给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。
每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:
- 0<=j<=nums[i]0 <= j <= nums[i]0<=j<=nums[i]
- i+j<ni + j < ni+j<n
返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4]
输出: 2
提示:
1<=nums.length<=1041 <= nums.length <= 10^41<=nums.length<=104
0<=nums[i]<=10000 <= nums[i] <= 10000<=nums[i]<=1000
题目保证可以到达 nums[n-1]
思路:
- 「贪心」地进行正向查找,每次找到可到达的最远位置,就可以在线性时间内得到最少的跳跃次数。
- 例如,对于数组 [2,3,1,2,4,2,3],初始位置是下标 0,从下标 0 出发,最远可到达下标 2。下标 0 可到达的位置中,下标 1 的值是 3,从下标 1 出发可以达到更远的位置,因此第一步到达下标 1。
- 从下标 1 出发,最远可到达下标 4。下标 1 可到达的位置中,下标 4 的值是 4 ,从下标 4 出发可以达到更远的位置,因此第二步到达下标 4。
- 在具体的实现中,我们维护当前能够到达的最大下标位置,记为边界。我们从左到右遍历数组,到达边界时,更新边界并将跳跃次数增加 1。
class Solution {
public:
int jump(vector<int>& nums) {
int cur = 0, rm = 0, cnt = 0;
int n = nums.size();
for(int i = 0; i < n; i++){
if(i > cur) cnt++, cur = rm;
rm = max(rm, i + nums[i]);
}
return cnt;
}
};