10

15

20

25

30

35

SCience Submitted Manuscript: Confidential

AVAAAS

Decline of the North American Avifauna

Authors: Kenneth V. Rosenberg!?*, Adriaan M. Dokter', Peter J. Blancher?, John R. Sauer?,
Adam C. Smith’, Paul A. Smith?, Jessica C. Stanton®, Arvind Panjabi’, Laura Helft', Michael
Parr?, Peter P. Marra®’®

Affiliations:
!Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY 14850, USA.
2American Bird Conservancy, Washington, DC 20008, USA.

3 National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, ON
K1A OH3, Canada.

“Patuxent Wildlife Research Center, United States Geological Survey, Laurel, MD 20708-4017,
USA.

Canadian Wildlife Service, Environment and Climate Change Canada, Ottawa, ON K1A 0H3,
Canada.

®Upper Midwest Environmental Sciences Center, United States Geological Survey, La Crosse,
WI, USA.

"Bird Conservancy of the Rockies, Fort Collins, CO 80521, USA.

$Mligratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park,
PO Box 37012 MRC 5503, Washington, DC 20013-7012, USA.

Current Address: Department of Biology and McCourt School of Public Policy, Georgetown
University, 37th and O Streets NW, Washington, DC 20057, USA

*Correspondence to: kvr2@cornell.edu

Abstract: Species extinctions have defined the global biodiversity crisis, but extinction begins
with loss in abundance of individuals that can result in compositional and functional changes of
ecosystems. Using multiple and independent monitoring networks, we report population losses
across much of the North American avifauna over 48 years, including once common species and
from most biomes. Integration of range-wide population trajectories and size estimates indicates
a net loss approaching 3 billion birds, or 29% of 1970 abundance. A continent-wide weather
radar network also reveals a similarly steep decline in biomass passage of migrating birds over a
recent 10-year period. This loss of bird abundance signals an urgent need to address threats to
avert future avifaunal collapse and associated loss of ecosystem integrity, function and services.

One Sentence Summary: Cumulative loss of nearly three billion birds since 1970, across most
North American biomes, signals a pervasive and ongoing avifaunal crisis.
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Main Text:

Slowing the loss of biodiversity is one of the defining environmental challenges of the 21
century (/-5). Habitat loss, climate change, unregulated harvest, and other forms of human-
caused mortality (6, 7) have contributed to a thousand-fold increase in global extinctions in the
Anthropocene compared to the presumed prehuman background rate, with profound effects on
ecosystem functioning and services (8). The overwhelming focus on species extinctions,
however, has underestimated the extent and consequences of biotic change, by ignoring the loss
of abundance within still-common species and in aggregate across large species assemblages (2,
9). Declines in abundance can degrade ecosystem integrity, reducing vital ecological,
evolutionary, economic, and social services that organisms provide to their environment (8, /0-
15). Given the current pace of global environmental change, quantifying change in species
abundances is essential to assess ecosystem impacts. Evaluating the magnitude of declines
requires effective long-term monitoring of population sizes and trends, data which are rarely
available for most taxa.

Birds are excellent indicators of environmental health and ecosystem integrity (/6, /7), and our
ability to monitor many species over vast spatial scales far exceeds that of any other animal
group. We evaluated population change for 529 species of birds in the continental United States
and Canada (76% of breeding species), drawing from multiple standardized bird-monitoring
datasets, some of which provide close to fifty years of population data. We integrated range-wide
estimates of population size and 48-year population trajectories, along with their associated
uncertainty, to quantify net change in numbers of birds across the avifauna over recent decades
(18). We xalso used a network 143 weather radars (NEXRAD) across the contiguous U.S. to
estimate long-term changes in nocturnal migratory passage of avian biomass through the airspace
in spring from 2007 to 2017. The continuous operation and broad coverage of NEXRAD provide
an automated and standardised monitoring tool with unrivaled temporal and spatial extent (/9).
Radar measures cumulative passage across all nocturnally migrating species, many of which
breed in areas north of the contiguous U.S. that are poorly monitored by avian surveys. Radar
thus expands the area and the proportion of the migratory avifauna that is sampled relative to
ground surveys.

Results from long-term surveys, accounting for both increasing and declining species, reveal a
net loss in total abundance of 2.9 billion (95% CI = 2.7-3.1 billion) birds across almost all
biomes, a reduction of 29% (95% CI = 27-30%) since 1970 (Figure 1; Table 1). Analysis of
NEXRAD data indicate a similarly steep decline in nocturnal passage of migratory biomass, a
reduction of 13.6 & 9.1% since 2007 (Figure 2A). Reduction in biomass passage occurred across
the eastern U.S. (Figure 2 C,D), where migration is dominated by large numbers of temperate-
and boreal-breeding songbirds; we observed no consistent trend in the Central or Pacific flyway
regions (Figure 2B,C,D, Table S5). Two completely different and independent monitoring
techniques thus signal major population loss across the continental avifauna.

Species exhibiting declines (57%, 303/529) based on long-term survey data span diverse
ecological and taxonomic groups. Across breeding biomes, grassland birds showed the largest
magnitude of total population loss since 1970—more than 700 million breeding individuals
across 31 species— and the largest proportional loss (53%); 74% of grassland species are
declining. (Figure 1; Table 1). All forest biomes experienced large avian loss, with a cumulative
reduction of more than 1 billion birds. Wetland birds represent the only biome to show an overall
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net gain in numbers (13%), led by a 56% increase in waterfowl populations (Figure 3, Table 1).
Surprisingly, we also found a large net loss (63%) across 10 introduced species (Figure 3D,E,
Table 1).

A total of 419 native migratory species experienced a net loss of 2.5 billion individuals, whereas
100 native resident species showed a small net increase (26 million). Species overwintering in
temperate regions experienced the largest net reduction in abundance (1.4 billion), but
proportional loss was greatest among species overwintering in coastal regions (42%),
southwestern aridlands (42%), and South America (40%) (Table 1; Figure S1). Shorebirds, most
of which migrate long distances to winter along coasts throughout the hemisphere, are
experiencing consistent, steep population loss (37%).

More than 90% of the total cumulative loss can be attributed to 12 bird families (Figure 3A),
including sparrows, warblers, blackbirds, and finches. Of 67 bird families surveyed, 38 showed a
net loss in total abundance, whereas 29 showed gains (Figure 3B), indicating recent changes in
avifaunal composition (Table S2). While not optimized for species-level analysis, our model
indicates 19 widespread and abundant landbirds (including 2 introduced species) each
experienced population reductions of >50 million birds (Data S1). Abundant species also
contribute strongly to the migratory passage detected by radar (/9), and radar-derived trends
provide a fully independent estimate of widespread declines of migratory birds.

Our study documents a long-developing but overlooked biodiversity crisis in North America—
the cumulative loss of nearly 3 billion birds across the avifauna. Population loss is not restricted
to rare and threatened species, but includes many widespread and common species that may be
disproportionately influential components of food webs and ecosystem function. Furthermore,
losses among habitat generalists and even introduced species indicate that declining species are
not replaced by species that fare well in human-altered landscapes. Increases among waterfowl
and a few other groups (e.g. raptors recovering after the banning of DDT) are insufficient to
offset large losses among abundant species (Figure 3). Importantly, our population loss estimates
are conservative since we estimated loss only in breeding populations. The total loss and impact
on communities and ecosystems could be even higher outside the breeding season if we consider
the amplifying effect of “missing” reproductive output from these lost breeders.

Extinction of the Passenger Pigeon (Ectopistes migratorius), once likely the most numerous bird
on the planet, provides a poignant reminder that even abundant species can go extinct rapidly.
Systematic monitoring and attention paid to population declines could have alerted society to its
pending extinction (20). Today, monitoring data suggest that avian declines will likely continue
without targeted conservation action, triggering additional endangered species listings at
tremendous financial and social cost. Moreover, because birds provide numerous benefits to
ecosystems (e.g., seed dispersal, pollination, pest control) and economies (47 million people
spend 9.3 billion U.S. dollars per year through bird-related activities in the U.S. (21)), their
population reductions and possible extinctions will have severe direct and indirect consequences
(10, 22). Population declines can be reversed, as evidenced by the remarkable recovery of
waterfowl populations under adaptive harvest management (23) and the associated allocation of
billions of dollars devoted to wetland protection and restoration, providing a model for proactive
conservation in other widespread native habitats such as grasslands.
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Steep declines in North American birds parallel patterns of avian declines emerging globally (74,
15, 22, 24). In particular, depletion of native grassland bird populations in North America, driven
by habitat loss and more toxic pesticide use in both breeding and wintering areas (25), mirrors
loss of farmland birds throughout Europe and elsewhere (/5). Even declines among introduced
species match similar declines within these same species’ native ranges (26). Agricultural
intensification and urbanization have been similarly linked to declines in insect diversity and
biomass (27), with cascading impacts on birds and other consumers (24, 28, 29). Given that birds
are one of the best monitored animal groups, birds may also represent the tip of the iceberg,
indicating similar or greater losses in other taxonomic groups (28, 30).

Pervasiveness of avian loss across biomes and bird families suggests multiple and interacting
threats. Isolating spatio-temporal limiting factors for individual species and populations will
require additional study, however, since migratory species with complex life histories are in
contact with many threats throughout their annual cycles. A focus on breeding season biology
hampers our ability to understand how seasonal interactions drive population change (31),
although recent continent-wide analyses affirm the importance of events during the non-breeding
season (79, 32). Targeted research to identify limiting factors must be coupled with effective
policies and societal change that emphasize reducing threats to breeding and non-breeding
habitats and minimizing avoidable anthropogenic mortality year-round. Endangered species
legislation and international treaties, such as the 1916 Migratory Bird Treaty between Canada
and the United States, have prevented extinctions and promoted recovery of once-depleted bird
species. History shows that conservation action and legislation works. Our results signal an
urgent need to address the ongoing threats of habitat loss, agricultural intensification, coastal
disturbance, and direct anthropogenic mortality, all exacerbated by climate change, to avert
continued biodiversity loss and potential collapse of the continental avifauna.
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Fig. 1. Net population change in North American birds. (A) By integrating population size
estimates and trajectories for 529 species (/8), we show a net loss of 2.9 billion breeding birds
across the continental avifauna since 1970. Gray shading represents + 95% credible intervals
around total estimated loss. Map shows color-coded breeding biomes based on Bird
Conservation Regions and land cover classification (/8). (B) Net loss of abundance occurred
across all major breeding biomes except wetlands (see Table 1). (C) Proportional net population
change relative to 1970, +£95% C.1. (D) Proportion of species declining in each biome.
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Fig. 2. NEXRAD radar monitoring of nocturnal bird migration across the contiguous U.S.
(A) Annual change in biomass passage for the full continental U.S. (black) and (B) the Pacific
(green), Central (brown), Mississippi (yellow), and Atlantic (blue) flyways (borders indicated in
panel C), with percentage of total biomass passage (migration traffic) for each flyway indicated;
Declines are significant only for the full U.S. and the Mississippi and Atlantic flyways (Table
S3-5). (C) Single-site trends in seasonal biomass passage at 143 NEXRAD stations in spring (1
Mar — 1 Jul), estimated for the period 2007-2017. Darker red colors indicate higher declines and
loss of biomass passage, while blue colors indicate biomass increase. Circle size indicates trend
significance, with closed circles being significant at a 95% confidence level. Only areas outside
gray shading have a spatially consistent trend signal separated from background variability. (D)
10-year cumulative loss in biomass passage, estimated as the product of a spatially-explicit
(generalized additive model) trend, times the surface of average cumulative spring biomass
passage.
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Fig. 3. Gains and losses across the North American avifauna over the last half

century. (A) Bird families were categorized as having a net loss (red) or gain (blue). Total loss
of 3.2 billion birds occurred across 38 families; each family with losses greater than 50 million
individuals is shown as a proportion of total loss, including two introduced families (gray).
Swallows, nightjars, and swifts together show loss within the aerial insectivore guild. (B) 29
families show a total gain of 250 million individual birds; the five families with gains greater
than 15 million individuals are shown as a proportion of total gain. Four families of raptors are
shown as a single group. Note that combining total gain and total loss yields a net loss of 2.9
billion birds across the entire avifauna. (C) For each individually represented family in B and C,
proportional population change within that family is shown. See Table S2 for statistics on each
individual family. (D) Left, proportion of species with declining trends and, Right, percentage
population change among introduced and each of four management groups (/8). A representative
species from each group is shown (top to bottom, house sparrow, Passer domesticus;
sanderling, Calidris alba; western meadowlark, Sturnella neglecta; green heron, Butorides
virescens; and snow goose, Anser caerulescens).
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. Number o Percent Change & 95% Cls Species in
Species Group of Species 95% CI Decline
Change LC95 ucCo9s Change  LC95 uC9s

Species Summary
All N. Am. Species 529 -2,911.9 -3,097.5 -2,732.9 -28.8%  -302% -27.3% 57.3%
All Native Species 519 -2,521.0 -2,698.5 -2,347.6 -26.5%  -28.0% -24.9% 57.4%
Introduced Species 10 -391.6 -442.3 -336.6 -62.9% -66.5% -56.4% 50.0%
Native Migratory Species 419 -2,547.7 -2,723.7 -2,374.5 -283% -29.8% -26.7% 58.2%
Native Resident Species 100 26.3 7.3 46.9 5.3% 1.4% 9.6% 54.0%
Landbirds 357 -2,516.5 -2,692.2 -2,346.0 27.1% -28.6%  -25.5% 58.8%
Shorebirds 44 -17.1 -21.8 -12.6 -37.4% -45.0% -28.8% 68.2%
Waterbirds 77 -22.5 -37.8 -6.3 21.5%  -33.1%  -6.2% 51.9%
Waterfowl 41 34.8 24.5 48.3 56.0%  37.9%  79.4% 43.9%
Aerial Insectivores 26 -156.8 -183.8 -127.0 -31.8% -36.4% -26.1% 73.1%

Breeding Biome
Grassland 31 -717.5 -763.9 -673.3 -53.3% -55.1% -51.5% 74.2%
Boreal forest 34 -500.7 -627.1 -381.0 -33.1% -38.9%  -26.9% 50.0%
Forest Generalist 40 -482.2 -552.5 -413.4 -18.1% -204% -15.8% 40.0%
Habitat Generalist 38 -417.3 -462.1 -371.3 -23.1%  -254%  -20.7% 60.5%
Eastern Forest 63 -166.7 -185.8 -147.7 -174%  -19.2%  -15.6% 63.5%
Western forest 67 -139.7 -163.8 -116.1 -29.