs a worker to configure it before it
can cut a part, and a worker to offload the part and send it
to the painting machines once it is done. The cutting oper-
ation also produces some waste byproducts, which must be
cleaned after some iterations.

Each painting machine in the painting area is capable of
painting a part with a color. If a machine has to change the
color of its paint, it would require some set up time to wash
the nozzles depending on what the next color would be.
Setup times for changing a color from other color is given.

After the part is painted, it must be sent to the drying area
to be dried. A drying unit, while it is running, can dry an
unlimited number of parts. However, it may only be in con-
tinuous operation for a certain length of time, after which

they would need to be switched off to be cooled for a fixed
period before it can be switched back on again.

After all the parts of an order are cut, painted and dried,
they are sent to an assembly desk where they are put to-
gether by a number of workers. Once it is done, the order
is completed. Workers are needed in cutting area to config-
ure machines and offloading parts when they are processed.
They are also needed in the assembly areas to complete or-
ders. For a worker going from one location to other takes
time.

Resource
In our approach, at the center of the problem representation
are resources. In essence, resources are domain objects in
the planning world that has a finite capacity, and that they
are required in order for an action to be executed. The avail-
ability of a resource is also reflected on the timeline, where
at any instant in time we have both the amount of the re-
source available and its maximum capacity.

We divide resources in two broad categories: Reservoir
Resources (RSR), which are either consumed or produced by
an action; and Reusable Resources (RUR), which are bor-
rowed by an action at the beginning of its execution, and
returned when the action is completed. So in our example,
RSRs are raw materials and waste by products in the plant,
and RURs are factory machines and worker pool.

A given resource r has the following attributes:

• capacity(r): an integer that denotes the maximum
amount of resource units;

• type(r): the type of the resource, being either Reservoir
or Reusable;

• level(r, t): the amount of resource used at time t, with the
constraint 0 ≤ level(r, t) ≤ capacity(r);

• freeSpace(r, t): the amount of resource remain available
at time t.

In our example, we have the following resources with
their associated capacities:

• Reservoir Resources:

– CuttingMachinWaste: capacity = X (cleaning inter-
val)

• Reusable Resources:

– CuttingMachine: capacity = 1

– WorkersPool capacity = Y (number of the workers)
– PaintMachine capacity = 1

State Variables
State variables are the domain objects in the planning world
that can be in one of many finitely possible states at any
given point in time. In contrast to resources, they do not have
a capacity. However, they may still be conditions for which
actions may be executed.

A state variable sv has the following attributes:

• dom(sv): the set of possible domain values of sv;

• state(sv, t): the domain value of sv that holds at time t.

In our example, there are a number of orders to complete,
each of which consists of multiple order parts. For each or-
der (o), order part (op), drying unit (du), we have the fol-
lowing state variables with the associated domain values to
denote their status:
• OrderStatus(o): {incomplete, completed}
• OrderPart(op): {uncut, cut,painted,dried,assembled}
• DryingUnit(du): {on, off}

We view state variables and resources as timelines as de-
scribed in control-based modeling of planning and schedul-
ing problems. That means by timelines of state variable and
resource we will mean their evolution over time in terms of
states and resource availability.

Actions and Transitions
Actions are the components that manipulate both resources
and state variables. In our approach, we break down an ac-
tion into the individual effects of an action on either a re-
source or a state variable, each with its start time and dura-
tion on the timeline. We call such individual effect a Tran-
sition, which may be interpreted as a temporal constraint
on a specific domain object. Hence, we represent an action
as a set of transitions, which is a set of synchronized dura-
tive effects with different durations. This is in contrast to the
PDDL-based representation where each action has its dura-
tions and all effects takes place either at the beginning or the
end of the action. Our approach allows s to intuitively model
actions with multiple delayed effect, which is ubiquitous in
real world applications.

A transition T has the following attributes:
• act(T): the action that T is a part of;
• req(T): the requirement for T to commence execution;
• dur(T): the duration of T ;
• start(T): the start time of T ;
• end(T): the end time of T ;
• offset(T): the time delay between the start of action and

the start of transition.
A transition involves only a single domain object, being

either a state variable or a resource. It is typed according
to its effect on the domain object. If the transition involves
a state variable, it can be of either an EFFECT transition,
one that changes the assignment of the variable from one
value to another; or a PREVAIL transition, one that preserves
the assigned value of a state variable for its duration. If the
transition involves a resource, then it can either BORROW
a certain amount of resource at the start and return it at the
end; CONSUME the resource or PRODUCE the resource. In
the following section we will describe in detail each type of
transitions.

EFFECT Transitions For a given EFFECT transition on
state variable sv, written as TE

sv , req(TE
sv) is a tuple <

sfrom, sto >, sfrom, sto ∈ dom(sv). The requirement de-
notes the value of sv before and after the transition. More
specifically, for the transition TE

sv be valid, the following
constraints must be satisfied:

1. sv must be assigned to sstart at the start of the transition;

state(sv, start(TE
sv)) = sstart (1)

2. sv must be assigned to send at the end of the transition;

state(sv, end(TE
sv)) = send (2)

3. sv must be undefined between the start and the end of the
transition.

∀t | start(TE
sv) < t < end(TE

sv) : state(sv, t) = ∅ (3)

Given an EFFECT transition TE
sv on a state vari-

able, pre(TE
sv) denotes the pre-condition,i.e pre(TE

sv) =
sfrom and post(TE

sv) denotes the post-condition of TE
sv ,

i.e post(TE
sv) = sto. We say the TE

sv achieves the state
post(TE

sv) from the state pre(TE
sv).

PREVAIL Transitions For a given PREVAIL transition
on state variable sv, written as TP

sv , req(TP
sv) is a tuple

< sp >, sp ∈ dom(sv). The requirement denotes that sv
must remain sp for the entire duration of the transition. More
specifically, for TP

sv be valid, the following must constraints
be satisfied:

∀t | start(TP
sv) ≤ t ≤ end(TP

sv) : state(sv, t) = sp (4)

Note that for a PREVAIL transition pre- and post-
conditions are the same, i.e. pre(TE

sv) = post(TP
sv) = sp.

PRODUCE Transition A PRODUCE transition on re-
source r, written as TR

r , reserves the amount of free-space
as described by req(TR

r) at the beginning of its execution
start(TR

r) for its entire duration, and produces req(TR
r)

amount of resource when it is completed at time point
end(TR

r). The free-space is consumed at the end of the tran-
sition.

CONSUME Transition A CONSUME transition on re-
source r, written as TC

r , is the complement of a PRODUCE
transition. It consumes req(TC

r) amount of resource levels at
at the beginning of its execution start(TC

r), while reserves
the same amount of free-space. It releases the free-space at
the end of its execution.

BORROW Transition A BORROW transition TB
r on a

reusable resource r uses the resource for its duration, and at
the end gives back the resource. It may be interpreted as a
CONSUME transition, but returns the resource at the end of
its execution.

Actions in the Example Our manufacturing example con-
tain many actions. They include cutting, painting and dry-
ing the order parts, assembling the parts together for an or-
der, clean a cutting machine, and switch on and off a dryer.
Here we will describe the specific actions to illustrate our
approach.

• CutOrderPart(order, part, cutting machine): Cutting a part
for an order on the cutting machine CM. It has 5 main
transitions (Fig. 2)
– Transition-1: A BORROW transition on the resource

”Worker” for the time it takes to configure part on the
cutting machine

Figure 2: Action CutOrderPart(o, op, cm) and its transi-
tions.

Figure 3: Transitions on order and dryer

– Transition-2: After configuration time, it has an EF-
FECT transition on the state variable ”Order-Part”
where it changes its state from uncut to cut for the du-
ration when cutting machine cut the part.

– Transition-3: After cutting machine finishes the pro-
cessing, it has a BORROW transition on the resource
”Worker” for them it takes to offload the part from the
machine.

– Transition-4: During the whole time, it has a BORROW
transition on the resource cutting machine

– Transition-5: During the time of processing it has
a PRODUCE transition on the resource CuttingMa-
chineWaste, where it produced 1 unit of waste.

• ColorOrderPart(order, part): The color part action 2 tran-
sitions: one BORROW transition on the resource paint-
ing machine, and an EFFECT transition on the state vari-
able ”Order-Part” where it changes state the state cut to
painted.

• DryOrderPart(order, part): This action has 2 state vari-
able transitions: one PREVAIL transition on the state vari-
able ”DryingUnit”, that needs the state on, and an EF-
FECT transition on the state variable ”Order-Part” where
it changes the state painted to dried.

Other actions for which we would not elaborate here
include: AssembleOrderPart(order, asb desk), Clean-
CuttingMachine(machine), SwitchOnDryer(dryer) and

SwitchOffDryer(dryer). Figure. 3 describes how actions
changes the assigned values of state variables.

Modeling Setup Constraints
Setup constraints that defines how much time must elapsed
between two consecutive tasks. For a transition T , Setup(T)
denotes the setup state of the transition. In our example,
there are three scenarios where setup constraints apply; first
between any two painting task of different color in a painting
machine, second for each worker moving from one location
to other, and thirdly between cutting and painting, painting
and drying, and drying to assembly tasks of a part as it has
to travel via conveyer belts from one area to other. To model
setup constraints, we add a setup matrix to each state vari-
able and resource, and assign a setup state to each transi-
tion. Setup matrices describes the time delay between pair
of setup states. For example, we add a color setup matrix to
each painting machine resource. If there are 3 different col-
ors, C1 to C3, then the color setup matrix defines the time
needed to change color from a pair of colors. Each resource
transition on the painting machine must have a setup state
among C1 to C3. For example, each ColorOrderPart(order,
part, PM) action has a transition on the resource PM. If the
color needed for the part is C1, then the setup state of the
transition must be C1.In addition to the color matrix added
to the painting machines, in the running example we add a
distance location matrix to the resource ”WorkerPool” that
defines the time needed for each worker to travel from one
location to other. All transitions on the resource ”Worker-
Pool” must have one of the locations (locations of individual
machines) as the setup state. A distance matrix is added to
the state variable ”OrderPart” that defines the time to travel
from one area to other area via conveyor belt for a part,
all transitions on the state variable must one of the areas
:cutting, painting, drying, assembly as setup state.

Initial State, Goal State and Planning Horizon
Similar to PDDL, a planning problem contain the descrip-
tion the initial state, which denote the state of the world we
start in; and the goal state, the things that we want to be true.
It may also contain the description of a planning horizon,
which is the maximum time we allow the plan to reach the
goal state. Abusing the notation, we would also say that the
value a particular domain object (state variable or resource)
is in the initial/goal state, if the value assignment is part of
the description of the initial/goal state.

The Solution to a Planning Problem
In our setting, the solution to a planning problem is a valid
flexible plan, which denotes the set of actions to be executed
from an initial state to reach a goal state, and maintaining
that no constraint is violated at any time during its execution.

Flexible Plan A flexible plan is simply a set of tuples
(a, [X,Y]), where a is an action, and [X,Y] is a time in-
terval where X and Y are specific time points, which that
denotes the range of the possible starting time of action a.

In executing a flexible plan, the agent chooses a starting
time from the specified time interval of each action. When

all the starting time of the actions are specified, the resulting
plan is a realization of the flexible plan.

Schedule A realization of a flexible plan creates a sched-
ule for every state variable and resource, where a schedule
is a sequence of transitions with fixed start time. A schedule
of a state variable is ’em valid, if and only if the precondi-
tions of the first EFFECT transition is in the initial state, the
postconditions of the last EFFECT transition is in the goal
state, and the following holds at any given time:
• If an EFFECT transition is in execution, then no other

transitions are in execution on this state variable;
• If a PREVAIL transition is in execution, then other PRE-

VAIL transitions in execution on this variable must also
require the same state.
A schedule of a resource is valid if and only if the follow-

ing holds:
• At any time, there exists no set of transitions in execu-

tion such that the total resource requirement of the set is
greater than the capacity of the resource;

• Immediately after the execution of all the transitions that
starts at the initial time point, the level of resource must
be less than or equal to the initial level of the resource;

• at the end of the planning horizon the amount of resource
in r is within the range defined in the goal state.
Hence, we say that a realization is valid, if and only if it

creates a valid schedule for every state variable and resource,
and a flexible plan is valid if and only if every possible real-
ization of the plan is a valid realization.

Encoding the Problem as a CSP
In our approach, the search for the solution of a planning
problem is to find a valid flexible plan, which represents a
set of valid schedules for every state variable and resource.
This corresponds to a set of temporal constraints on every
domain object. Therefore, it is natural to model the planning
problem as a Constraint Satisfaction Problem (CSP) on the
domain objects.

The constraint model for each state variable can be
thought of as the constraints for causal-links between
pairs of state variable transitions. First introduced in
Partial-Order-Planning (McAllester and Rosenblitt, 1991), a
causal-link a[p]a′, represents the fact that action a achieves
the pre-condition p for action a′. In our approach, a causal
link on a state variable sv, written as Tsv[s]T ′

sv , denotes the
precedence relation between two transitions. Tsv is an EF-
FECT transition that make the precondition of the latter tran-
sition T ′

sv true. Solving the constraint problem on every state
variable is analogous to deciding which causal links hold in
the final plan, where all the precedence constraints between
those pair of transitions are satisfied.

The constraint model for each resource is based on de-
ciding the support-links between pairs of transitions on the
resource. On a resource r, a support-link, Tr[δ]T ′

r, denotes
that transition Tr provides δ amount of resource towards the
requirement of T ′

r. If δ = 0, it means Tr does not provide
any support to T ′

r. If δ > 0, then the support link implies

Figure 4: Additional states and actions

a precedence relation between Tr and T ′
r. By deciding how

transitions provide support to other transitions, i.e. creating
support links, we build a schedule on each resource.

Each causal and support link implies a precedence or or-
dering relation between a pair of transitions. A precedence
relation between two transitions T → T ′ means that T ′

starts after T finishes its execution. Since each transition is
non-preemptive, and the start times of transitions and their
corresponding actions are synchronized, each precedence
constraint implies a precedence relation between the actions
of the transitions. The constraint model for actions maintains
the transitive closure of these precedence relations.

Preprocessing
We first introduce a preprocessing step before encoding the
problem as a CSP. It introduces new states, actions and tran-
sitions such that it allows the resulting CSP to be solved in a
more efficient manner.

Additional States for State Variables For each state vari-
able sv ∈ SV we add two additional states to its domain of
possible states: startsv and endsv .

Dummy Start and End actions We add two dummy ac-
tions Start and End into the set of actions A, where Start
and End mark the achievement of the initial state and goal
respectively. The Start action is constrained to appear at the
beginning of the plan, before any other action in the plan,
and the End action is constrained to appear at the end of
the plan, after every other action. Introducing these dummy
Start and End actions is a standard practice in modeling
partial order causal link (POCL) planning (McAllester and
Rosenblitt, 1991). Note that all transitions of all dummy ac-
tions, Start, End and other dummy actions that we intro-
duce below, have duration 0.

On each state variable sv ∈ SV , the Start action has
an EFFECT transition T start

sv that changes the state of sv
from the dummy startsv state to the initial state init(sv),
representing the achievement of the initial state of sv. The
End action has an EFFECT transition T end

sv on each state
variable sv that changes its state form either the goal state to
the endsv state (Fig. 4).

Similar to state variables, on each resource r ∈ Rreserve∪
Rreuse, the Start action has a resource transition T start

r , and

the End action has a resource transition T end
r .

The DUMMY start action’s transitions will be referred as
initial transitions and the DUMMY end actions’ transitions
will be referred as goal transitions in the following sections.

CSP Variables and Domains
To formulate the problem as a CSP we create the following
CSP variables:
• next[T]: For each state variable transition T , except for

the goal transitions, the CSP variable next[T] represents
which EFFECT transition immediately follows T. Do-
main of next[T] contains all EFFECT transitions that can
immediately follow T. That is, domain of next[T] con-
tains all state variable transitions T′ such that post(T) =
pre(T ′). Note that for a transition T , all transition in the
next[T] domain are the transitions on the same state vari-
able as T .

• previous[T]: For each transition T , except for the initial
transitions, previous[T] represents which EFFECT tran-
sition is immediately before T. Domain of previous[T] is
the set of EFFECT transitions that can appear immedi-
ately before T. That is, domain of previous[T] contains all
T′ such that pre(T) = post(T ′) where both T and T ′ are
on the same state variable.

• inplan[A]: For each action A, inplan[A] represents if the
action A is in the plan or not. There are two possible val-
ues for inplan[A], true or false.

• support[Tr,T ′
r]: For each pair of resource transitions

< Tr, T
′
r >, where Tr and T ′

r are on the same resource
and Tr is not a goal transition and T ′

r is not an initial
transition, the variable support(Tr, T

′
r) represents the

amount of resource (a non-negative integer) Tr provides
to T ′

r. Note, on a reservoir resource, there can be two
types of transitions: PRODUCE transitions and CON-
SUME transitions. A PRODUCE transition Tp produces
req(Tp) amount of resource at the end, and a CONSUME
transition Tc consumes req(Tc) amount of resource
at the start. For this reason we say that a PRODUCE
transition can only provide support to a CONSUME
transition and vice versa. Note that both PRODUCE
and CONSUME transition can provide support to goal
transitions on resources. So what all this means is the
for each support(Tr, T

′
r) variable we define, if Tr is a

PRODUCE transition, then T ′
r must either a CONSUME

transition or goal transition, and if Tr is a CONSUME
transition then T ′

r must be a PRODUCE transition or
goal transition. If δTr,T ′

r
denotes the maximum amount

of resource that Tr can provide to T ′
r, then

δTr,T ′
r

= min (req(Tr), req(T ′
r))

The domain of each support(Tr, T
′
r) is the interval

[0, δTr,T ′
r
], where 0 indicates that Tr does not support T ′

r.
Note, that although either the next or the previous variables
alone are sufficient for the encoding, using both provides an
opportunity for better propagation. Each assignment of the
next and previous variable creates a causal-link, and assign-
ment of support variables represents a support-link.

There are two additional variables for each transition T:
start[T], which represents the start time of T, and end[T]
representing the end time of T. Similarly, for each action A,
a variable start[A] represents the start time of A and end[A]
represents the end time of the action.

We maintain two sets for each transition T , before(T) and
after(T) to represent precedence relations between transi-
tions on the same domain object, where before(T) contains
all the transitions T ′ where T ′ → T holds, and similarly, af-
ter(T) contains all the transitions T ′′ where T → T ′′ holds.

For each pair of actions A and B, we maintain a variable
dist(A,B) that represents the distance in time from start of A
to start of B, i.e. dist(A,B) = Start(B) - Start(A).

The next[T] and previous[T] variables can be assigned to
a not-in-plan value ⊥, which will denote that the transition
T will not be part of the final plan.

Constraints
1. EFFECT Position Constraints: If an EFFECT transi-

tion T appears before another EFFECT transition T ′, then
T ′ must appear after T and vice versa, i.e. ∀T ′, T ′ ∈
EFFECT

previous[T ′] = T ⇔ next[T] = T ′

2. PREVAIL Position Constraints: The following con-
straints holds for all PREVAIL transition Tp that can ap-
pear next to Te and before Ta, where Te and Ta are EF-
FECT transitions.

previous[Tp] = Te ∧ next[Tp] = Ta ⇒ next[Te] = Ta

previous[Tp] = Te ∧ next[Te] = Ta ⇒ next[Tp] = Ta

next[Tp] = Ta ∧ next[Te] = Ta ⇒ previous[Tp] = Te

Note that all next and previous variables’ domains are
consists of only EFFECT transitions, not PREVAIL tran-
sitions. This is case because PREVAIL transitions do not
change a state, so they can’t appear in the left side of the
causal link T [s]T ′. The next and previous variables model
the causal links.

3. Action Synchronization Constraints: If an action is in
the plan then all the transitions caused by the action must
also be in the plan and vice versa, i.e for all action A,

inplan[A] = true⇔ ∀T.act=AT : ¬(next[T] = ⊥).

Note that this constraint is bi-directional, i.e. if ⊥ is re-
moved from a next variable then it implies that the corre-
sponding action is included in the plan.

4. Transition Exclusion Constraint: If a transition T is ex-
cluded from the plan, then no transition can appear before
or after it, i.e. for all transition T 1,

next[T] = ⊥ ⇔ previous[T] = ⊥.

5. Action Time Synchronization Constraints: Start times
of transitions must be consistent with the start time of
their corresponding actions and vice versa.

start[A] = ∀act(T)=AT : start[T]− offset(T)

1both EFFECT and PREVAIL transitions

Similarly, each action’s end time is must be equal to the
maximum of the end times of its transitions.

end[A] = max{∀act(T)=AT : end[T]}

6. Support Constraints: Each assignment of a next variable
implies a precedence constraint between the transitions.

next[T] = T ′ ⇒ T → T ′

Similarly, each assignment of the support variables also
implied a precedence constraint between the transiitions.

support[T, T ′] > 0⇒ T → T ′

7. Temporal Position Constraints: For each precedence
constraint T → T ′ we post the following temporal con-
straints

inplan[T]⇒ dist(act(T), act(T ′)) ≥
dur(T) + offset(T)− offset(T ′) +
setuptime(Setup(T),Setup(T ′))

Recall that dist(act(T), act(T ′)) represents the distance
between the starlings of the two actions: start(act(T ′))−
start(act(T), and the setuptime(Setup(T),Setup(T ′))
denotes the time delay needed between the given setup
states.

8. Non-preemptive Transition Constraints: Since transi-
tions are non-preemptive, the following condition must
hold for all transition T .

end[T]− start[T] = T.duration

In additions to these constraints we maintain the transitive
closure of the precedence relations conditioned on the in-
clusion of transitions. That means, for transitions T , T ′ and
T ′′, if T → T ′ and T ′ → T ′′, we only post the precedence
relation T → T ′′ if and only if inplan[T ′]= true.

Preliminary Evaluations
We implemented a simple constraint solver to solve such
planning problems in C++. As we are not aware of any pub-
lic available planning benchmarks with complex temporal
constraints on resources, nor solvers readily available to eas-
ily model and solve such problems, we evaluated our own
solver with a set of randomly generated benchmark rep-
resenting completing orders in the factory depicted in the
example in Fig. 1. Our solver ran on servers with AMD
Opteron(TM) Processor 6272 at 2.4GHz. We enforce a time
limit of 30 minutes and memory limit of 2GB per instance.

We tested our factory setting with 5, 10, 15 and 20 orders
at 50 instances each. The table in Fig. 5 reports the num-
ber of transitions, the average cpu time for the solved in-
stances, and the number of unsolved instances. Fig.6 shows
the performance of our solver against cpu time. The problem
is solved almost instantaneously for small instances, and the
difficulty of the problem increases with its size. We note that
our solver is still under development, and its performance
should improve once more powerful propagators are used.

orders transitions avg cpu time failure
5 188.44 2.37 0/50

10 347 32.69 0/50
15 649.95 133.54 8/50
20 855.87 299.87 4/50

Figure 5: Solver statistics for factory with 5 to 20 orders.

Figure 6: Number of solved instances against CPU time.

Summary
We proposed a new approach to model and solve planning
problems with resources. Our approach extends an action-
based planning planning domain description that provides an
easy and direct way to model practical problems with com-
plex temporal constraints. It concisely compiles the planning
problem as a constraint satisfaction problem, and provides
an interesting alternative to the current state of the art in
modeling a wide ranges of possible planning applications.
Possible future work includes improving the solver perfor-
mance by improving the efficiency of constraint encoding
and propagation, and evaluate our solver against other exist-
ing solvers on a set of expressive benchmark problems.

References
AIPS-98 Planning Competition Committee. PDDL - The Planning
Domain Definition Language. Technical Report, Yale Center for
Computational Vision and Control, 1998.
D. Banerjee. Integrating Planning and Scheduling In a CP Frame-
work : A Transition-based Approach In Proceedings of the 19th
International Conference on Automated Planning and Scheduling
(ICAPS), 2009.
D. Banerjee and P. Haslum. Partial-Order Support-Link Schedul-
ing. In Proceedings of the 21st International Conference on Auto-
mated Planning and Scheduling (ICAPS), 2011.
M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Ex-
pressing Temporal Planning Domains. Journal of Artificial Intelli-
gence Research, 20: 61-124, 2003.
David McAllester and David Rosenblitt. Systematic nonlinear
planning. In Proceedings of the Ninth National Conference on Ar-
tificial Intelligence, pages 634639, 1991.
D. Smith The case for Durative Actions: A Commentary on
PDDL2.1 Joural of Artificial Intelligence Research, 20:149-154,
2003.
D. Smith, J. Frank and W. Cushing. The ANML Language In
ICAPS Workshop on Knowledge Engineering for Planning and
Scheduling, 2008.

