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Abstract

The output of a classifier should be a calibrated posterior probability to enable post-processing.
Standard SVMs do not provide such probabilities. One method to create probabilities is to di-
rectly train a kernel classifier with a logit link function and a regularized maximum likelihood
score. However, training with a maximum likelihood score will produce non-sparse kernel ma-
chines. Instead, we train an SVM, then train the parameters of an additional sigmoid function
to map the SVM outputs into probabilities. This chapter compares classification error rate and
likelihood scores for an SVM plus sigmoid versus a kernel method trained with a regularized
likelihood error function. These methods are tested on three data-mining-style data sets. The
SVM+sigmoid yields probabilities of comparable quality to the regularized maximum likelihood
kernel method, while still retaining the sparseness of the SVM.

1 Introduction

Constructing a classifier to produce a posterior probability P(class|input) is very useful in prac-
tical recognition situations. For example, a posterior probability allows decisions that can use a
utility model [4]. Posterior probabilities are also required when a classifier is making a small part
of an overall decision, and the classification outputs must be combined for the overall decision.
An example of this combination is using a Viterbi search or HMM to combine recognition results
from phoneme recognizers into word recognition [1]. Even in the simple case of a multi-category
classifier, choosing the category based on maximal posterior probability over all classes is the
Bayes optimal decision for the equal loss case.

However, Support Vector Machines [19] (SVMs) produce an uncalibrated value that is not
a probability. Let the unthresholded output of an SVM be

f(x) = h(x) +0, (1)

where

h(x) = Z yioik(xi, X) (2)

*In Advances in Large Margin Classifiers, Alexander J. Smola, Peter Bartlett, Bernhard Schoélkopf, Dale Schuur-
mans, eds., MIT Press, (1999), to appear.



lies in a Reproducing Kernel Hilbert Space (RKHS) F induced by a kernel k [22]. Training an
SVM minimizes an error function that penalizes an approximation to the training misclassifica-
tion rate plus a term that penalizes the norm of h in the RKHS:

- uifi)s + 3l )

where f; = f(x;). Minimizing this error function will also minimize a bound on the test misclas-
sification rate [19], which is also a desirable goal. An additional advantage of this error function
is that minimizing it will produce a sparse machine where only a subset of possible kernels are
used in the final machine.

One method of producing probabilistic outputs from a kernel machine was proposed by
Wahba [20, 22]. Wahba used a logistic link function,

-
1+ exp(—f(x))’

where f is defined as above, and then proposed minimizing a negative log multinomial likelihood
plus a term that penalizes the norm in an RKHS:

1 i+ 1
~m Z <yZ 5 log(p:) +
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where p; = p(x;). The output p(x) of such a machine will be a posterior probability. Minimizing
this error function will not directly produce a sparse machine, but a modification to this method
can produce sparse kernel machines [21].

This chapter presents modifications to SVMs which yield posterior probabilities, while still
maintaining their sparseness. First, the chapter reviews recent work in modifying SVMs to
produce probabilities. Second, it describes a method for fitting a sigmoid that maps SVM
outputs to posterior probabilities. Finally, the SVM plus sigmoid combination is compared to
a regularized likelihood fit using the same kernel on three different data-mining-style data sets.

P(class|input) = P(y = 1|x) = p(x) =

(4)

Y 1og(1 —p») ISV (5)

1.1 Recent Work

In [19, sec. 11.11], Vapnik suggests a method for mapping the output of SVMs to probabilities by
decomposing the feature space F into a direction orthogonal to the separating hyperplane, and
all of the IV —1 other dimensions of the feature space.The direction orthogonal to the separating
hyperplane is parameterized by ¢ (a scaled version of f(x)), while all of the other directions are
parameterized by a vector u. In full generality, the posterior probability depends on both ¢ and
w: P(y = 1|¢,u). Vapnik proposes fitting this probability with a sum of cosine terms:

P(y = 1|t,u) = ap(u) + Z an(u) cos(nt). (6)

The coefficients of the cosine expansion will minimize a regularized functional [19, eqn. 7.93],
which can be converted into a linear equation for the a,, that depends on the value of u for the
current, input being evaluated.

Preliminary results for this method, shown in [19, fig. 11.8], are promising. However, there
are some limitations that are overcome by the method of this chapter. For example, the Vapnik
method requires a solution of a linear system for every evaluation of the SVM. The method of
this chapter does not require a linear system solver call per evaluation because it averages the
P(y = 1|f) over all u. The price of this efficiency is that dependencies of P(y = 1|f) on u
cannot be modeled. Another interesting feature of the Vapnik method is that the sum of the
cosine terms is not constrained to lie between 0 and 1, and is not constrained to be monotonic
in f. See, for example, [19, fig. 11.8]. There is a very strong prior for considering the probability



P(y = 1|f) to be monotonic in f, since the SVM is trained to separate most or all of the positive
examples from the negative examples.

Another method for fitting probabilities to the output of an SVM is to fit Gaussians to the
class-conditional densities p(fly = 1) and p(f|ly = —1). This was first proposed by Hastie and
Tibshirani in [7], where a single tied variance is estimated for both Gaussians. The posterior
probability rule P(y = 1|f) is thus a sigmoid, whose slope is determined by the tied variance.
Hastie and Tibshirani [7] then adjust the bias of the sigmoid so that the point P(y = 1|f) = 0.5
occurs at f = 0. This sigmoid is monotonic, but the single parameter derived from the variances
may not accurately model the true posterior probability.

One can also use a a more flexible version of the Gaussian fit to p(fly = £1). The mean
and the variance for each Gaussian is determined from a data set. Bayes’ rule can be used to
compute the posterior probability via:

p(fly=1)Py=1)
Y11 p(fly=10)P(y =i)’

Ply=1[f) = (7)

where P(y = i) are prior probabilities that can be computed from the training set!. In this
formulation, the posterior is an analytic function of f with form:

1
Ply=11f) = 1+exp(af?+bf +c¢)’ )

There are two issues with this model of SVM outputs. First, the posterior estimate derived
from the two-Gaussian approximation violates the strong monotonic prior mentioned above:
the function in (8) is non-monotonic. Second, the assumption of Gaussian class-conditional
densities is often violated (see Figure 1).

2 Fitting a Sigmoid After the SVM

2.1 Motivation

Instead of estimating the class-conditional densities p(f|y), we use a parametric model to fit
the posterior P(y = 1|f) directly. The parameters of the model are adapted to give the best
probability outputs.

The form of the parametric model can be inspired by looking at empirical data. Figure 1
shows a plot of the class-conditional densities p(f|y = £1) for a linear SVM trained on a version
of the UCI Adult data set (see [15]). The plot shows histograms of the densities (with bins 0.1
wide), derived from threefold cross-validation. These densities are very far away from Gaussian.
There are discontinuities in the derivatives of both densities at both the positive margin f =1
and the negative margin f = —1. These discontinuities are not surprising, considering that the
cost function (3) also has discontinuities at the margins. Theory to explain the form of these
class-conditional densities is currently under development.

The class-conditional densities between the margins are apparently exponential. Bayes’ rule
(7) on two exponentials suggests using a parametric form of a sigmoid:

P(y:1|f):1+exp(lAf+B)' )

This sigmoid model is equivalent to assuming that the output of the SVM is proportional to
the log odds of a positive example. This sigmoid model is different from that proposed in [7]
because it has two parameters trained discriminatively, rather than one parameter estimated
from a tied variance.

!This model for SVM output probabilities was independently proposed and used for speaker identification in a
talk by C. J. C. Burges at the 1998 NIPS SVM workshop.
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Figure 1: The histograms for p(f|ly = £1) for a linear SVM trained on the Adult data set. The
solid line is p(f|y = —1), while the dashed line is p(f|y = 1). Notice that these histograms are not
Gaussian.

The sigmoid fit works well, as can be seen in Figure 2. The data points in Figure 2 are derived
by using Bayes’ rule on the histogram estimates of the class-conditional densities in Figure 1.
For a linear SVM trained on the Adult data set [15], the sigmoid fits the non-parametric estimate
extremely well, even beyond the margins. On the other sets and other kernels described in this
chapter, the sigmoid fits reasonably well, with a small amount of bias beyond the margins. The
non-parametric model of posterior probability for handwritten digits shown in [19, fig. 11.8] is
also very close to a sigmoid. Therefore, the sigmoid posterior model seems to be close to the
true model.

One can also view the sigmoid function as a linearization (in log-odds space) of the posterior
in (8). As long as A < 0, the monotonicity of (9) is assured. Even if, in some cases, the class-
conditional densities are close to Gaussian, the sigmoid fit is still appropriate and valuable.

2.2 Fitting the Sigmoid

The parameters A and B of (9) are fit using maximum likelihood estimation from a training
set (fi,yi). First, let us define a new training set (f;,¢;), where the t; are target probabilities

defined as:
Y+ 1

2
The parameters A and B are found by minimizing the negative log likelihood of the training
data, which is a cross-entropy error function:

min — Zti log(pi) + (1 — ;) log(1 — pi), (11)

(2

ti (10)

where
1

T 1+exp(Afi+ B)’

The minimization in (11) is a two-parameter minimization. Hence, it can be performed using
any number of optimization algorithms. For robustness, the experiments in this paper were

Di (12)
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Figure 2: The fit of the sigmoid to the data for a linear SVM on the Adult data set (as in Figure 1).
Each plus mark is the posterior probability computed for all examples falling into a bin of width
0.1. The solid line is the best-fit sigmoid to the posterior, using the algorithm described in this
chapter.

performed using a model-trust minimization algorithm [6], whose pseudo-code is shown in Ap-
pendix 5.

Two issues arise in the optimization of (11): the choice of the sigmoid training set (f;,y;),
and the method to avoid over-fitting this set.

The easiest training set to use is simply the same training examples used to fit the SVM. That
is, fi = f(xz;), where x; is the ith training example. However, the training of the SVM causes
the SVM outputs f; to be a biased estimate of the distribution of f out of sample. For examples
at the margin, the f; are forced to have absolute value exactly 1, which certainly will not be a
common value for test examples. The training examples that fail the margin (1 — y; f; > 0) are
also subtly biased, since the f; are pushed towards the margin by the corresponding «;. Only
the f; that are beyond the margin are substantially unbiased.

For linear SVMs, the bias introduced by training usually is not severe. In almost all cases,
a maximum of N + 1 support vectors will lie on the margin (for an input dimensionality of N),
which is usually a small fraction of the training set. Also, for many real-world problems that use
linear SVMs, optimal performance is reached for small C, which causes the bias on the margin
failures to become small. Therefore, for linear SVMs, it often possible to simply fit the sigmoid
on the training set.

For non-linear SVMs, the support vectors often form a substantial fraction of the entire data
set, especially when the Bayes error rate for the problem is high [19]. Through empirical exper-
iments, fitting a sigmoid to the training set of non-linear SVMs sometimes leads to disastrously
biased fits. Therefore, we must form an unbiased training set of the output of the SVM f;.

One method for forming an unbiased training set is to approximate leave-one-out estimates
of f;, as described in [this volume, chapter by Weston]. However, this either requires the solution
of a linear system for every data point in the training set, or a re-run of an SVM solver at every
data point, which can be computationally expensive.

There are two computationally inexpensive methods for deriving an unbiased training set:
generating a hold-out set and cross-validation. To use a hold out set, a fraction of the training



set (typically 30%) is not used to train the SVM, but is used to train the sigmoid. This same
hold-out set can be used to estimate other parameters of the system, such as kernel choice,
kernel parameters, and C. Once A, B, and all of the other system parameters are determined
from the hold out set, the main SVM can be re-trained on the entire training set. If SVM
training scales roughly quadratically with training set size [16, 9], then the hold-out set will
be only 1.5 times slower than simply training on the entire data set. Because determining the
system parameters is often unavoidable, determining A and B from the hold-out set may not
incur extra computation with this method.

Cross-validation is an even better method than a hold-out set for estimating the parameters
A and B [10]. In three-fold cross-validation, the training set is split into three parts. Each of
three SVMs are trained on permutations of two out of three parts, and the f; are evaluated on
the remaining third. The union of all three sets of f; can form the training set of the sigmoid
(and also can be used to adjust the SVM system parameters). Cross-validation produces larger
sigmoid training sets than the hold-out method, and hence gives a lower variance estimate for
A and B. Three-fold cross-validation takes approximately 2.2 times as long as training a single
SVM on an entire training set. All of the results in this chapter are presented using three-fold
cross-validation.

Even with cross-validated unbiased training data, the sigmoid can still be overfit. For ex-
ample, in the Reuters data set [5, 8], some of the categories have very few positive examples
which are linearly separable from all of the negative examples. Fitting a sigmoid for these SVMs
with maximum likelihood will simply drive the parameter A to a very large negative number,
even if the positive examples are reweighted. There can be an infinite number of solutions with
infinitely steep sigmoids when the validation set is perfectly separable. Therefore, we must add
a regularization term to prevent overfitting to a small number of examples.

Regularization requires either a prior model for the parameter space (A4, B), or a prior model
for a distribution of out-of-sample data. One can imagine using a Gaussian or Laplacian prior
on A. However, there is always one free parameter in the prior distribution (e.g., the variance).
This free parameter can be set using cross-validation or Bayesian hyperparameter inference [11],
but these methods add complexity to the code.

A simpler method is to create a model of out-of-sample data. One model is to assume that
the out-of-sample data is simply the training data perturbed with Gaussian noise. This is the
model behind Parzen windows [4, 19]. However, this model still has a free parameter.

The sigmoid fit in this chapter uses a different out-of-sample model: out-of-sample data
is modelled with the same empirical density as the sigmoid training data, but with a finite
probability of opposite label. In other words, when a positive example is observed at a value f;,
we do not use t; = 1, but assume that there is a finite chance of opposite label at the same f; in
the out-of-sample data. Therefore, a value of ¢; = 1 — e will be used, for some €. Similarly,
a negative example will use a target value of ¢; = e_. Using a non-binary target does not
require any modification to the maximum likelihood optimization code. Because (11) is simply
the Kullback-Liebler divergence between f; and ¢;, the function is still well-behaved, even for
non-binary ¢;.

The probability of correct label can be derived using Bayes’ rule. Let us choose a uniform
uninformative prior over probabilities of correct label. Now, let us observe N, positive examples.
The MAP estimate for the target probability of positive examples is

_ Ny+1
TN 42

(13)

Similarly, if there are N_ negative examples, then the MAP estimate for the target probability

of negative examples is
1

TN t2
These targets are used instead of {0,1} for all of the data in the sigmoid fit.

t_ (14)



These non-binary targets value are Bayes-motivated, unlike traditional non-binary targets
for neural networks [18]. Furthermore, the non-binary targets will converge to {0,1} when the
training set size approaches infinity, which recovers the maximum likelihood sigmoid fit.

The pseudo-code in Appendix 5 shows the optimization using the Bayesian targets.

3 Empirical Tests

There are at least two experiments to determine the real-world performance of the SVM+sigmoid
combination. First, the SVM+sigmoid can be compared to a plain SVM for misclassifica-
tion rate. Assuming equal loss for Type I and Type II errors, the optimal threshold for the
SVM+sigmoid is P(y = 1|f) = 0.5, while the optimal threshold for the SVM is f = 0. This
first experiment checks to see if the 0 threshold is optimal for SVMs.

The second experiment is to compare the SVM+-sigmoid with a kernel machine trained to
explicitly maximize a log multinomial likelihood. For the linear kernel case, this is equivalent to
comparing a linear SVM to regularized logistic regression. The purpose of the second experiment
is to check the quality of probability estimates by the SVM+sigmoid hybrid combination, and see
if the error function (3) causes fewer misclassifications than (5). Three different classification

Task Training Testing C Number Number
Set Size Set Size of Inputs of SVMs
Reuters Linear 9603 3299 0.08 300 118
Adult Linear 32562 16282 0.05 123 1
Adult Quadratic 1605 16282 0.3 123 1
Web Linear 49749 21489 1.0 300 1
Web Quadratic 2477 21489  10.0 300 1

Table 1: Experimental Parameters

tasks were used. The first task is determining the category of a Reuters news article [5, 8]. The
second task is the UCI Adult benchmark of estimating the income of a household given census
form data [13], where the input vectors are quantized [15]. The third task is determining the
category of a web page given key words in the page [15]. The Reuters task is solved using a
linear SVM, while the Adult and Web tasks are solved with both linear and quadratic SVMs.
The parameters of the training are shown in Table 1. The regularization terms are set separately
for each algorithm, via performance on a hold-out set. The C' value shown in Table 1 is for the
SVM+sigmoid. The sigmoid parameters are estimated using three-fold cross-validation. The
quadratic kernel for the Adult task is

X;-X;+1 2
]{/‘(XZ’,X]') = (172> , (15)
while the quadratric kernel for the Web task is
x; - x; + 17
- (173> , (16)

The constants 12 and 14 are taken from the average over each data set of the dot product of an
example with itself. This normalization keeps the kernel function in a reasonable range.

Table 2 shows the results of these experiments. The table lists the number of errors for
a raw SVM, an SVM+sigmoid, and a regularized likelihood kernel method. It also lists the
negative log likelihood of the test set for SVM+sigmoid and for the regularized likelihood kernel
method. McNemar’s test [3] was used to find statistically significant differences in classification
error rate, while the Wilcoxson signed rank test [14] is used to find significant differences in the



log likelihood. Both of these tests examine the results of a pair of algorithms on every example
in the test set. In Table 2, underlined entries are pairwise statistically significantly better than
all non-underlined entries, while not statistically significantly better than any other underlined
entry. A significance threshold of p = 0.05 is used.

Task Raw SVM SVM + Regularized SVM + Regularized
Sigmoid Likelihood  Sigmoid Likelihood
Number of Number of Number of —log(p) —log(p)
Errors Errors Errors Score Score
Reuters Linear 1043 963 1060 3249 3301
Adult Linear 2441 2442 2434 5323 5288
Adult Quadratic 2626 2554 2610 5772 5827
Web Linear 260 265 248 1121 958
Web Quadratic 444 452 507 1767 2163

Table 2: Experimental Results

3.1 Discussion

Three interesting results were observed from these experiments. First, adding a sigmoid some-
times improves the error rate of a raw SVM: a zero threshold is not necessarily Bayes opti-
mal. For the Reuters Linear and Adult Quadratic tasks, the sigmoid threshold was signifi-
cantly better than the standard zero threshold. For both of these tasks, the ratio of the priors
Py = —1)/P(y = 1) is far from one, which will tend to push the Bayes optimal threshold
away from zero. For example, on the Adult Quadratic task, the threshold P(y = 1|f) = 0.5
corresponds to a threshold of f = —0.1722, which is simply a more optimal threshold than zero.
The VC bounds on the generalization error [19] do not guarantee that the zero threshold is
Bayes optimal.

The second interesting result is that adding the sigmoid produces probabilities of roughly
comparable quality to the regularized likelihood kernel method. For three of the five tasks,
the regularized likelihood yields significantly better probabilities. For the Web Quadratic task,
the SVM+sigmoid has a better overall log likelihood, but the Wilcoxon rank test prefers the
regularized likelihood kernel method because more data points are more accurate with the latter
method.

The third interesting result is that neither the SVM+sigmoid nor the regularized likelihood
kernel machine is a completely dominant method for either error rate or log likelihood. The
SVM+sigmoid makes fewer errors than the regularized likelihood kernel method for three out
of five tasks, while the regularized likelihood method makes fewer errors for one out of five
tasks. This result is somewhat surprising: the SVM kernel machine is trained to minimize error
rate, while the regularized likelihood is trained to maximize log likelihood. These experiments
indicate that, when all other factors (e.g., kernel choice) are held constant, the difference in
performance between (3) and (5) is hard to predict a priori.

Finally, it is interesting to note that there are other kernel methods that produce sparse
machines without relying on an RKHS. One such class of methods penalize the ¢; norm of the
function h in (3), rather than the RKHS norm [12, 2] (see, for example, [this volume, chapter
by Mangasarian]). Fitting a sigmoid after fitting these sparse kernel machines may, in future
work, yield reasonable estimates of probabilities.



4 Conclusions

This chapter presents a method for extracting probabilities P(class|input) from SVM outputs,
which is useful for classification post-processing. The method leaves the SVM error function (3)
unchanged. Instead, it adds a trainable post-processing step which is trained with regularized
binomial maximum likelihood. A two parameter sigmoid is chosen as the post-processing, since
it matches the posterior that is empirically observed. Finally, the SVM+sigmoid combination
is compared to a raw SVM and a kernel method entirely trained with regularized maximum
likelihood. The SVM+sigmoid combination preserves the sparseness of the SVM while producing
probabilities that are of comparable quality to the regularized likelihood kernel method.

Acknowledgements

I would like to thank Chris Bishop for valuable advice during the writing of the paper.

5 Appendix: Pseudo-code for the Sigmoid Training

This appendix shows the pseudo-code for the training is shown below. The algorithm is a
model-trust algorithm, based on the Levenberg-Marquardt algorithm [17].

Input parameters:
out = array of SVM outputs
target = array of booleans: is ith example a positive example?
priorl = number of positive examples
prior0 = number of negative examples
Outputs:
A, B = parameters of sigmoid

A=0
B = log((prior0+1)/(priori+1))
hiTarget = (prioril+1)/(priori+2)
loTarget = 1/(prior0+2)
lambda = le-3
olderr = 1e300
PP = temp array to store current estimate of probability of examples
set all pp array elements to (prioril+l)/(priorO+prioril+2)
count = 0
for it = 1 to 100 {
a=0,b=0,c =0,d=0,e=0
// First, compute Hessian & gradient of error function
// with respect to A & B
for i = 1 to len {
if (target[il)
t = hiTarget

else
t = loTarget
d1 = pplil-t
d2 = pplil*(1-pp[il)
a += out[i]*out[i]*d2
b += 42
c += out[i]*d2
d += out[i]*d1
e += di



}
// If gradient is really tiny, then stop
if (abs(d) < 1e-9 && abs(e) < 1e-9)
break
oldA = A
oldB = B
err = 0
// Loop until goodness of fit increases
while (1) {
det = (at+lambda)* (b+lambda)-c*c
if (det == 0) { // if determinant of Hessian is zero,
// increase stabilizer
lambda *= 10

continue
}
A = 0ldA + ((b+lambda)*d-cxe)/det
B = 0ldB + ((at+lambda)*e-c*d)/det

// Now, compute the goodness of fit
err = 0;
for 1 = 1 to len {
p = 1/(1+exp(out[i]*A+B))
pplil =p
// At this step, make sure log(0) returns -200
err -= txlog(p)+(1-t)*log(1l-p)
}
if (err < olderrx(1+le-7)) {
lambda *= 0.1
break
}
// error did not decrease: increase stabilizer by factor of 10
// & try again

lambda *= 10
if (lambda >= 1e6) // something is broken. Give up
break

}

diff = err-olderr

scale = 0.5*(err+olderr+1)

if (diff > -le-3*scale && diff < le-T*scale)
count++

else
count = 0

olderr = err

if (count == 3)
break
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