【2025算法面试通关】【二.机器学习-监督学习】【10.监督学习核心面试题:逻辑回归与支持向量机深度解析】

在这里插入图片描述

一、热门基础题(30题)

逻辑回归基础

  1. 逻辑回归的假设函数是什么?为什么采用sigmoid函数?
    假设函数为 ( h_\theta(x) = g(\theta^T x) ),其中 ( g(z) = \frac{1}{1+e^{-z}} )。sigmoid函数将线性输出映射到(0,1)区间,天然适合二分类概率建模,且导数形式简单 ( g’(z) = g(z)(1-g(z)) ),便于梯度计算。

  2. 逻辑回归的损失函数为什么不用均方误差?
    均方误差在逻辑回归中是非凸的,存在多个局部最优解,优化困难;而对数损失函数是凸函数,且与概率模型直接对应,最大化对数似然等价于最小化交叉熵损失。

  3. 推导逻辑回归的二分类损失函数。
    二分类概率模型:( P(y=1|x;\theta)=h_\theta(x) ),( P(y=0|x;\theta)=1-h_\theta(x) )。
    似然函数:( L(\theta) = \prod_{i=1}^m [h_\theta(x_i)]^{y_i} [1-h_\theta(x_i)]^{1-y_i} )
    对数似然:( \ell(\theta) = \sum_{i=1}^m [y_i \l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值