CS 4120 Lecture 3 Automating lexical analysis 29 August 2011

Lecturer: Andrew Myers

A lexer generator converts a lexical specification consisting of a list of regular expressions and corre-
sponding actions into code that breaks the input into tokens. In this lecture we examine how this is done.

We can think of the lexical specification as a big regular expression Ry | Rs | ... R, where the R; are the
descriptions of each of the token.

A lexer generator works by converting this regular expression into a deterministic finite automaton
(DFA). This is done in a couple of steps. First, the regular expression is converted into a nondeterministic
finite automaton (NFA). The NFA is converted into a DFA, which then becomes the basis for a table-driven
lexer.

1 DFAs

We start by reviewing DFAs. A DFA is a abstract machine:

e The machine reads an input stream of symbols = € 3, where X is the alphabet of the DFA.

It has a finite set of states ¢;.

There is a distinguished initial state qo in which the machine begins reading its input.

As the machine reads each symbol, it changes its state according to a transition function §. On reading
symbol z in state ¢, it changes to the new state ¢’ where ¢’ = d(q, z).

It has a set of final or accept states F'. The machine accepts the input if it arrives at the end of the input
in a final state g € F'.

A DFA can be drawn as a labeled graph in which states are nodes, the initial state ¢ is indicated by an
incoming edge from outside, other edges are labeled with the corresponding input symbol, and final states
in I are marked by nodes with double circles. For example, consider the following DFA, which accepts
only odd numbers expressed in binary, corresponding to the regular expression (0[1)*1:

0 1

N

0

We can model illegal characters by adding a non-final error state to the DFA, which we may not bother
to draw in such a diagram. Every state has transitions to the error state on every symbol that cannot lead
to a final state. Therefore § is total.

We can describe the transition function § as a table, which hints at how we might implement the DFA:

011
qdo | 490 | 91
q1 | 90 | 41

Pseudo-code for implementing a DFA that reads an input of length n, where input [i] is the ith input
character, looks roughly like this:

start := 1

q :=q0

while (i < n) {
q := d(q, input[i])
i:=1+1

}

if (q € F) return accept

else return fail

Now the question is how to obtain the table § from a regular expression.

2 NFA

The first step is to convert the regular expression into a nondeterministic finite automaton. An NFA differs
from a DFA in that each state can transition to zero or more other states on each input symbol, and a state
can also transition to others without reading a symbol. In the diagram representation, multiple exiting
edges can be labeled with the same symbol. Edges corresponding to not reading a symbol are labeled with
€.

For example, the following is an NFA:

Given an input stream, the NFA accepts if there is any way to reach a final state. That is, it has angelic
nondeterminism. We imagine there is an angel or oracle telling it which transitions to take. If the machine
above receives the input “aba”, it can reach a final state by choosing the upper e-transition, and staying
within the top three states. Therefore the machine accepts this input. It does not accept “ac”, however,
because there is no way to reach a final state while reading that input. (Can you write a regular expression
that describes exactly the strings that this NFA accepts?)

3 RE to NFA

We show how to translate a regular expression to an equivalent NFA by induction on the structure of the
regular expression. That is, given that we know how to convert the subexpressions of a regular expression,
we show how to use the NFAs produced by those translations to produce the NFA for the full expression.

In each case, the result of translating a regular expression will be an NFA with a single accept state,
which we represent with the following diagram:

WO

Let us write [R] to mean the translation of regular expression R to an NFA that accepts exactly the
language of R. We define it as follows:

[e]
[a]

(oYW
[RuRa] [[R,]] [[R,]]
[Ri|Rs] Rl

() O

By working bottom up, we can use these translations to construct an NFA for any regular expression.
For example, the odd number regular expression above, (0]1)*1, translates to the following NFA, which
clearly accepts the same strings. (The states in this diagram are labeled with names A-G for later use).

4 NFA to DFA

Although an NFA can do anything a DFA can, the reverse is also true. We can convert an arbitrary NFA
into a DFA (though the DFA may in general be exponentially larger than the NFA). The intuition is that we
make a DFA that simulates all possible executions of the NFA. At any given point in the input stream, the
NFA could be in some set of states. For each set of states the NFA could be in during its execution, we create
a state in the DFA. There is even in general a state) in the DFA, to describe the case in which no NFA state
is reachable using the input seen up to a certain point.

Since ¢ transitions can be taken at any time, it is useful to have the concept of the e-closure of a state g.
It is the set of all states reachable from ¢ using zero or more e-transitions. Similarly, we can can take the
e-closure of a set of states by finding all states reachable from any state in the set using only e-transitions.

For example, in the odd-number NFA above, the e-closure of F' is the set e-closure(()F) = {F, A, B, D}.
The e-closure of {E, G} is e-closure(E) U e-closure(G) = {E, F, A, B, D, G}.

Now let us discover which set of states are reachable in this NFA and construct the corresponding DFA.

The initial state of the DFA is the e-closure of the start state of the NFA: that is, e-closure(F') = {F, A, B, D}.
From that set of states we can take a transition on either 0 or 1. A transition on 0 can only happen from
state B to state C, so the DFA state reached is e-closure(C) = {C, F, A, B, D}. From either of these two
DFA states, we can transition on 1 to reach states F and G, so the final DFA state is e-closure({E, G}) =
{E,F, A, B, D,G}. The full DFA looks as follows:

5 DFA minimization

In general the DFA generated by this procedure may have more states than necessary. John Hopcroft
showed that it is possible to minimize a DFA by merging states. Let us write ¢; # ¢ if merging states ¢; and
g2 would change the language accepted by the DFA; in this case we say that ¢; and g» are distinguishable.

Clearly, two states are distinguishable if one of them is final and one of them is non-final. We can express
this idea as the following reasoning rule:

@ EF @¢F
@ % g2
Two states are also distinguishable if following the the same symbol from each of them leads to distin-
guishable states:

(Rule 1)

0 =0(q1,2) dp=0(g2,7) 1% d
a1 % G2

If we can use these two rules to infer that two states are distinguishable, they must be distinguishable.
Conversely, if we can’t infer that two states are distinguishable by these rules, then merging the states will
not change which strings the DFA accepts.

Algorithmically, we keep track of whether each pair of states ¢; and ¢; are distinguishable, starting from
the supposition that they are not distinguishable. We mark all final/non-final pairs distinguishable, by
Rule 1. We then apply Rule 2. We follow similarly-labeled edges backward from all distinguishable states
to identify additional pairs of states that are distinguishable. Eventually no more distinguishable pairs can
be identified.

For the odd-number DFA, the result is as shown in the following table:

(Rule 2)

CFABD

EFABDG G G
FABD CFABD

By Rule 1, states FABD and CFABD must both be distinguishable from EFABDG, as indicated by the %
in the table. Rule 2 cannot be applied to either of these pairs of distinguishable states, so we are done. Since
FABD and CFABD were not distinguishable, they can be merged, giving us exactly the 2-state DFA shown
at the beginning of the notes.

6 Building an efficient lexer

Now we can construct an efficient DFA for an arbitrary lexical specification Ry | Rz | ... R,,. We construct
an alternation NFA in which we keep the final states distinct so they can be associated with the appropriate
lexer action.

We convert this to a DFA but continue to mark each final state with the corresponding action.

Recall that we are implementing the longest-matching token rule. So we when we hit an accept state in
the DFA, we remember that it was encountered and keep reading ahead. We only stop when we get to the
DFA error state (), meaning that there is no way to read more symbols to build a longer token. At that point
we rewind the state of the input back to the last final state and construct a token out of the symbols seen to
that point. To implement this backtracking, we assume our input stream has an unread(c) operation that
lets us put a character back into the stream, in addition to the peek () operation that allows inspecting the
new character.

To find the last final state, we keep track of the states we have seen by pushing them onto a stack. (It
might seem harmless by unnecessary to remember the non-final states seen along the way, but we will use
this for an optimization shortly.)

start := 1

q = Qo

// read ahead until stuck

while (true) {
input[i] = read()
if (input[i] = EOF or §(q, input[i] = ()) break
if (q€F) clear the stack

push q
q := 0(q, input[il)
i=1+1

}
// backtrack to last final state

while (g € F) {
if (stack is empty) fail

q := popO
unread (token[i])
i»=1i-1

}

return input[start..i-1]

For most lexical specifications, this algorithm will be fairly efficient and take time linear in the number
of characters on the input. In the worst case, it can be quadratic because of backtracking. For example, con-

”

sider the lexical specification abc | (abc)*d, with input consisting of these n characters: “abcabcabc. . . abc”.
The correct result is a sequence of abc tokens, but the lexer must read all the way to the end of the input to
find whether there is a d. The above algorithm will backtrack n/3 times on this input, taking ©(n?) time.

To make the algorithm more efficient, we memoize hopeless lexer states. If during backtracking we see
that some non-final state ¢ was encountered at position ¢, there is no reason to try finding a token again
from that state and position. We add a memoization table hopeless[q,i] to record such scanner states,
and modify the algorithm above to update and use this information:

start := 1
q = do
// read ahead until stuck
while (true) {
if (hopeless[q,i]) break
input[i] = read()
if (input[i] = EOF or d(q, input[i] = #)) break
if (q€F) clear the stack

push q
q := 6(q, input[il)
i:=1+1

}
// backtrack to last final state
while (q € F) {
hopeless|q,i] := true
if (stack is empty) fail
q := pop()
i:=1i-1
unread (input [i])
}

return input[start..i-1]

In the example of lexing “abcabcabc. . .abc”, the modified lexer reads all the input to find the first
token, but on the second and following tokens does not read past the characters that make up each of the
abc tokens.

This algorithm, due to Tom Reps, ensures lexical analysis takes linear time.

7 More reading

Hopcroft and Ullman. “Introduction to automata theory, languages, and computation,” Chapter 2. Addison-
Wesley, 1979.

Thomas Reps. | “ ‘Maximal-munch’ tokenization in linear time”. ACM Transactions on Programming
Languages and Systems, 20(2):259-273, March 1998.

http://dl.acm.org/citation.cfm?id=276394

	DFAs
	NFA
	RE to NFA
	NFA to DFA
	DFA minimization
	Building an efficient lexer
	More reading

