活动介绍
file-type

TSQL查询技术:mssql-queries存储库解析

ZIP文件

下载需积分: 9 | 2KB | 更新于2025-08-17 | 54 浏览量 | 0 下载量 举报 收藏
download 立即下载
标题中提及的“mssql-queries:SQL查询存储库”暗示了一个专门针对Microsoft SQL Server (MSSQL) 的查询集合或代码库。SQL查询是用于从关系数据库中检索数据的语句。一个查询存储库是集中存放各种数据库查询的仓库,通常用于归档、重用或共享。 描述中进一步强调了内容与SQL查询相关性,通过提及“mssql查询”和“SQL查询存储库”,我们知道该存储库专注于针对MSSQL数据库平台的查询代码。在数据库管理中,编写有效的SQL查询是核心技能之一,它允许数据库管理员和开发者执行数据检索、更新、插入和删除等多种操作。 由于提及的标签是“TSQL”,我们可以推断这个查询存储库与T-SQL(Transact-SQL)相关。T-SQL是微软实现的SQL方言,专为SQL Server设计。它扩展了标准SQL的语法和功能,以包括本地编程语言特性,如变量、条件语句、循环等。T-SQL的掌握对于熟练运用MSSQL至关重要。 从提供的文件名称“mssql-queries-main”可以推测,该压缩包文件是核心或主要的查询集。它可能包含了多个文件,每个文件包含了不同种类或针对不同数据表的查询。这样的命名方式表明存储库的组织可能较为系统化,便于用户根据需要检索和使用特定的查询。 详细知识点如下: 1. SQL Server介绍: SQL Server是Microsoft开发的一个关系型数据库管理系统(RDBMS),广泛应用于企业级数据存储、处理和分析。它支持T-SQL作为其查询和编程语言。 2. SQL基础: 结构化查询语言(SQL)是用于管理关系数据库的标准编程语言。它包括一系列用于数据查询(SELECT)、数据操作(INSERT, UPDATE, DELETE)、数据定义(CREATE, ALTER, DROP)和数据控制(GRANT, REVOKE)的命令。 3. T-SQL高级特性: - 变量声明与赋值:T-SQL允许在查询和存储过程内部声明和操作变量。 - 控制流语句:包括条件语句(IF...ELSE)、循环语句(WHILE, FOR)等。 - 错误处理:使用TRY...CATCH结构处理执行过程中的错误。 - 游标:用于处理数据集中每一行数据的T-SQL结构。 - 存储过程和函数:T-SQL允许编写可重复使用的代码块。 4. 数据库设计概念: - 数据库规范化:数据库结构设计时的一个概念,旨在减少数据冗余和依赖。 - 数据完整性:确保数据库中数据的准确性和一致性,如通过主键约束、外键约束实现。 - 索引优化:索引可以提高数据库查询的性能,需要了解如何为数据库表创建和管理索引。 5. SQL查询优化: - 查询计划分析:检查执行特定SQL查询时数据库引擎的处理方式,以优化查询。 - SQL Server索引优化策略:了解如何合理设计和使用索引来加快查询速度。 - SQL Server查询性能监控:使用系统视图、动态管理视图监控和分析查询性能。 6. SQL Server管理工具: - SQL Server Management Studio (SSMS):用于访问、配置、管理和开发所有SQL Server组件的图形界面工具。 - Transact-SQL脚本编写:编写、调试和执行T-SQL脚本,以管理数据库对象和执行数据库任务。 7. 数据库安全与维护: - 访问控制:使用角色和权限管理数据库访问。 - 备份与恢复:制定备份计划和灾难恢复策略,保证数据安全。 - 数据库升级与迁移:数据库版本更新或从其他数据库系统迁移到SQL Server。 通过以上的知识点,可以对mssql-queries存储库有一个全面的认识,其中包含的查询代码可以用于多种场景,包括数据查询、数据处理、数据库维护以及性能优化等。学习和使用这些查询能够提高数据库操作的效率和安全性。

相关推荐

filetype

""" title: SQL Server Access author: MENG author_urls: - https://github.com/mengvision description: A tool for reading database information and executing SQL queries, supporting multiple databases such as MySQL, PostgreSQL, SQLite, and Oracle. It provides functionalities for listing all tables, describing table schemas, and returning query results in CSV format. A versatile DB Agent for seamless database interactions. required_open_webui_version: 0.5.4 requirements: pymysql, sqlalchemy, cx_Oracle version: 0.1.6 licence: MIT # Changelog ## [0.1.6] - 2025-03-11 ### Added - Added `get_table_indexes` method to retrieve index information for a specific table, supporting MySQL, PostgreSQL, SQLite, and Oracle. - Enhanced metadata capabilities by providing detailed index descriptions (e.g., index name, columns, and type). - Improved documentation to include the new `get_table_indexes` method and its usage examples. - Updated error handling in `get_table_indexes` to provide more detailed feedback for unsupported database types. ## [0.1.5] - 2025-01-20 ### Changed - Updated `list_all_tables` and `table_data_schema` methods to accept `db_name` as a function parameter instead of using `self.valves.db_name`. - Improved flexibility by decoupling database name from class variables, allowing dynamic database selection at runtime. ## [0.1.4] - 2025-01-17 ### Added - Added support for Oracle database using `cx_Oracle` driver. - Added dynamic engine creation in each method to ensure fresh database connections for every operation. - Added support for Oracle-specific queries in `list_all_tables` and `table_data_schema` methods. ### Changed - Moved `self._get_engine()` from `__init__` to individual methods for better flexibility and tool compatibility. - Updated `_get_engine` method to support Oracle database connection URL. - Improved `table_data_schema` method to handle Oracle-specific column metadata. ### Fixed - Fixed potential connection issues by ensuring each method creates its own database engine. - Improved error handling for Oracle-specific queries and edge cases. ## [0.1.3] - 2025-01-17 ### Added - Added support for multiple database types (e.g., MySQL, PostgreSQL, SQLite) using SQLAlchemy. - Added configuration flexibility through environment variables or external configuration files. - Enhanced query security with stricter validation and SQL injection prevention. - Improved error handling with detailed exception messages for better debugging. ### Changed - Replaced `pymysql` with SQLAlchemy for broader database compatibility. - Abstracted database connection logic into a reusable `_get_engine` method. - Updated `table_data_schema` method to support multiple database types. ### Fixed - Fixed potential SQL injection vulnerabilities in query execution. - Improved handling of edge cases in query validation and execution. ## [0.1.2] - 2025-01-16 ### Added - Added support for specifying the database port with a default value of `3306`. - Abstracted database connection logic into a reusable `_get_connection` method. ## [0.1.1] - 2025-01-16 ### Added - Support for additional read-only query types: `SHOW`, `DESCRIBE`, `EXPLAIN`, and `USE`. - Enhanced query validation to block sensitive keywords (e.g., `INSERT`, `UPDATE`, `DELETE`, `CREATE`, `DROP`, `ALTER`). ### Fixed - Improved handling of queries starting with `WITH` (CTE queries). - Fixed case sensitivity issues in query validation. ## [0.1.0] - 2025-01-09 ### Initial Release - Basic functionality for listing tables, describing table schemas, and executing `SELECT` queries. - Query results returned in CSV format. """ import os from typing import List, Dict, Any from pydantic import BaseModel, Field import re from sqlalchemy import create_engine, text from sqlalchemy.engine.base import Engine from sqlalchemy.exc import SQLAlchemyError class Tools: class Valves(BaseModel): db_host: str = Field( default="localhost", description="The host of the database. Replace with your own host.", ) db_user: str = Field( default="admin", description="The username for the database. Replace with your own username.", ) db_password: str = Field( default="admin", description="The password for the database. Replace with your own password.", ) db_name: str = Field( default="db", description="The name of the database. Replace with your own database name.", ) db_port: int = Field( default=3306, # Oracle 默认端口 description="The port of the database. Replace with your own port.", ) db_type: str = Field( default="mysql", description="The type of the database (e.g., mysql, postgresql, sqlite, oracle).", ) def __init__(self): """ Initialize the Tools class with the credentials for the database. """ print("Initializing database tool class") self.citation = True self.valves = Tools.Valves() def _get_engine(self) -> Engine: """ Create and return a database engine using the current configuration. """ if self.valves.db_type == "mysql": db_url = f"mysql+pymysql://{self.valves.db_user}:{self.valves.db_password}@{self.valves.db_host}:{self.valves.db_port}/{self.valves.db_name}" elif self.valves.db_type == "postgresql": db_url = f"postgresql://{self.valves.db_user}:{self.valves.db_password}@{self.valves.db_host}:{self.valves.db_port}/{self.valves.db_name}" elif self.valves.db_type == "sqlite": db_url = f"sqlite:///{self.valves.db_name}" elif self.valves.db_type == "oracle": db_url = f"oracle+cx_oracle://{self.valves.db_user}:{self.valves.db_password}@{self.valves.db_host}:{self.valves.db_port}/?service_name={self.valves.db_name}" else: raise ValueError(f"Unsupported database type: {self.valves.db_type}") return create_engine(db_url) def list_all_tables(self, db_name: str) -> str: """ List all tables in the database. :param db_name: The name of the database. :return: A string containing the names of all tables. """ print("Listing all tables in the database") engine = self._get_engine() # 动态创建引擎 try: with engine.connect() as conn: if self.valves.db_type == "mysql": result = conn.execute(text("SHOW TABLES;")) elif self.valves.db_type == "postgresql": result = conn.execute( text( "SELECT table_name FROM information_schema.tables WHERE table_schema = 'public';" ) ) elif self.valves.db_type == "sqlite": result = conn.execute( text("SELECT name FROM sqlite_master WHERE type='table';") ) elif self.valves.db_type == "oracle": result = conn.execute(text("SELECT table_name FROM user_tables;")) else: return "Unsupported database type." tables = [row[0] for row in result.fetchall()] if tables: return ( "Here is a list of all the tables in the database:\n\n" + "\n".join(tables) ) else: return "No tables found." except SQLAlchemyError as e: return f"Error listing tables: {str(e)}" def get_table_indexes(self, db_name: str, table_name: str) -> str: """ Get the indexes of a specific table in the database. :param db_name: The name of the database. :param table_name: The name of the table. :return: A string describing the indexes of the table. """ print(f"Getting indexes for table: {table_name}") engine = self._get_engine() try: key, cloumn = 0, 1 with engine.connect() as conn: if self.valves.db_type == "mysql": query = text(f"SHOW INDEX FROM {table_name}") key, cloumn = 2, 4 elif self.valves.db_type == "postgresql": query = text( """ SELECT indexname, indexdef FROM pg_indexes WHERE tablename = :table_name; """ ) elif self.valves.db_type == "sqlite": query = text( """ PRAGMA index_list(:table_name); """ ) elif self.valves.db_type == "oracle": query = text( """ SELECT index_name, column_name FROM user_ind_columns WHERE table_name = :table_name; """ ) else: return "Unsupported database type." result = conn.execute(query) indexes = result.fetchall() if not indexes: return f"No indexes found for table: {table_name}" description = f"Indexes for table '{table_name}':\n" for index in indexes: description += f"- {index[key]}: {index[cloumn]}\n" return description # result = conn.execute(query) # description = result.fetchall() # if not description: # return f"No indexes found for table: {table_name}" # column_names = result.keys() # description = f"Query executed successfully. Below is the actual result of the query {query} running against the database in CSV format:\n\n" # description += ",".join(column_names) + "\n" # for row in description: # description += ",".join(map(str, row)) + "\n" # return description except SQLAlchemyError as e: return f"Error getting indexes: {str(e)}" def table_data_schema(self, db_name: str, table_name: str) -> str: """ Describe the schema of a specific table in the database, including column comments. :param db_name: The name of the database. :param table_name: The name of the table to describe. :return: A string describing the data schema of the table. """ print(f"Database: {self.valves.db_name}") print(f"Describing table: {table_name}") engine = self._get_engine() # 动态创建引擎 try: with engine.connect() as conn: if self.valves.db_type == "mysql": query = text( " SELECT COLUMN_NAME, COLUMN_TYPE, IS_NULLABLE, COLUMN_KEY, COLUMN_COMMENT " " FROM INFORMATION_SCHEMA.COLUMNS " f" WHERE TABLE_SCHEMA = '{self.valves.db_name}' AND TABLE_NAME = '{table_name}';" ) elif self.valves.db_type == "postgresql": query = text( """ SELECT column_name, data_type, is_nullable, column_default, '' FROM information_schema.columns WHERE table_name = :table_name; """ ) elif self.valves.db_type == "sqlite": query = text("PRAGMA table_info(:table_name);") elif self.valves.db_type == "oracle": query = text( """ SELECT column_name, data_type, nullable, data_default, comments FROM user_tab_columns LEFT JOIN user_col_comments ON user_tab_columns.table_name = user_col_comments.table_name AND user_tab_columns.column_name = user_col_comments.column_name WHERE user_tab_columns.table_name = :table_name; """ ) else: return "Unsupported database type." # result = conn.execute( # query, {"db_name": db_name, "table_name": table_name} # ) result = conn.execute(query) columns = result.fetchall() if not columns: return f"No such table: {table_name}" description = ( f"Table '{table_name}' in the database has the following columns:\n" ) for column in columns: if self.valves.db_type == "sqlite": column_name, data_type, is_nullable, _, _, _ = column column_comment = "" elif self.valves.db_type == "oracle": ( column_name, data_type, is_nullable, data_default, column_comment, ) = column else: ( column_name, data_type, is_nullable, column_key, column_comment, ) = column description += f"- {column_name} ({data_type})" if is_nullable == "YES" or is_nullable == "Y": description += " [Nullable]" if column_key == "PRI": description += " [Primary Key]" if column_comment: description += f" [Comment: {column_comment}]" description += "\n" return description except SQLAlchemyError as e: return f"Error describing table: {str(e)}" def execute_read_query(self, query: str) -> str: """ Execute a read query and return the result in CSV format. :param query: The SQL query to execute. :return: A string containing the result of the query in CSV format. """ print(f"Executing query: {query}") normalized_query = query.strip().lower() if not re.match( r"^\s*(select|with|show|describe|desc|explain|use)\s", normalized_query ): return "Error: Only read-only queries (SELECT, WITH, SHOW, DESCRIBE, EXPLAIN, USE) are allowed. CREATE, DELETE, INSERT, UPDATE, DROP, and ALTER operations are not permitted." sensitive_keywords = [ "insert", "update", "delete", "create", "drop", "alter", "truncate", "grant", "revoke", "replace", ] for keyword in sensitive_keywords: if re.search(rf"\b{keyword}\b", normalized_query): return f"Error: Query contains a sensitive keyword '{keyword}'. Only read operations are allowed." engine = self._get_engine() # 动态创建引擎 try: with engine.connect() as conn: result = conn.execute(text(query)) rows = result.fetchall() if not rows: return "No data returned from query." column_names = result.keys() csv_data = f"Query executed successfully. Below is the actual result of the query {query} running against the database in CSV format:\n\n" csv_data += ",".join(column_names) + "\n" for row in rows: csv_data += ",".join(map(str, row)) + "\n" return csv_data except SQLAlchemyError as e: return f"Error executing query: {str(e)}" 将上面的工具连接到Microsoft sql server

龙窑溪
  • 粉丝: 42
上传资源 快速赚钱