一、热门基础题(30题)
逻辑回归基础
-
逻辑回归的假设函数是什么?为什么采用sigmoid函数?
假设函数为 ( h_\theta(x) = g(\theta^T x) ),其中 ( g(z) = \frac{1}{1+e^{-z}} )。sigmoid函数将线性输出映射到(0,1)区间,天然适合二分类概率建模,且导数形式简单 ( g’(z) = g(z)(1-g(z)) ),便于梯度计算。 -
逻辑回归的损失函数为什么不用均方误差?
均方误差在逻辑回归中是非凸的,存在多个局部最优解,优化困难;而对数损失函数是凸函数,且与概率模型直接对应,最大化对数似然等价于最小化交叉熵损失。 -
推导逻辑回归的二分类损失函数。
二分类概率模型:( P(y=1|x;\theta)=h_\theta(x) ),( P(y=0|x;\theta)=1-h_\theta(x) )。
似然函数:( L(\theta) = \prod_{i=1}^m [h_\theta(x_i)]^{y_i} [1-h_\theta(x_i)]^{1-y_i} )
对数似然:( \ell(\theta) = \sum_{i=1}^m [y_i \l