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Abstract

We propose to allow a limited form of casting from voidx* to support type erasure in constexpr.

Revisions

R1

Wording fixes, CWG expert reviewed.

RO

Initial revision

Motivation

Using the proposed feature, we were able to get std: : format work at compile time. Other
standard facilities could be made constexpr such as std: : function_ref, std: : function, and
std: :any.

Storing void* instead of a concrete type is a commonly used compilation firewall technique to
reduce template instantiations and the number of symbols in compiled binaries. For example,
with a template class that stores a Tx pointer to some data, member functions are instantiated
for each template combination; if instead some member functions along with a voidx were
part of a non-template base class, those member functions are instantiated only once.

On memory constrained embedded platforms, a common approach to achieve run-time
memory savings is to ensure common code paths. Type erasure is helpful to achieve common
code paths. To save memory, it is desirable to evaluate code at compile time to the maximal
extent. To keep code common between compile time and run-time, limited type erasure is
required at compile time.
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Vocabulary types like the proposed std: : function_ref communicate constraints to the caller
much better than an unconstrained callable. Communication of constraints on arguments is
not exclusively beneficial to the run-time domain.

This type erasure allows more of the standard library (such as std::format) to be made

constexpr, and by lifting restrictions it promotes unification of constexpr and non-constexpr
implementations.



The following example, courtesy of Jason Turner, illustrates the use of this feature

#include <string_view>

struct Sheep {
constexpr std::string_view speak() const noexcept { return "Baaaaaa"; }

b

struct Cow {
constexpr std::string_view speak() const noexcept { return "Mooo"; }

3

class Animal_View {
private:
const void *animal;
std::string_view (*speak_function)(const void *);

public:
template <typename Animal>
constexpr Animal_View(const Animal &a)
: animal{&a}, speak_function{[](const void *object) {
return static_cast<const Animal *>(object)->speak();

13 {3

constexpr std::string_view speak() const noexcept {
return speak_function(animal);
}
%

// This is the key bit here. This is a single concrete function
// that can take anything that happens to have the "Animal_View"
// interface

std::string_view do_speak(Animal_View av) { return av.speak(); }

int main() {
// A Cow is a cow. The only think that makes it special
// is that it has a "std::string_view speak() const” member
constexpr Cow cow;
// cannot be constexpr because of static_cast
[[maybe_unused]] auto result = do_speak(cow);
return static_cast<int>(result.size());

Note: The above example while functionally similar to virtual based polymorphism has a key
difference, it does not require a vtable pointer to be carried around with all the objects that
conform to the interface.

Facilities like format and function_ref use a similar pattern.



Design

We propose to allow casting from a pointer of void* to a pointer of type T in constexpr if the
type of the object at that address is exactly of type T. In particular, we are not proposing
allowing conversion to a pointer that would be interconvertible, let alone unrelated. Indeed,
most constexpr evaluator implementations are based on value, rather than memory, and
anything that would require reinterpreting the object as another type is generally not possible.

However, most implementations have a way to know the type of an object pointed to by a
given pointer (for diagnostics, constexpr allocation, virtual dispatch, or other reasons), and so
a cast from void* to a pointer of the type of the pointed to object is implementable.

Do we want to support conversion to pointer to base?

At first approach, it would make sense to support casts to base classes. After all, casting to a
base class is possible in constexpr contexts. However, in a non-constexpr context, consider

struct A {
virtual void f() {3};
int a;

3

struct B {
int b;

};

struct C: B, A {};

int main() {

C c;
void* v = &c;
assert(static_cast<B*>(v) == static_cast<Bx>(static_cast<Cx>(v))); // #1

#1 does not hold. Both expressions return different addresses. So casting to a derived class
then its base is not isomorphic to casting to the base directly so, for consistency and simplicity
we are not proposing to cast to allow cast from void* to base classes either.

Implementation Experience

Clang

Implementing this in Clang was trivial. Indeed, clang does support constexpr conversions
from voidx* but limits their use to inside of std: :allocator: :allocate, as part of the constexpr
allocation machinery. Lifting that restriction doesn’t present any particular challenge.

The other clang constexpr interpreter (based on bytecode) also tracks the origin of pointers
and can implement this proposal.



MSVC & GCC

Front-end engineers from both GCC and MSVC indicated this proposal offered no particular
implementation challenge as their respective implementations already track the full type
information of all pointers.

EDG

Someone from EDG indicated this proposal should be implementable, albeit with performance
inefficiencies. Their implementation does not track enough information for the type to be
immediately available and they would have to reconstruct it by walking the AST of the enclosing
whole object.

Impact on future implementations

This constrains an evaluator to know about the type of an object a pointer points to. Adding
this information to an implementation that does not have it could be challenging in the future,
and, as more implementation start looking at interpreting constexpr code, knowing they must
preserve that information will inform their design. We should therefore do that change sooner
than later to guarantee it remains implementable.

Wording

o Constant expressions [expr.const]

An expression E is a core constant expression unless the evaluation of E, following the rules of
the abstract machine[intro.execution], would evaluate one of the following:

[...]
+ a conversion from type-cvvoid+to-a-pointer-to-objecttype a prvalue P of type "pointer

to cv void” to a pointer-to-object type T unless P points to an object whose type is similar
toT;

* areinterpret_cast[expr.reinterpret.cast];

+ a modification of an object[expr.ass,expr.post.increxpr.pre.incr] unless it is applied to a
non-volatile Ivalue of literal type that refers to a non-volatile object whose lifetime began
within the evaluation of E;

Feature test macro

[Editor’s note: In [tab:cpp.predefined.ft], bump the value of__cpp_constexpr to the date of
adoption] .
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