新增了四个教程: Python 人工智能中文版 0 前言1 人工智能简介2 人工智能的基本用例3 机器学习管道4 特征选择和特征工程5 使用监督学习的分类和回归6 集成学习的预测分析7 通过无监督学习检测模式8 构建推荐系统9 逻辑编程10 启发式搜索技术11 遗传算法和遗传编程12 云上的人工智能13 使用人工智能构建游戏14 构建语音识别器15 自然语言处理16 聊天机器人17 序列数据和时间序列分析18 图像识别19 神经网络20 将卷积神经网络用于深度学习21 循环神经网络和其他深度学习模型22 通过强化学习创建智能体23 人工智能和大数据 Python 无监督学习实用指南 零、前言一、无监督学习入门二、聚类基础三、高级聚类四、实用的层次聚类五、软聚类和高斯混合模型六、异常检测七、降维和成分分析八、无监督神经网络模型九、生成对抗网络和 SOM十、习题 生成对抗网络项目 零、前言一、生成对抗网络简介二、3D-GAN – 使用 GAN 生成形状三、使用条件 GAN 进行人脸老化四、使用 DCGAN 生成动漫角色五、使用 SRGAN 生成逼真的图像六、StackGAN - 逼真的文本到图像合成七、CycleGAN - 将绘画变成照片八、条件 GAN - 使用条件对抗网络的图像到图像翻译九、预测 GAN 的未来 TensorFlow 智能移动项目 零、前言一、移动 TensorFlow 入门二、通过迁移学习对图像进行分类三、检测物体及其位置四、以惊人的艺术风格变换图片五、了解简单的语音命令六、用自然语言描述图像七、使用 CNN 和 LSTM 识别绘画八、用 RNN 预测股价九、使用 GAN 生成和增强图像十、构建类似 AlphaZero 的手机游戏应用十一、在移动设备上使用 TensorFlow Lite 和 Core ML十二、在 Raspberry Pi 上开发 TensorFlow 应用