
Class Types in Non-Type Template Parameters

Document #: P0732R2
Date: 2018-06-06
Project: Programming Language C++
Audience: Evolution
Reply-to: Jeff Snyder <jeff-isocpp@caffeinated.me.uk>

Louis Dionne <ldionne.2@gmail.com>

1 TL;DR

We should allow non-union class types to appear in non-type template parameters.
Require that types used as such, and all of their bases and non-static data members
recursively, have a non-user-provided operator<=> returning a type that is implicitly
convertible to std::strong_equality, and contain no references. Mangle values of those
types by mangling each of their bases and non-static data members.

2 Introduction

Non-type template parameters are one of the few places in C++ where a visible distinction
is made between class types and others: integral types, enum types, pointer types, point-
to-member types, reference types and std::nullptr_t can all be used as non-type
template parameters, but class types cannot. Array types can be used as non-type
template parameters, but only syntactically—like function arguments of array type, they
decay to pointers.

In C++98 there was a further distinction between class types and others: there were
no compile-time constant expressions of class type. This changed in C++11 with the
introduction of the constexpr keyword, leaving us in a situation where we have a great
many tools to produce expressions of class type suitable for use as template arguments,
but we cannot declare template parameters to accept them.

It would be desirable to remove this inconsistency in the language, but there are technical
barriers to doing so. Jens Maurer’s 2012 paper[N3413] provides a detailed analysis of
the problems involved. This paper proposes a way to resolve these problems, and start
allowing the use of some class types in non-type template parameters.

1

mailto:jeff-isocpp@caffeinated.me.uk
mailto:ldionne.2@gmail.com

3 Motivation

Beyond the more abstract benefits of generalising existing language features and removing
seemingly-arbitrary inconsistencies/restrictions in the language, there are a few concrete
use cases that are addressed by allowing the use of class types in non-type template
parameters:

3.1 Wrapper Types

Many APIs define class types that wrap built-in types in order to improve type safety, turn
nonsensical operations into compile-time errors, and customise the behaviour of various
operators. A prominent example is the std::chrono library, where the time_point and
duration types are typically represented as integers internally.

There are clear benefits of using abstractions such as those in std::chrono instead of
integers holding (e.g.) numbers of nanoseconds, but they come at a hidden cost: a
program that uses specific time or duration values in template arguments cannot take
advantage std::chrono’s abstractions, because its types cannot be used in non-type
template parameters.

3.2 Compile-Time String Processing

There have been multiple proposals[N3599][P0424R0] to relax the prohibition on string
user-defined literals that take their raw form as individual char template arguments, and
so far all of these proposals have failed to gain consensus.

The primary concern that gets raised in response to such proposals is that handling
strings as packs of char template arguments is extremely costly in terms of the compiler’s
CPU and memory usage, and allowing such UDLs would make very large packs of char
values much more common than they are today. This may in turn result in pressure on
compiler vendors to make their products perform well under such compile-time string
processing workloads, which is difficult due to the strings being represented using a
syntax and mechanism that was never intended to support such use cases.

Recently, a proposal[P0424R2] to allow strings in template parameters has gained informal
consensus, but the only valid arguments for those string template parameters are string
literals and raw UDLs. Whilst this is significant progress, it still does not allow us to
store computed strings in non-type template parameters.

By supporting non-type template parameters of class type, we can represent compile-time
strings as objects of class type containing an array of characters (e.g. a std::fixed_-
string[P0259R0]), making the string content part of the value of the non-type template
parameter. With this approach, any computed string can be stored in a non-type template
parameter.

2

Why not just use a raw array as the non-type template parameter? Unfortunately, the
syntactic space that this would occupy is already taken: since C++98, array-to-pointer
decay happens in non-type template parameter declarations, thus it is already possible
declare a non-type template parameter of type T[N], but what you actually get is a
non-type template parameter of type T*.

Elsewhere in C++, the problems arising from array types not having value semantics are
resolved by wrapping them in a class, c.f. std::array. Using the same approach here
solves the problem of efficiently representing compile-time strings in non-type template
parameters with a generic language feature, and does so in a manner consistent with the
rest of C++.

4 Overview

At the core of the issue with allowing class types in non-type template parameters is the
question whether of two template instantiations are the same, i.e. given template<auto>
int i; and two values a and b of the same type, does the invariant1that &i<a> == &i
if and only if a == b holds? Current language rules ensure that it does, and maintaining
this invariant seems desirable for the simplicity and teachability of the language.

Current language rules require both the compiler and the linker must be able to tell
whether two template instantiations are the same or not, and so they must both be able
to tell whether two values used as an argument to the same non-type template parameter
are the same. This is typically achieved by including the values of all non-type template
arguments in the mangled symbol name for the template instantiation, such that equality
of the resulting string can be used as a proxy for equality of all of the template arguments.

If a template argument is a value of class type, then how do we mangle it into symbol
names? If we cannot, then how does the linker tell whether two template arguments of
class type are the same? By default, class types do not even have a notion of equality.
If we disregard unions, we could say that classes are simply compared memberwise for
the purposes of template instantiation. However, doing this would break the invariant
that &i<a> == &i if and only if a == b2: the latter may not even be valid, and if
it is then it would only give the same results as the former if the relevant operator==
implemented the same memberwise comparison that we used for the purposes of template
instantiation.

To resolve this question, we must either:

1. Allow the existing invariant to be broken, and accept the complexity and subtleties
added to the language by doing this, or

1For brevity, this formulation of the invariant ignores reference types. The actual invariant is that
&i<a> == &i if and only if REF_TO_PTR(a) == REF_TO_PTR(b), where REF_TO_PTR(x) is equivalent
to &x if decltype(x) is a reference type, and x otherwise.

2See footnote 1

3

2. Attempt to develop the technology required for compiler and linkers to verify that
user-defined equality operators are self-consistent and evaluate them, or

3. Only allow non-type template parameters of class type for classes which have
memberwise equality

This paper proposes pursuing the last of these options, since it is the only option that
maintains the aforementioned invariant without requiring substantial changes to current
linker technology.

How do we tell whether a class type has memberwise equality? Detecting whether a user-
defined operator== implements memberwise equality would require some heroic analysis
by the compiler. If there were such a thing as compiler-generated comparisons, we could
require that classes must have compiler-generated memberwise comparison instead of
requiring that user-defined equality operators implement memberwise equality. C++ does
not currently have any such compiler-generated comparisons, but Herb Sutter’s recent
proposal[P0515R2] provides almost exactly what we need, by allowing operator<=> to
be defaulted. To make use of this we need to modify the invariant to be “&i<a> ==
&i if and only if (a <=> b) == 0”3, but this seems reasonable since (a <=> b) ==
0 is equivalent to a == b for all valid non-type template arguments in C++17.

By requiring that all classes used as non-type template parameters have an operator<=>
that is defaulted within the class definition, and so do all of its members and bases
recursively, we can ensure all of the following:

• The class type has a comparison operator available

• The class type has the same comparison operator available in all translation units

• The class’ comparison operator implements memberwise equality

Together, these guarantees allow us to determine whether two instantiations of a templated
entity involving non-type template parameters of a type meeting the requirements above
are the same, in a manner that is consistent with comparisons in user code, and without
any substantial departure from current compiler and linker technologies.

5 Proposal

5.1 Conceptual Model

In current C++, the closest thing to having a non-type template parameter of class
type is having separate non-type template parameters for each of its members (e.g.
template<int x_first, int x_second> instead of template<pair<int,int> x>).

3The caveat from footnote 1 also applies here

4

This proposal uses that expansion as a conceptual model for classes in non-type template
parameters—i.e. using a class type in a non-type template parameter is conceptually
equivalent to having separate non-type template parameters for each of its bases, each of
its non-array-type non-static data members, and each element of each of its array-type
non-static data members.

This analogy is intended to aid in understanding the requirements for types and expres-
sions used in non-type template parameters and arguments; it is not intended as an
implementation model—there are likely to be more efficient ways of implementing this
proposal, particularly with regard to arrays.

5.2 The Reference Problem

References have two notions of equality in current C++: operator== compares the
referees, but instantiation of templates that have reference-type non-type template
parameters compares the addresses of the referees.

This may become more counter-intuitive than it already is if there is a similar disparity
in equality semantics for classes that have non-static data members of reference type. To
avoid this problem, this paper does not propose allowing classes which contain references
to be used in non-type template parameters.

5.3 The operator== Gap

This proposal aims to guarantee that whether two instances of a class are the same for
the purposes of template instantiation is consistent with whether they are the same
according to a comparison in normal C++ code.

Since the mechanism used to achieve this is based around operator<=>, any guarantees
we can provide must also be in terms of operator<=>. For example, if we have a
declaration template<auto> int v, then &v<a> == &v is true iff (a <=> b) == 0.

Since there is nothing to prevent a class author from implementing an operator== that
is inconsistent with operator<=>, we cannot guarantee that &t<a> == &t is true iff
a == b, however desirable this may be.

The practical consequence of this is that any generic code that relies on two template
instantiations having the same address iff their arguments compare equal must compare
the arguments using operator<=> directly, instead of operator==.

5.4 Calling member functions on template arguments

Being able to declare templates with non-type parameters of user-defined type and
instantiate them is only half the picture. How do we then use these template parameters?

5

We would like to be able to call const member functions on these parameters at runtime,
but for that to be possible they need to have an address.

To satisfy that requirement, we propose that template parameters of class type are const
objects, of which there is one instance in the program for every distinct non-type template
parameter value of class type.

5.5 Interaction with Class Template Argument Deduction

In keeping with the declaration and initialization of variables, we should support the use
of class template argument deduction with non-type template parameters. Consider the
following example, which initializes a non-type template parameter of type std::fixed_-
string (based on [P0259R0]) with the string "hello", but has to explicitly provide the
string’s length in order to do so:

namespace std {
template <typename CharT, std::size_t N>
struct basic_fixed_string
{

constexpr basic_fixed_string(const CharT (&foo)[N+1])
{ std::copy_n(foo, N+1, m_data); }
auto operator<=>(const basic_fixed_string &,

const basic_fixed_string &) = default;
CharT m_data[N+1];

};

template <typename CharT, std::size_t N>
basic_fixed_string(const CharT (&str)[N])->basic_fixed_string<CharT, N-1>;

template <std::size_t N>
using fixed_string = basic_fixed_string<char, N>;

}

template <std::size_t N, std::fixed_string<N> Str>
struct A {};

using hello_A = A<5, "hello">;

By using template argument deduction for the std::fixed_string non-type template
parameter, the declaration and use of A could be simplified to the following:

template <std::basic_fixed_string Str>
struct A {};

using hello_A = A<"hello">;

6

5.6 Usage with user-defined literals

To allow usage of the proposed functionality with user-defined literals, this paper proposes
adopting the new form of user-defined literal operator templates for strings suggested in
[P0424R2]:

template <std::basic_fixed_string str>
auto operator"" _udl();

"hello"_udl; // equivalent to operator""_udl<"hello">()

6 Wording

6.1 Remarks

This paper proposes extending the set of types that may appear in non-type template
parameters with the addition of non-union literal class types that also have strong
structural equality.

The intention of strong structural equality is to define the set of strongly comparable
fundamental types, and class types for which all members and bases are strongly compa-
rable, and comparison of the class type is equivalent to comparing all of its members and
bases.

There is already a great deal of overlap between the set of types that can appear in
non-type template parameters and the set of types that are both literal and have strong
structural equality. This makes it possible to simplify [temp.param]p4 by making use of
the term strong structural equality.

Introducing strong structural equality only handles the requirements on the types used in
non-type template parameters. We must also consider the values that are permissible as
arguments to non-type template parameters.

In keeping with our conceptual model, the restrictions on non-type template arguments
of reference and pointer type in [temp.arg.nontype]p2 should apply to all reference- and
pointer-type subobjects of class objects used as non-type template arguments.

For user-defined literals, we split the term of art literal operator template into two terms,
numeric literal operator template and string literal operator template. The term literal
operator template is retained and refers to either form. This is the approach that was
originally taken by Richard Smith in [N3599].

We propose the feature test macro name __cpp_nontype_template_parameter_class
for this feature.

7

6.2 Proposed Changes For Non-type Template Parameters

Change in [expr.prim.id.unqual] (8.4.4.1)p2

The result is the entity denoted by the identifier. If the entity is a local entity
and naming it from outside of an unevaluated operand within the declarative
region where the unqualified-id appears would result in some intervening
lambda-expression capturing it by copy (8.4.5.2), the type of the expression is
the type of a class member access expression (8.5.1.5) naming the non-static
data member that would be declared for such a capture in the closure object
of the innermost such intervening lambda-expression. [Note: If that lambda-
expression is not declared mutable, the type of such an identifier will typically
be const qualified. —end note] If the entity is a template parameter object
for a template parameter of type T, the type of the expression is const T.
Otherwise, the type of the expression is the type of the result. [Note: The type
will be adjusted as described in 8.2.2 if it is cv-qualified or is a reference type.
—end note] The expression is an lvalue if the entity is a function, variable, or
data member, or template parameter object and a prvalue otherwise (8.2.1);
it is a bit - field if the identifier designates a bit - field (11.5).

Change in [expr.const] (8.6)p2.7

• an lvalue-to-rvalue conversion (7.1) unless it is applied to

– a non-volatile glvalue of integral or enumeration type that refers to
a complete non-volatile const object with a preceding initialization,
initialized with a constant expression, or

– a non-volatile glvalue that refers to a subobject of a string literal
(5.13.5), or

– a non-volatile glvalue that refers to a non-volatile object defined
with constexpr or a template parameter object (17.1 [temp.param]),
or that refers to a non-mutable subobject of such an object, or

– a non-volatile glvalue of literal type that refers to a non-volatile
object whose lifetime began within the evaluation of e;

Change in [dcl.type.class.deduct] (10.1.7.2)p4

For an expression e, the type denoted by decltype(e) is defined as follows:

• if e is an unparenthesized id-expression naming a structured binding
(11.5), decltype(e) is the referenced type as given in the specification
of the structured binding declaration;

• otherwise, if e is an unparenthesized id-expression naming a non-type
template-parameter, decltype(e) is the type of the template-parameter
after performing any necessary type deduction (10.1.7.4, 10.1.7.5).

8

• otherwise, if e is an unparenthesized id-expression or an unparenthesized
class member access (8.2.5), decltype(e) is the type of the entity named
by e. If there is no such entity, or if e names a set of overloaded functions,
the program is ill-formed;

• otherwise, if e is an xvalue, decltype(e) is T&&, where T is the type of
e;

• otherwise, if e is an lvalue, decltype(e) is T&, where T is the type of e;

• otherwise, decltype(e) is the type of e.

Change in [dcl.type.class.deduct] (10.1.7.5)p2

A placeholder for a deduced class type can also be used in the type-specifier-seq
in the new-type-id or type-id of a new-expression (8.5.2.4), or as the simple-
type-specifier in an explicit type conversion (functional notation) (8.5.1.3),
or as the type-specifier in the parameter-declaration of a template-parameter .
A placeholder for a deduced class type shall not appear in any other context.

Add the following paragraph at the end of [class.compare.default] (15.9.1):

A three-way comparison operator for a class type C is a
structural comparison operator if it is defined as defaulted in the definition of
C, and all three-way comparison operators it invokes are structural comparison
operators.

A type T has strong structural equality if, for a glvalue x of type const T,
x <=> x is a valid expression of type std::strong_ordering or std::strong_equality
and either does not invoke a three-way comparison operator or invokes a
structural comparison operator.

Change paragraph [temp.param] (17.1)p4 as follows:

A non-type template-parameter shall have one of the following (optionally
cv-qualified) types:

• integral or enumeration type,

• pointer to object or pointer to function,

• a type that is literal, has strong structural equality (15.9.1), has no
mutable or volatile subobjects, and in which if there is a defaulted
member operator<=>, then it is declared public,

• an lvalue reference typeto object or lvalue reference to function,

• std::nullptr_t, or

• a type that contains a placeholder type (10.1.7.4)., or

• a placeholder for a deduced class type (10.1.7.5).

9

Change paragraph [temp.param] (17.1)p6 as follows:

A non-type non-reference template-parameter is a prvalue. It shall not be
assigned to or in any other way have its value changed. A non-type non-reference
template-parameter cannot have its address taken. When a non-type non-reference
template-parameter of non-reference and non-class type is used as an initial-
izer for a reference, a temporary is always used. An id-expression naming a
non-type template-parameter of class type T denotes a static storage duration
object of type const T, known as a template parameter object, whose value
is that of the corresponding template argument after it has been converted
to the type of the template-parameter. All such template parameters in
the program of the same type with the same value denote the same template
parameter object. [Note: If an id-expression names a non-type non-reference
template-parameter, then it is a prvalue if it has non-class type. Otherwise, if
it is of class type T, it is an lvalue and has type const T (8.4.4.1). —end note]

[Example:
struct A { auto operator<=>(A, A) = default; };
template<const X& x, int i, A a> void f() {

i++; // error: change of template-parameter value
&x; // OK
&i; // error: address of non-reference template-parameter
&a; // OK
int& ri = i; // error: non-const reference bound to temporary
const int& cri = i; // OK: const reference bound to temporary
const A& ra = a; // OK: const reference bound to a

// template parameter object
}

—end example]

Change paragraph [temp.arg.nontype] (17.3.2)p1 as follows:

If the type T of a template-parameter contains a placeholder type or a
placeholder for a deduced class type (10.1.7.4, 10.1.7.5, 17.1), the deduced
parameter type is determined from the type of the template-argument by
placeholder type deduction (10.1.7.4.1). type of the parameter is the type
deduced for the variable x in the invented declaration:

T x = template-argument ;

If a deduced parameter type is not permitted for a template-parameter decla-
ration (17.1), the program is ill-formed.

Change paragraph [temp.arg.nontype] (17.3.2)p2 as follows:

10

A template-argument for a non-type template-parameter shall be a converted
constant expression (8.6) of the type of the template-parameter. For a non-
type template-parameter of reference or pointer type, or for each non-static
data member of reference or pointer type in a non-type template-parameter of
class type or subobject thereof, the reference or pointer value of the constant
expression shall not refer to (or for a pointer type, shall not be the address
of (respectively):

• a subobject (6.6.2),

• a temporary object (15.2),

• a string literal (5.13.5),

• the result of a typeid expression (8.5.1.8), or

• a predefined __func__ variable (11.4.1).

Change the note at [temp.type] (17.5)p4 as follows:

[Note: A string literal (5.13.5) is not an acceptable template-argument for a
template-parameter of non-class type. [Example:

template<class T, T p> class X {
/* ... */

};

X<const char*, "Studebaker"> x1; // error: string literal as template-argument

const char p[] = "Vivisectionist";
X<const char*,p> x2; // OK

class A { constexpr A(const char*) {} };

X<A, "Pyrophoricity"> x3; // OK: string literal is a constructor argument to A

—end example] —end note]

Change paragraph [temp.type] (17.5)p1 as follows:

Two template-ids refer to the same class, function, or variable if

• their template-names, operator-function-ids, or literal-operator-ids refer
to the same template and

• their corresponding type template-arguments are the same type and

• their corresponding non-type template arguments of integral or enumeration
type have identical values and

• their corresponding non-type template-arguments of pointer type refer
to the same object or function or are both the null pointer value and

11

• their corresponding non-type template-arguments of pointer-to-member
type refer to the same class member or are both the null member pointer
value and

• their corresponding non-type template-arguments of reference type refer
to the same object or function and

• their remaining corresponding non-type template-arguments have the
same type and value after conversion to the type of the template-parameter,
where they are considered to have the same value if they compare equal
with operator<=> and

• their corresponding template template-arguments refer to the same
template.

6.3 Proposed Changes for User-defined Literals

Replace “literal operator template” with “numeric literal operator template” in [lex.ext]
(5.13.8)p3 and [lex.ext] (5.13.8)p4:

[...] Otherwise, S shall contain a raw literal operator or a numeric literal
operator template (16.5.8) but not both. [...] Otherwise (S contains a numeric
literal operator template), L is treated as a call of the form [...]

Change in [lex.ext] (5.13.8)p5:

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and
let len be the number of code units in str (i.e., its length excluding the terminat-
ing null character). If S contains a literal operator template with a non-type
template parameter for which str is a well-formed template-argument, the
literal L is treated as a call of the form operator "" X<str>(). Otherwise,
the The literal L is treated as a call of the form operator"" X(str, len).

Change in [over.literal] (16.5.8)p5:

The declaration of a literal operator template shall have an empty
parameter-declaration-clause and its template-parameter-list shall haveA
numeric literal operator template is a literal operator template whose
template-parameter-list has a single template-parameter that is a non-type
template parameter pack (17.6.3) with element type char. A
string literal operator template is a literal operator template whose
template-parameter-list comprises a single non-type template-parameter of
class type. The declaration of a literal operator template shall have an
empty parameter-declaration-clause and shall declare either a numeric literal
operator template or a string literal operator template.

12

7 Acknowledgements

Many thanks to Timur Doumler, Graham Haynes and Richard Smith for their comments
on early drafts of this paper. Many thanks to Thomas Köppe and Richard Smith for
their help with the core language wording for this feature.

References

[N3413] Jens Maurer. Allowing arbitrary literal types for non-type template parameters.
Proposal N3413, ISO/IEC JTC1/SC22/WG21, September 2012.

[N3599] Richard Smith. Literal operator templates for strings. Proposal N3599, ISO/IEC
JTC1/SC22/WG21, March 2013.

[P0424R0] Louis Dionne. Reconsidering literal operator templates for strings. Proposal
P0424R0, ISO/IEC JTC1/SC22/WG21, August 2015.

[P0424R2] Louis Dionne. Reconsidering literal operator templates for strings. Proposal
P0424R2, ISO/IEC JTC1/SC22/WG21, November 2017.

[P0259R0] Michael Price & Andrew Tomazos. fixed_string: a compile-time string.
Proposal P0259R1, ISO/IEC JTC1/SC22/WG21, February 2016.

[P0515R2] Herb Sutter. Consistent comparison. Proposal P0515R1, ISO/IEC
JTC1/SC22/WG21, September 2017.

13

	1 TL;DR
	2 Introduction
	3 Motivation
	3.1 Wrapper Types
	3.2 Compile-Time String Processing

	4 Overview
	5 Proposal
	5.1 Conceptual Model
	5.2 The Reference Problem
	5.3 The operator== Gap
	5.4 Calling member functions on template arguments
	5.5 Interaction with Class Template Argument Deduction
	5.6 Usage with user-defined literals

	6 Wording
	6.1 Remarks
	6.2 Proposed Changes For Non-type Template Parameters
	6.3 Proposed Changes for User-defined Literals

	7 Acknowledgements

