
On the ignorability of standard attributes
Timur Doumler (papers@timur.audio)

Document #: P2552R3
Date: 2023-06-14
Project: Programming Language C++
Audience: Evolution Working Group, Core Working Group

Abstract

There is a general notion in C++ that standard attributes should be ignorable. However,
currently there does not seem to be a common understanding of what “ignorable“ means, and the
C++20 Standard itself is ambiguous on this matter. We consider three aspects of ignorability:
syntactic ignorability, semantic ignorability, and the behaviour of __has_cpp_attribute. We
discuss where and how the C++20 Standard is underspecified in all three aspects and why
that is problematic, survey existing implementation practice, and propose the Three Rules of
Ignorability as language design guidelines going forward. Finally, we propose wording to specify
the Third Rule of Ignorability (behaviour of __has_cpp_attribute) in the C++ Standard;
wording for the other two Rules has already been added for C++23 via Core Issues.

1 Motivation
The C++20 Standard says the following about the ignorability of attributes ([dcl.attr.grammar]/6):

For an attribute-token (including an attribute-scoped-token) not specified in this document,
the behavior is implementation-defined. Any attribute-token that is not recognized by the
implementation is ignored.

This wording is ambiguous. It is not clear at all whether the intent is to allow the implementation
to ignore any attribute-token not specified in this document (i.e. only non-standard attributes), or
any attribute-token, including those specified in this document (i.e. including standard attributes).
This ambiguity is a known defect: there is a Core issue [CWG2538] and a recent NB comment (GB
9.12.1p6).
Standard attributes are a feature shared between C and C++. The current C23 draft says:

A strictly conforming program using a standard attribute remains strictly conforming in the
absence of that attribute. [...] Standard attributes specified by this document can be parsed
but ignored by an implementation without changing the semantics of a correct program; the
same is not true for attributes not specified by this document.

It is clear from the C wording that the intent is for standard attributes to be ignorable, however
it is not entirely clear what that means: “parse but ignore” implies that the compiler needs to
at least parse them (i.e. it cannot treat a standard attribute as token soup). So the C standard
might be talking about a different kind of ignorability than the C++ standard does (ignoring the
attribute-token).
Before we can try to fix the defect in the C++ wording, we need to answer two questions:

1

mailto:papers@timur.audio

— Should an implementation be allowed to ignore a standard attribute?

— What does it mean to ignore a standard attribute?

We will start by defining what ignore means. There are different properties of standard attributes
that could or could not be declared ignorable, with different consequences for the standard. In
particular, we can draw a distinction between syntactic ignorability (i.e., ignoring the form of
the argument clause, the attribute’s appertainment, and so forth) and semantic ignorability (i.e.,
ignoring the effect that the attribute would have on the program).
Whether standard attributes are syntactically ignorable is a matter of contention. At the heart
of the issue is the question whether a compiler is required to properly parse a standard attribute
(which includes syntax-checking the argument clause, appertainment, and so forth) even if it then
does not implement any semantics for that attribute.
On the other hand, it is uncontroversial that attributes are meant to be semantically ignorable.
However, we have a problem here as well: it is not quite clear what semantic ignorability means
exactly. Until and including C++20, the principle of semantic ignorability is some kind of gentlemens’
agreement that originated in the standardisation of attribute syntax for C++11 [N2761]. This
agreement, however, is not codified anywhere. This guideline currently exists only implicitly and
can be interpreted in different ways. Such manifest ambiguity is anathema to sound and consistent
language design.
Finally, the behaviour of __has_cpp_attribute is ambiguous as well. In particular, it is unclear
whether __has_cpp_attribute should return a positive value for a standard attribute if the compiler
is aware of the attribute and can parse it correctly, but does not implement any useful semantics
for it. There is current implementation divergence on this point, so the standard should specify the
correct behaviour.
In this paper, we propose the Three Rules of Ignorability, resolving all of the above ambiguities for
standard attributes.

2 Syntactic ignorability

2.1 The status quo

2.1.1 Argument clause

The C++ grammar defines the attribute-argument-clause of an attribute to have the form:
(balanced-token-seqopt)

where balanced-token-seq is any token sequence with balanced parentheses, square brackets, and
curly braces. This base grammar allows for a wide variety of possible arguments for standard
attributes. It is up to the specification of each individual attribute to constrain the grammar for its
arguments further ([dcl.attr.grammar]/4):

[...] The attribute-token determines additional requirements on the attribute-argument-
clause (if any).

Every standard attribute specifies explicitly whether it can have an argument clause, whether this
argument clause is optional or mandatory, and what form the argument clause shall have, for
example in [dcl.attr.noreturn/1]:

The attribute-token noreturn specifies that a function does not return. No attribute-argument-
clause shall be present.

or in [dcl.attr.deprecated]/1:

2

The attribute-token deprecated can be used to mark names and entities whose use is still
allowed, but is discouraged for some reason. An attribute-argument-clause may be present
and, if present, it shall have the form:
(string-literalopt)

On the one hand, this wording is all normative; it therefore seems that a program violating these
requirements should be ill-formed, and a conforming compiler must emit a diagnostic. On the other
hand, due to the ambiguity in [dcl.attr.grammar]/6, it is unclear whether [dcl.attr.grammar]/6
overrides these requirements and allows an implementation to completely ignore the argument
clause:

[[noreturn("cannot have a reason")]] int f(); // Ill-formed or ignorable?
[[deprecated(not_a_string)]] int g(); // Ill-formed or ignorable?
[[nodiscard(this?is!a:balanced%{token[sequence]})]] int h(); // Ill-formed or ignorable?

Existing practice

Clang, GCC, ICC, and MSVC are all very good at diagnosing syntax errors in the argument
clause. We tried many different ill-formed constructions like the above and got a diagnostic on
all four compilers in all cases. The only questionable (but still conforming) case we found was
[[carries_dependency(some_argument)]] on GCC, where the emitted diagnostic said that the
carries_dependency attribute is not supported, but did not specifically call out the syntax error
in the argument clause.

2.1.2 Appertainment

On the appertainment of a standard attribute, [dcl.attr.grammar]/5 says:

Each attribute-specifier-seq is said to appertain to some entity or statement, identified by the
syntactic context where it appears. If an attribute-specifier-seq that appertains to some entity
or statement contains an attribute or alignment-specifier that is not allowed to apply to that
entity or statement, the program is ill-formed.

Every standard attribute has normative requirements on appertainment. For example, noreturn
“may be applied to a function or a lambda call operator” ([dcl.attr.noreturn]/1); no_unique_address
“may appertain to a non-static data member other than a bit-field” ([dcl.attr.nouniqueaddr]/1);
fallthrough “may be applied to a null statement” ([dcl.attr.fallthrough]/1); and so forth.
Similarly to syntax errors in the argument clause, whether [dcl.attr.grammar]/6 allows the compiler
to ignore these appertainment rules is currently ambiguous:

int main() {
[[fallthrough]] int i; // Ill-formed or ignorable?

}

Existing practice

We found that generally, Clang, GCC, ICC, and MSVC are very good at diagnosing appertainment
errors as well. But, unlike with argument clause errors, with appertainment errors we did find
some false negatives on all four compilers. For example, no compiler diagnoses [[deprecated]] or
[[maybe_unused]] on static data members, and GCC allows any standard attribute to appertain
to an empty declaration at class scope without warning:

struct X { [[nodiscard]]; }; // no diagnostic on GCC

The code triggering those false negatives, however, is typically quite obscure. Moreover, we could
not find any cases on any compiler where the failure to diagnose appertainment rules introduced a
bug or changed the behaviour of a program.

3

2.1.3 Additional syntactic requirements

Some standard attributes have additional normative syntactic requirements on top of syntactic rules
for the argument clause and appertainment. In particular, [dcl.attr.likelihood]/1 constraints which
attribute-tokens can appear in an attribute-specifier-seq:

The attribute-token likely shall not appear in an attribute-specifier-seq that contains the
attribute-token unlikely.

and ([dcl.attr.fallthrough]/1) specifies:

A fallthrough statement may only appear within an enclosing switch statement. The next
statement that would be executed after a fallthrough statement shall be a labeled statement
whose label is a case label or default label for the same switch statement and, if the fallthrough
statement is contained in an iteration statement, the next statement shall be part of the same
execution of the substatement of the innermost enclosing iteration statement. The program is
ill-formed if there is no such statement.

Just as with the other requirements, the question here is whether a program violating these syntactic
requirements is ill-formed, or whether [dcl.attr.grammar]/6 allows ignoring such violations.

Existing practice

The case of likely and unlikely appearing in the same attribute-specifier-seq is reliably diagnosed
as ill-formed by all of Clang, GCC, ICC, and MSVC. On the other hand, the additional rules for
fallthrough are not consistently diagnosed. In [dcl.attr.fallthrough]/3, the C++ standard gives a
code example that contains four syntax errors explicitly marked as such:

void f(int n) {
void g(), h(), i();
switch (n) {
case 1:
case 2:

g();
[[fallthrough]];

case 3: // warning on fallthrough discouraged
do {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
} while (false);

case 6:
do {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
} while (n--);

case 7:
while (false) {

[[fallthrough]]; // error: next statement is not part of the same substatement execution
}

case 5:
h();

case 4: // implementation may warn on fallthrough
i();
[[fallthrough]]; // error

}
}

Only ICC and Clang diagnose all four syntax errors. GCC only diagnoses the second and the fourth,
and MSVC diagnoses only the fourth.

4

2.1.4 Expression parsing and ODR-use

With attribute assume [P1774R8], we added an attribute to C++23 that contains an expression in
its argument clause. Having an attribute that includes an expression brings with it several interesting
consequences, which are likewise affected by the current ambiguity in [dcl.attr.grammar]/6.
First, to detect syntax errors inside the expression such as

void f(int i) {
[[assume(i >=)]]; // Ill-formed or ignorable?

}

the compiler has to parse expression grammar inside the attribute’s argument clause; merely treating
the argument clause as a balanced-token-sequence is not enough (it would be enough for the other
standard attributes having an argument clause, deprecated and nodiscard, since their argument is
merely a string-literal). One compiler vendor, MSVC, has told us that this is technically challenging
for them to implement (see also NB comment FR 9.12.3). On the other hand, two other vendors,
GCC and Clang, have told us that their compilers have no problem parsing expressions inside an
attribute’s argument clause, and in fact this is already existing practice for their vendor-specific
non-standard attributes. MSVC itself also does not seem to have a problem with parsing expressions
inside other constructs such as __declspec(...).
Apart from syntax errors in the expression grammar, expression parsing also involves ODR-use of
the entities in the expression, which can trigger template instantiations. If such an instantiation in
turn triggers a failing static_assert, the program would be rendered ill-formed as well:

template <typename T>
struct X {

static_assert(sizeof(T) > 1);
bool f() { return true; }

};

int main() {
[[assume(X<char>().f())]]; // Ill-formed or ignorable?

}

In addition, ODR-use can also trigger lambda capture, which is observable both at compile time
and at run time. We can even construct an example where the lambda capture has an effect on the
layout of a class:

constexpr auto f(int i) {
return sizeof([=] { [[assume(i == 0)]]; });

}

struct X {
char data[f(0)];

};

Here, sizeof(X) and therefore the ABI of struct X will depend on whether the assume is syntac-
tically ignored.
Of course, this code example is a highly contrived usage of assumptions. In real code, it is not useful
to use a variable only in an assumption, but not anywhere else in the surrounding code. So, in
real-world usage, the assumption would never end up triggering the lambda capture (and if anyone
were to write such code, they would have much bigger problems than the class layout of struct
X). Note also that changing the layout of a class through a language construct is nothing new:
[[no_unique_address]], assert, and other constructs can also trigger changes in class layout.
This possibility of affecting class layout does not cause any problems in practice as far as we know.
But we still need to define the exact behaviour: is the implementation required to ODR-use the

5

expression, therefore triggering the template instantiations and lambda captures, or may ODR-use
be skipped?
If [dcl.attr.grammar]/6 is interpreted as “only non-standard attributes can be syntactically ignored”
(following the suggested resolution of [CWG2538]), then in the template instantiation example, the
compiler must instantiate the template, and must trigger the failing static_assert (or whatever
other effects on the program the template instantiation will cause). In the lambda capture example,
the compiler must perform the lambda capture, and therefore change the layout of the class, even if
the compiler then decides to ignore the attribute semantically, i.e. not implement an assumptions
facility.
On the other hand, if [dcl.attr.grammar]/6 is interpreted as “all attributes, including standard
attributes, can be syntactically ignored”, the compiler is free to not ODR-use the entities in the
expression, not perform the template instantiations or the lambda capture, and in fact not parse
the expression at all, but to treat the entire thing as token soup, and just skip over it.
Note that the question of whether an expression must be ODR-used is in no way related to
the semantics of the assume attribute, which is entirely orthogonal. This question concerns the
design space of attributes as a whole; assume just happens to be the only standard attribute
currently containing an expression. Any attribute containing an expression would run into the
same question, such as the proposed trivially_relocatable attribute (see [P1144R5]), or a
hypothetical attribute-like syntax for Contracts (see [P2487R0]).

Existing practice

assume was added recently for C++23. GCC already implements it with the standard attribute
syntax. The other three major compilers implement the same functionality as a built-in: __assume
on MSVC and ICC, and __builtin_assume on Clang.
On all four compilers, regardless of whether the attribute syntax or the built-in syntax is used, the
expression in the argument clause is always ODR-used, and the side effects of this ODR-use (such
as lambda captures changing class layout) are always triggered. Interestingly, the ODR-use also
happens when the actual assumption is then semantically ignored by the compiler, as is the case on
Clang for expressions that have side effects. This behaviour is consistent with the interpretation
that standard attributes can be ignored only semantically, but not syntactically.

2.2 Proposed solution: the First Ignorability Rule

To clarify the specification in the Standard for syntactic ignorability of standard attributes, we
propose the following rule:

The First Ignorability Rule:
Standard attributes cannot be syntactically ignored, but must be parsed; syntax errors in the
argument clause, appertainment rules, and any additional syntactic requirements specified by
a particular standard attribute must be diagnosed; and entities in the argument clause must
be ODR-used.

Disallowing syntactic ignorability matches the original design intent of C++ attributes (according
to the authors of [N2761]). It also matches the proposed resolution of [CWG2538] and NB comment
GB 9.12.1p6, as approved by CWG. We believe that this is the choice of sound language design.
Standard attributes are not just arbitrary token sequences, even if they are semantically ignorable
(see section 3.2). We should try hard not to add optional language features on the syntax level
to the language, and we should avoid treating standard attributes as a bucket for any language
feature that we do not care about being implemented. There are a small number of standard
attributes. If we bothered to specify something in the standard, implementations should at least

6

bother to syntax-check it. This will ensure safety, predictability, portability, and consistency across
implementations. Option 1A is also broadly consistent with existing practice (see above).
With regards to parsing expressions inside an attribute, if we allow syntactic ignorability of attributes,
then a compiler is allowed to silently accept an ill-formed expression, and the code will compile and
appear to work fine; when we go to port the code to another compiler, the code will break. From a
production and maintenance perspective, that seems like a very bad idea.
With regards to ODR-using the entities inside such an expression, as discussed in detail in section
2.1.4, we believe that requiring the ODR-usage even if the assumption is semantically ignored, is
the option that is most consistent and portable. It also matches existing practice with the existing
implementations of assume. Leaving it up to the implementation whether a particular template
instantiation happens, or whether a particular lambda capture gets triggered, would introduce areas
of gratuitous non-portability to the language. We must avoid this.
We would like to remind the reader that this issue is completely orthogonal to the semantics of
assume. It concerns any hypothetical attribute or attribute-like thing that contains an expression,
which includes the proposed trivially_relocatable attribute [P1144R5] and a hypothetical
attribute-like syntax for Contracts [P2487R0].

2.2.1 Implementer concerns

Three compiler implementers voted against our recommended resolution in the EWG electronic
poll on an earlier revision of this paper, and instead preferred to allow syntactic ignorability of
standard attributes. Implementer concerns should of course always be taken seriously. In particular,
we heard from Clang that their interpretation of [dcl.attr.grammar]/6 has always been to allow
syntactic ignorability; that mandating to check the syntax of standard attributes would be an
unacceptable implementation burden in particular with regards to checking appertainment; that
no users are actually asking for this status quo to change; and that existing practice should take
priority over the original design. Interestingly, we have found that all major compilers (including
Clang) are actually very good at syntax-checking the argument clause and appertainment of all
existing standard attributes (see existing practice discussion above), so we are not sure where the
problem actually is.
Another implementer concern is MSVC’s comment that parsing expressions inside an attribute-
argument clause is technically challenging for them and that they would instead prefer to treat
them as token soup that can be skipped entirely (see discussion above). Yet another argument in
favour of allowing syntactic ignorability is that the benefits of checking syntactic requirements for
something with no semantic effect are negligible, and therefore the standard should not require it.
We do not agree with these concerns, but we include them here for the sake of completeness.

3 Semantic ignorability

3.1 The status quo

3.1.1 Design of existing standard attributes

The original paper that introduced attributes to C++ [N2761] says — somewhat vaguely — that
a standard attribute should be “something that helps but can be ignorable with little serious
side-effects”, but that paper does not mention a strict rule of semantic ignorability. The paper also
contains a list of possible future features, indicating which ones in the opinion of the authors at the
time would be good or bad candidates for a standard attribute.
The list in [N2761] contains alignas as a good candidate: alignas was initially proposed as an
attribute, but later changed to a keyword before C++11 was finalised [N3190]. The agreement
had evolved: attributes should now be features that are semantically ignorable in the strict sense,

7

i.e., their effect on the program is optional, and alignas does not fit the bill: its effects on the
alignment of an object are mandatory, not optional.
The original paper also says that attributes should appertain to declarations only, not statements,
which also changed later: likely, unlikely, fallthrough, and assume can all apply to statements
(the latter two only to null statements). What should or should not be an attribute has clearly
evolved over the years, so we should base our rules on the attributes that have been standardised so
far.

Existing practice

Which attributes are being semantically ignored in practice by today’s major compilers? Again, we
looked at the latest available versions of Clang, GCC, ICC, and MSVC. It seems that none of them
implement any semantics for carries_dependency (so perhaps we should not have standardised
carries_dependency, but that is another story).
In addition, MSVC does not implement any semantics for no_unique_address, which has the
consequence that class layout is inconsistent across different compilers on the same platform.
All other standard attributes seem to have semantically functional implementations on all major
compilers.

3.1.2 Semantic categories of existing standard attributes

All standard attributes are currently normatively specified in such a way that they are syntactically
ignorable (and therefore, all implementations described in the previous section are conforming).
However, how this ignorability is achieved in the specification of the C++ Standard varies from one
standard attribute to another. We can distinguish four different categories:

— Attributes that produce or suppress diagnostics and otherwise have no effect: deprecated,
fallthrough, maybe_unused, and nodiscard. These attributes are normatively defined to
do nothing. The desired effect is described in a section called “recommended practice”.

— Attributes that serve as optimisation hints to the compiler and otherwise have no effect:
likely, unlikely, and carries_dependency. These attributes are also defined to do nothing
and have a “recommended practice” section.

— Attributes that can turn defined behaviour into undefined behaviour: noreturn and assume.
These attributes are semantically ignorable because undefined behaviour means the implemen-
tation can do literally anything, including ignoring the effects of the attribute and compiling
and executing the program as if they were not there.

— Attributes that change the semantics of the program in an observable way. We currently have
only one such attribute: no_unique_address. This attribute is semantically ignorable because
its effect is carefully specified to be so: it introduces a potentially-overlapping subobject, i.e. a
subobject that either is or is not overlapping, depending on whether the compiler chooses to
implement or semantically ignore the attribute.

3.1.3 Challenges with defining a guideline for semantic ignorability

Unfortunately, beyond the syntax and grammar, there is currently no clear and explicit definition
of what constitutes a standard attribute, and what it means for it to be semantically ignorable. As
a result, different people have a different mental model.
Some say that semantic ignorability means that a program has the same behaviour (or identical
semantics) with or without the attribute. This characterisation is clearly wrong: it applies to only
the first two of the four categories listed above. Constructing a counterexample is easy:

8

[[noreturn]] int f() { return 0; }
int main() { return f(); }

This program returns 0 without the attribute, but has undefined behaviour with the attribute,
which means that adding the attribute can change the behaviour, and will often do so in practice.
Others say that — and this is the version we hear most often — given a well-formed program,
removing a particular attribute does not change the observable behaviour (or the semantics) of the
program. However, this characterisation too is wrong, and we can again construct a counterexample:

struct X {};
struct Y {

[[no_unique_address]] X x;
int i;

};

int main() {
return (sizeof(Y) == sizeof(int));

}

This program might return 1 with the attribute, but it will always return 0 without the attribute. How-
ever, because the compiler is not required to implement the semantic effects of no_unique_address,
the program may also return 0 with the attribute. If we add a

static_assert (sizeof(Y) == sizeof(int));

we get an even more obvious violation of the pseudo-rule above: this program might or might not
be ill-formed with the attribute, depending on whether the compiler implements it, but is definitely
ill-formed without the attribute. Therefore, the omission of the attribute can render a program
ill-formed.
If we had codified a rule for semantic ignorability earlier, we might have ended up with the rule
above (given a well-formed program, omitting an attribute does not change the behaviour/semantics
of the program). As a result, we would perhaps never have standardised no_unique_address, which
violates this rule, as an attribute; however, that ship sailed with C++20. In order to find a rule
for semantic ignorability that matches existing practice, we need to take a closer look at what it
actually means when we say that two programs have “the same semantics” or “the same behaviour”.

3.2 Proposed solution: the Second Ignorability Rule

Our proposed rule for semantic ignorability of standard attributes can be formulated as follows:

The Second Ignorability Rule:
Given a well-formed program, removing all instances of a particular standard attribute is
allowed to change the observable behaviour of the program, but only if the behaviour with
the attribute removed would have been a conforming behaviour for the original program with
the attribute present.

The standard distinguishes undefined behaviour, unspecified behaviour, and implementation-defined
behaviour. Let us call the behaviour that falls into none of these regions, i.e. the behaviour that
is fully specified by the standard and does not depend on any input parameters to the abstract
machine, the mandated behaviour of a C++ program. An example for mandated behaviour is
sizeof(char), which must evaluate to 1 on every conforming implementation.
The following statement is therefore a corollary of the Second Ignorability Rule:

Corollary:
Given a well-formed program, removing all instances of a particular standard attribute must
result in a well-formed program that exhibits the exact same mandated behaviour.

9

However, according to the Second Ignorability Rule, implementation-defined and unspecified
behaviour is allowed to change from one behaviour to another due to such a removal, as long as
both behaviours would be conforming for the original program with the attribute present. If the
program has undefined behaviour with a particular standard attribute present, we do not place any
restrictions on the behaviour of such a program; the Second Ignorability Rule does not apply in this
case.
We can now see that the Second Ignorability Rule works for all categories of standard attributes
we identified in section 3.1.2: semantically ignoring any of them does not change the mandated
behaviour of a C++ program in any way. For no_unique_address in particular, [intro.object] says:

A potentially-overlapping subobject is either:

— a base class subobject, or
— a non-static data member declared with the no_unique_address attribute.

An object has nonzero size if it

— is not a potentially-overlapping subobject, or
— is not of class type, or
— is of a class type with virtual member functions or virtual base classes, or
— has subobjects of nonzero size or unnamed bit-fields of nonzero length.

Otherwise, if the object is a base class subobject of a standard-layout class type with no
non-static data members, it has zero size. Otherwise, the circumstances under which the
object has zero size are implementation-defined.

Therefore, in the following code example,
struct X {};
struct Y {

[[no_unique_address]] X x;
int i;

};

int main() {
return (sizeof(Y) == sizeof(int));

}

the value of sizeof(Y) == sizeof(int) is implementation-defined. Either true or false are
conforming behaviours for the program with the [[no_unique_address]] attribute present, because
the attribute is defined to have optional semantics. Therefore, if we remove [[no_unique_address]]
from the above program, it is acceptable if the effect of that is that the value of the expression flips
from true to false (or even the other way around!).
Conversely, for alignas, which sits in the same space in the grammar as standard attributes, but is
not an attribute, [dcl.align]/4 says:

The alignment requirement of an entity is the strictest nonzero alignment specified by its
alignment-specifiers, if any; otherwise, the alignment-specifiers have no effect.

The effect that the alignment requirement of an entity has is fully defined by the standard: it
constitutes mandated behaviour of the program. Removing alignas from a program would change
that mandated behaviour. Therefore, alignas does not have optional semantics, and cannot be a
standard attribute.
We propose that the Second Ignorability Rule be spelled out in the C++ Standard (in [dcl.attr]).
Formally, it would only apply to the attributes that are already in the standard, and thus not add
any new information per se, as those attributes are already defined to be semantically ignorable

10

in different ways (see discussion in section 3.1.2). However, the existence of such an explicit rule
in the standard would be very helpful for codifying the intended behaviour of all future standard
attributes, too: any new attribute proposal that does not want to follow the rule would have to
carve out an explicit exception for itself. We believe that the presence of the Second Ignorability
Rule in the C++ Standard would be a strong enough deterrent for future proposals that they will
stick to it, thus leading to consistent language design. This affects not only future proposals for
new standard attributes, but potentially also other language features such as Contracts [P2521R2].
One of the possible syntaxes for contract annotations is an attribute-like syntax [P2487R0]. If we
choose this syntax, we should be consistent with attribute ignorability semantics, too. We believe
that the Second Ignorability Rule proposed here for standard attributes can be adapted to apply to
contract-checking annotations as well. Finally, we believe that the rule proposed here is compatible
with, but more precise than the rule in the C language (see section 1).

3.2.1 Alternatives

Alternatively, one could hold the position that the C++ standard is not the place to try and
constrain future evolution of the language, only to define what is and is not conforming with the
current standard. Therefore, such a rule could instead be published in a new standing document. If
this option were to be chosen, it would make most sense to create a new standing document for all
such design guidelines for new core language features, not just for attributes. However, we think
that adding the Second Ignorability Rule to the Standard itself is more appropriate.
We could also simply do nothing. This would not have an effect on the current specification of
standard attributes. But it would mean that the standard will continue to say nothing about
the semantic ignorability of standard attributes. Misunderstandings on this subject will continue,
and the discussions around what should or should not be an attribute will keep wasting precious
committee time.
We believe that doing nothing would only make sense if we decide to throw away the idea of
ignorability of attributes entirely, and consciously allow new features using attributes syntax to
modify the mandated behaviour of a program. In other words, doing nothing is the correct choice if
we want to open up the design space of attributes to any feature that could be implemented as a
keyword, but we do not want to introduce a new keyword (or contextual keyword) for. However,
this is not what standard attributes were designed for; we believe that standard attributes should be
syntactically ignorable, as described above, and non-ignorable language features (features changing
the mandated behaviour of a program) should instead consider keywords (contextual keywords
where feasible), or alternatively some other spelling, or where feasible implementation strategies
that do not involve any additions to the C++ grammar.

4 __has_cpp_attribute

4.1 The status quo

Finally, the behavior of __has_cpp_attribute as specified in the standard today is ambiguous and
should be fixed. On the one hand, the standard currently requires implementations to report a
nonzero value even for syntactically recognised, but semantically ignored attributes ([cpp.cond]/6):

For an attribute specified in this document, the value of the has-attribute-expression is
given by Table 22. For other attributes recognized by the implementation, the value is
implementation-defined.

On the other hand, the standard simultaneously does not require implementation to do that when
they do not support the attribute, without any clarification what it means to “support” an attribute
([cpp.cond]/5):

11

Each has-attribute-expression is replaced by a non-zero pp-number matching the form of
an integer-literal if the implementation supports an attribute with the name specified by
interpreting the pp-tokens, after macro expansion, as an attribute-token, and by 0 otherwise.

The wording regarding __has_cpp_attribute is therefore ambiguous. It is unclear whether
__has_cpp_attribute should return a positive value if a compiler recognise and syntactically
checks a standard attribute but then semantically ignores it.

Existing practice

The __has_cpp_attribute feature is a victim of implementation divergence. Clang and ICC both
report a positive value for __has_cpp_attribute(carries_dependency), even though they seman-
tically ignore it; however, GCC reports 0 (and emits a diagnostic that it is being ignored). MSVC is in-
consistent even with itself: it reports a positive value for __has_cpp_attribute(carries_dependency),
but 0 for __has_cpp_attribute(no_unique_address), even though it does not implement seman-
tics for either attribute.

4.2 Proposed solution: the Third Ignorability Rule

With regards to the intended behaviour of __has_cpp_attribute, we have the following two options
to disambiguate the desired behaviour:

1. Specify that __has_cpp_attribute should return a positive value for a standard attribute
only if an an implementation has a useful implementation of its semantics (GCC behaviour
for carries_dependency, MSVC behaviour for no_unique_address).

2. Specify that __has_cpp_attribute should also return a positive value for a standard attribute
if an implementation can parse it and check the syntax, even if it does not implement any
useful semantics (Clang, ICC, and MSVC behaviour for carries_dependency).

We propose option 1 as our third and final Ignorability Rule for standard attributes:

The Third Ignorability Rule:
The feature test macro for a standard attribute should return a positive value if an implemen-
tation actually implements the optional semantics of the attribute, not if it merely parses the
attribute and checks the syntax (as required by the First Ignorability Rule), despite the fact
that the latter would be a conforming implementation for any standard attribute (due to the
Second Ignorability Rule).

The motivation is as follows. For cross-platform development, partially-supported standard attributes
are often wrapped in macros like the following:

#if __has_cpp_attribute(assume)
#define ASSUME(expr) [[assume(expr)]]

#elif defined(__clang__)
#define ASSUME(expr) __builtin_assume(expr)

#elif defined(_MSC_VER) || defined(__ICC)
#define ASSUME(expr) __assume(expr)

#elif defined(__GNUC__)
#define ASSUME(expr) if (expr) {} else { __builtin_unreachable(); }

#else
#define ASSUME(expr) if (expr) {} else { *(char*)nullptr; }

#endif

In the above macro, the intention of using __has_cpp_attribute is to query whether the compiler
will attempt to optimise based on an assume attribute; if not, the functionality is delegated to

12

compiler-specific intrinsics that offer the same functionality, and if none are available, to a generic
workaround to get the desired semantics. Here is another example:

#if __has_cpp_attribute(no_unique_address)
#define NO_UNIQUE_ADDRESS [[no_unique_address]]

#elif _MSC_VER >= 1929
#define NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]

#else
#error "Overlapping subobjects are not supported by this compiler!"

#endif

In the above macro, we want to ensure that subobjects marked with NO_UNIQUE_ADDRESS are in
fact zero size. The intention of using __has_cpp_attribute is to query whether the compiler
will honour the class layout changes introduced by a no_unique_address; if not, we delegate to
a compiler-specific alternative on MSVC that is known to work starting from a certain compiler
version, or error out if the desired property is not supported by the compiler.
Such macros are widespread in cross-platform C++ code bases. In all such macros, the query is
whether the compiler implements the optional semantics of the attribute; such a query is a lot more
useful than merely querying if the compiler recognises the attribute syntactically (Option 2), as it
allows for a meaningful fallback implementation.
This issue is not unique to C++; C has a similar problem with __has_c_attribute. To our
knowledge, the direction proposed here is in line with what WG14 intends to do for __has_c_-
attribute, and we should not end up in a world where the specifications of __has_cpp_attribute
and __has_c_attribute contradict each other.
In order to implement this change, we need to do two things:

1. Explicitly allow a conforming implementation to return 0 from __has_cpp_attribute if does
not implement the optional semantics of the attribute,

2. Define what constitutes “implementing the optional semantics”.

The first one is a simple wording addition to [cpp.cond]/6 to make it implementation-defined whether
the value returned from __has_cpp_attribute is 0 or the value in the table (which allows the
former to be conforming). However, the second one is surprisingly tricky and cannot be done
as a general statement for all standard attributes; we need to look at every standard attribute
individually.
For some attributes, the desired behaviour is clear: if the attribute is meant to trigger (or suppress)
a warning, __has_cpp_attribute should return 0 if no such warning is triggered (or the warning is
not suppressed). But for other attributes, what constitutes “implementing the optional semantics”
is more vague. If an attribute is there to enable optimisations, what should happen if the compiler
does not actually perform the optimisations? What should happen if the compiler only does so with
a particular set of flags (such as -O3) but not others (such as -O0)? Should the value be different
depending on the build mode? What should happen if the “compiler” is only a frontend (such as
EDG) and does not contain a backend?
To arrive at an unambiguous and user-friendly specification for the Third Ignorability Rule, we need
to look at the Recommended practice section of every standard attribute’s specification, and add
wording to that specification giving a recommendation when the value of __has_cpp_attribute
should be 0 in a way that gives compilers enough implementation freedom to “do the right thing”
for that particular attribute so that the above macros behave as expected in cases where the answer
is not clear-cut. A positive value should communicate to the user that it the implementation making
an “honest attempt” at doing something useful with a particular standard attribute, and it is not

13

merely parsing the syntax, checking for syntax and appertainment errors, and then semantically
ignoring all instances of that attribute.
Regarding the currently existing implementation divergence, the current behaviour of __has_cpp_-
attribute on Clang, ICC, and MSVC for carries_dependency goes against the Third Ignorability
Rule, while the current behaviour on GCC for carries_dependency and on MSVC for no_unique_-
address follows the Third Ignorability Rule.

4.3 The issue with carries_dependency

The current specification of carries_dependency is defective. The note where we would have to
add wording for the Third Ignorability Rule for this attribute is [dcl.attr.depend] paragraph 3:

[Note 1: The carries_dependency attribute does not change the meaning of the program,
but might result in generation of more efficient code. — end note]

This note contains a false statement today because the attribute does change the meaning of the
program. It has been clarified by SG1 experts that adding [[carries_dependency]] to a parameter
may add a dependency-ordered before relationship that would not be present without the attribute.
This relationship may make a program that would otherwise have undefined behaviour due to a
violation of the ordering rules have defined behaviour. It is also the case that no implementation
actually implements memory order Consume, and that WG21’s current intent is to overhaul memory
order Consume (see [P0750R1]) and deprecate and remove the carries_dependency attribute.
It would be desirable to include carries_dependency in our proposed specification for the Third
Ignorability Rule, and to encourage implementations that do not use carries_dependency for
optimisations (that is, all existing implementations of C++) to return 0 from __has_cpp_-
attribute(carries_dependency). However, considering the issues with the current state of
this attribute, we decided to follow the EWG guidance and exclude this attribute from the wording
proposed in this paper.

5 Summary: the Three Rules of Ignorability
In this paper, we have shown that ignorability of standard attributes in C++20 is not well defined.
We have considered three aspects of ignorability: syntactic ignorability, semantic ignorability, and
the behaviour of __has_cpp_attribute. For each case, we highlighted where the current wording
has ambiguities, surveyed current implementation practice in the latest versions of four major C++
compilers (MSVC, GCC, Clang, and ICC), and discussed different options to resolve the existing
ambiguities. Considering the above, we propose the following Three Rules of Ignorability as a
language design guideline for all current and future standard attributes going forward:

1. Standard attributes cannot be syntactically ignored, but must be parsed; syntax errors in the
argument clause, appertainment rules, and any additional syntactic requirements specified by
a particular standard attribute must be diagnosed; and entities in the argument clause must
be ODR-used.

2. Given a well-formed program, removing all instances of a particular standard attribute is
allowed to change the observable behaviour of the program, but only if the behaviour with
the attribute removed would have been a conforming behaviour for the original program with
the attribute present.

3. The feature test macro for a standard attribute should return a positive value if an implemen-
tation actually implements the optional semantics of the attribute, not if it merely parses the
attribute and and checks the syntax, despite the fact that the latter would be a conforming
implementation for any standard attribute.

14

6 Wording already adopted for C++23
Wording for the First and the Second Ignorability Rule, fixing the ambiguities in C++20 around
syntactic and semantic ignorability, has already been added for C++23 by way of adopting Core
Issues [CWG2538] and [CWG2695], respectively. The adopted changes modify [dcl.attr.grammar]
paragraph 6 as follows:

For an attribute-token (including an attribute-scoped-token) not specified in this document,
the behavior is implementation-defined. Any; any such attribute-token that is not recognized
by the implementation is ignored.
[Note 4: A program is ill-formed if it contains an attribute specified in [dcl.attr] that violates
the rules to which entity or statement the attribute may apply or the syntax rules for the
attribute’s attribute-argument-clause, if any. — end note]
[Note 5: The attributes specified in [dcl.attr] have optional semantics: given a well-formed
program, removing all instances of any one of those attributes results in a program whose set
of possible executions ([intro.abstract]) for a given input is a subset of those of the original
program for the same input, absent implementation-defined guarantees with respect to that
attribute. — end note]

7 Proposed Wording
Wording for the Third Ignorability Rule, fixing the ambiguity of __has_cpp_attribute, has not
yet been added to the C++ Standard, so this paper proposes to do so. Our proposed changes are
relative to the Working Draft [N4944]. Modify [cpp.cond] paragraphs 5 and 6 as follows:

Each has-attribute-expression is replaced by a non-zero pp-number matching the form of
an integer-literal if the implementation supports an attribute with the name specified by
interpreting the pp-tokens, after macro expansion, as an attribute-token, and by 0 otherwise.
The program is ill-formed if the pp-tokens do not match the form of an attribute-token.
For an attribute specified in this document, it is implementation-defined whether the value
of the has-attribute-expression is 0 or is given by Table 21. For other attributes recognized by
the implementation, the value is implementation-defined.
[Note 1: It is expected that the availability of an attribute can be detected by any non-zero
result. — end note]

Modify [dcl.attr.assume] as follows:

[Note 1: The expression is potentially evaluated ([basic.def.odr]). The use of assumptions is
intended to allow implementations to analyze the form of the expression and deduce information
used to optimize the program. Implementations are not required to deduce any information
from any particular assumption. It is expected that the value of a has-attribute-expression
for the assume attribute is 0 if an implementation does not attempt to deduce any such
information from assumptions. — end note]

Modify [dcl.attr.deprecated] paragraph 4 as follows:

Recommended practice: Implementations should use the deprecated attribute to produce a
diagnostic message in case the program refers to a name or entity other than to declare it,
after a declaration that specifies the attribute. The diagnostic message should include the
text provided within the attribute-argument-clause of any deprecated attribute applied to the
name or entity. The value of a has-attribute-expression for the deprecated attribute should
be 0 unless the implementation can issue such diagnostic messages.

Modify [dcl.attr.fallthrough] paragraph 2 as follows:

15

Recommended practice: The use of a fallthrough statement should suppress a warning that an
implementation might otherwise issue for a case or default label that is reachable from another
case or default label along some path of execution. The value of a has-attribute-expression
for the fallthrough attribute should be 0 if the attribute does not cause suppression of
such warnings. Implementations should issue a warning if a fallthrough statement is not
dynamically reachable.

Modify [dcl.attr.likelihood] paragraph 2 as follows:

Recommended practice: [Note 1: The use of the likely attribute is intended to allow imple-
mentations to optimize for the case where paths of execution including it are arbitrarily more
likely than any alternative path of execution that does not include such an attribute on a
statement or label. The use of the unlikely attribute is intended to allow implementations
to optimize for the case where paths of execution including it are arbitrarily more unlikely
than any alternative path of execution that does not include such an attribute on a state-
ment or label. It is expected that the value of a has-attribute-expression for the likely and
unlikely attributes is 0 if the implementation does not attempt to use these attributes for
such optimizations. A path of execution includes a label if and only if it contains a jump to
that label. — end note]

Modify [dcl.attr.unused] paragraph 4 as follows:

Recommended practice: For an entity marked maybe_unused, implementations should not emit
a warning that the entity or its structured bindings (if any) are used or unused. For a structured
binding declaration not marked maybe_unused, implementations should not emit such a
warning unless all of its structured bindings are unused. The value of a has-attribute-expression
for the maybe_unused attribute should be 0 if the attribute does not cause suppression of
such warnings.

Modify [dcl.attr.nodiscard] paragraph 4 as follows:

Recommended practice: Appearance of a nodiscard call as a potentially-evaluated discarded-
value expression ([expr.prop]) is discouraged unless explicitly cast to void. Implementations
should issue a warning in such cases. The value of a has-attribute-expression for the nodiscard
attribute should be 0 unless the implementation can issue such warnings.

Modify [dcl.attr.noreturn] paragraph 3 as follows:

Recommended practice: Implementations should issue a warning if a function marked
[[noreturn]] might return. The value of a has-attribute-expression for the noreturn
attribute should be 0 unless the implementation can issue such warnings.

Modify [dcl.attr.nouniqueaddr] as follows:

The attribute-token no_unique_address specifies that a non-static data member is a potentially-
overlapping subobject ([intro.object]). No attribute-argument-clause shall be present. The
attribute may appertain to a non-static data member other than a bit-field.
[Note 1: The non-static data member can share the address of another non-static data member
or that of a base class, and any padding that would normally be inserted at the end of the
object can be reused as storage for other members. — end note]
Recommended practice: The value of a has-attribute-expression for the no_unique_address
attribute should be 0 for a given implementation unless this attribute can cause a potentially-
overlapping subobject to have zero size.

We propose that these changes be treated as a Defect Report.

16

Document history

— R0, 2022-02-15: Initial version.

— R1, 2022-11-15: Removed wording for syntactic and semantic ignorability (now covered by
[CWG2538] and [CWG2695], respectively); added discussion of __has_cpp_attribute; for
all three aspects of ignorability, listed options for EWG to consider.

— R2, 2023-05-19: Restructured paper; formulated the Three Rules of Ignorability as design
guidelines (following options chosen by EWG); added wording for fixing __has_cpp_attribute
as a DR.

— R3, 2023-06-14: Updated wording for fixing __has_cpp_attribute to reflect EWG and CWG
feedback; added section about carries_dependency to rationale.

Acknowledgements
We would like to thank John Lakos for his thorough review of an earlier draft of the paper, and
for contributing the idea of regions of program behaviour and the concept of mandated behaviour ;
Corentin Jabot for contributing the code example where removing a [[no_unique_address]]
attribute can cause a program to stop compiling; Aaron Ballman, Erich Keane, Jens Maurer, and
Peter Brett for their valuable comments on earlier drafts of this paper; Daveed Vandevoorde for
reviewing the wording for the Third Ignorability Rule; and Michael Spencer for clarifying the issues
with carries_dependency.

References

[CWG2538] Jens Maurer. Core issue 2538. Can standard attributes be syntactically ignored?
https://cplusplus.github.io/CWG/issues/2538.html, 2022-03-26.

[CWG2695] Timur Doumler. Core issue 2695. Semantic ignorability of attributes. https://
cplusplus.github.io/CWG/issues/2695.html, 2023-02-09.

[N2761] Jens Maurer and Michael Wong. Towards support for attributes in C++ (Revision
6). http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf, 2008-
09-18.

[N3190] Lawrence Crowl and Daveed Vandevoorde. C and C++ Alignment Compatibility. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3190.htm, 2008-09-18.

[N4944] Thomas Köppe. Working Draft, Standard for Programming Language C++. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4944.pdf, 2023-03-19.

[P0750R1] JF Bastien and Paul E. McKenney. Consume. https://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2018/p0750r1.html, 2018-02-11.

[P1144R5] Arthur O’Dwyer. Object relocation in terms of move plus destroy. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html, 2020-03-01.

[P1774R8] Timur Doumler. Portable assumptions. https://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2022/p1774r8.pdf, 2022-06-14.

[P2487R0] Andrzej Krzemieński. Attribute-like syntax for contract annotations. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html, 2021-11-12.

17

https://cplusplus.github.io/CWG/issues/2538.html
https://cplusplus.github.io/CWG/issues/2695.html
https://cplusplus.github.io/CWG/issues/2695.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3190.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3190.htm
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4944.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/n4944.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0750r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0750r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html

[P2521R2] Gašper Ažman, Joshua Berne, Bronek Kozicki, Andrzej Krzemieński, Ryan McDougall,
and Caleb Sunstrum. Contract support – Working paper. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2022/p2521r2.html, 2022-03-15.

18

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html

	1 Motivation
	2 Syntactic ignorability
	3 Semantic ignorability
	4 __has_cpp_attribute
	5 Summary: the Three Rules of Ignorability
	6 Wording already adopted for C++23
	7 Proposed Wording
	References

