活动介绍

"C:\Program Files\Java\jdk1.8.0_281\bin\java.exe" "-javaagent:D:\新建文件夹 (2)\IDEA\idea\IntelliJ IDEA 2019.3.3\lib\idea_rt.jar=59342" -Dfile.encoding=UTF-8 -classpath "C:\Program Files\Java\jdk1.8.0_281\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\cldrdata.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\jaccess.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\jfxrt.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\nashorn.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\sunec.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\sunjce_provider.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\sunpkcs11.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\ext\zipfs.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\javaws.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\jce.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\jfxswt.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\management-agent.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\resources.jar;C:\Program Files\Java\jdk1.8.0_281\jre\lib\rt.jar;D:\carspark\out\production\carspark;C:\Users\wyatt\.ivy2\cache\org.scala-lang\scala-library\jars\scala-library-2.12.10.jar;C:\Users\wyatt\.ivy2\cache\org.scala-lang\scala-reflect\jars\scala-reflect-2.12.10.jar;C:\Users\wyatt\.ivy2\cache\org.scala-lang\scala-library\srcs\scala-library-2.12.10-sources.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\accessors-smart-1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\activation-1.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\aircompressor-0.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\algebra_2.12-2.0.0-M2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\antlr-runtime-3.5.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\antlr4-runtime-4.8-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\aopalliance-1.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\aopalliance-repackaged-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arpack_combined_all-0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arrow-format-2.0.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arrow-memory-core-2.0.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arrow-memory-netty-2.0.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\audience-annotations-0.5.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\automaton-1.11-8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\avro-1.8.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\avro-ipc-1.8.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\avro-mapred-1.8.2-hadoop2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\bonecp-0.8.0.RELEASE.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\breeze-macros_2.12-1.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\breeze_2.12-1.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\cats-kernel_2.12-2.0.0-M4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\chill-java-0.9.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\chill_2.12-0.9.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-beanutils-1.9.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-cli-1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-codec-1.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-collections-3.2.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-compiler-3.0.16.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-compress-1.20.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-configuration2-2.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-crypto-1.1.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-daemon-1.0.13.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-dbcp-1.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-httpclient-3.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-io-2.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-lang-2.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-lang3-3.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-logging-1.1.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-math3-3.4.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-net-3.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-pool-1.5.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\commons-text-1.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\compress-lzf-1.0.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\core-1.1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\curator-client-2.13.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\curator-framework-2.13.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\curator-recipes-2.13.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\datanucleus-api-jdo-4.2.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\datanucleus-core-4.1.17.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\datanucleus-rdbms-4.1.19.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\derby-10.12.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\dnsjava-2.1.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\dropwizard-metrics-hadoop-metrics2-reporter-0.1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\ehcache-3.3.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\flatbuffers-java-1.9.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\generex-1.0.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\geronimo-jcache_1.0_spec-1.0-alpha-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\gson-2.2.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\guava-14.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\guice-4.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\guice-servlet-4.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-annotations-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-auth-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-common-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-hdfs-client-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-mapreduce-client-common-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-mapreduce-client-core-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-mapreduce-client-jobclient-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-api-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-client-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-common-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-registry-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-server-common-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hadoop-yarn-server-web-proxy-3.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\HikariCP-2.5.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-beeline-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-cli-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-common-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-exec-2.3.7-core.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-jdbc-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-llap-common-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-metastore-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-serde-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-service-rpc-3.1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-shims-0.23-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-shims-common-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-shims-scheduler-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-storage-api-2.7.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hive-vector-code-gen-2.3.7.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hk2-api-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hk2-locator-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\hk2-utils-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\htrace-core4-4.1.0-incubating.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\httpclient-4.5.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\httpcore-4.4.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\istack-commons-runtime-3.0.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\ivy-2.4.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-annotations-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-core-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-core-asl-1.9.13.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-databind-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-dataformat-yaml-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-datatype-jsr310-2.11.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-jaxrs-base-2.9.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-jaxrs-json-provider-2.9.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-mapper-asl-1.9.13.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-module-jaxb-annotations-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-module-paranamer-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jackson-module-scala_2.12-2.10.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.activation-api-1.2.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.annotation-api-1.3.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.inject-2.6.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.servlet-api-4.0.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.validation-api-2.0.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.ws.rs-api-2.1.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jakarta.xml.bind-api-2.3.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\janino-3.0.16.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\javassist-3.25.0-GA.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\javax.inject-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\javax.jdo-3.2.0-m3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\javolution-5.5.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jaxb-api-2.2.11.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jaxb-runtime-2.3.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jcip-annotations-1.0-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jcl-over-slf4j-1.7.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jdo-api-3.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-client-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-common-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-container-servlet-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-container-servlet-core-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-hk2-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-media-jaxb-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jersey-server-2.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\JLargeArrays-1.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jline-2.14.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\joda-time-2.10.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jodd-core-3.5.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jpam-1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json-1.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json-smart-2.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json4s-ast_2.12-3.7.0-M5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json4s-core_2.12-3.7.0-M5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json4s-jackson_2.12-3.7.0-M5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\json4s-scalap_2.12-3.7.0-M5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jsp-api-2.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jsr305-3.0.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jta-1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\JTransforms-3.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\jul-to-slf4j-1.7.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-admin-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-client-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-common-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-core-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-crypto-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-identity-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-server-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-simplekdc-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerb-util-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-asn1-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-config-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-pkix-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-util-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kerby-xdr-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kryo-shaded-4.0.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-client-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-admissionregistration-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-apiextensions-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-apps-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-autoscaling-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-batch-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-certificates-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-common-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-coordination-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-core-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-discovery-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-events-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-extensions-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-metrics-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-networking-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-policy-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-rbac-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-scheduling-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-settings-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\kubernetes-model-storageclass-4.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\leveldbjni-all-1.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\libfb303-0.9.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\libthrift-0.12.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\log4j-1.2.17.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\logging-interceptor-3.12.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\lz4-java-1.7.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\machinist_2.12-0.6.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\macro-compat_2.12-1.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\mesos-1.4.0-shaded-protobuf.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-core-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-graphite-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-jmx-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-json-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\metrics-jvm-4.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\minlog-1.3.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\netty-all-4.1.51.Final.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\nimbus-jose-jwt-4.41.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\objenesis-2.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\okhttp-2.7.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\okhttp-3.12.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\okio-1.14.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\opencsv-2.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\orc-core-1.5.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\orc-mapreduce-1.5.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\orc-shims-1.5.12.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\oro-2.0.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\osgi-resource-locator-1.0.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\paranamer-2.8.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-column-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-common-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-encoding-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-format-2.4.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-hadoop-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\parquet-jackson-1.10.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\protobuf-java-2.5.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\py4j-0.10.9.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\pyrolite-4.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\re2j-1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\RoaringBitmap-0.9.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-collection-compat_2.12-2.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-compiler-2.12.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-library-2.12.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-parser-combinators_2.12-1.1.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-reflect-2.12.10.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\scala-xml_2.12-1.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\shapeless_2.12-2.3.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\shims-0.9.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\slf4j-api-1.7.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\slf4j-log4j12-1.7.30.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\snakeyaml-1.24.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\snappy-java-1.1.8.2.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-catalyst_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-core_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-graphx_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-hive-thriftserver_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-hive_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-kubernetes_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-kvstore_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-launcher_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-mesos_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-mllib-local_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-mllib_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-network-common_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-network-shuffle_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-repl_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-sketch_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-sql_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-streaming_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-tags_2.12-3.1.1-tests.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-tags_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-unsafe_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spark-yarn_2.12-3.1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spire-macros_2.12-0.17.0-M1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spire-platform_2.12-0.17.0-M1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spire-util_2.12-0.17.0-M1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\spire_2.12-0.17.0-M1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\ST4-4.0.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\stax-api-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\stax2-api-3.1.4.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\stream-2.9.6.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\super-csv-2.2.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\threeten-extra-1.5.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\token-provider-1.0.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\transaction-api-1.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\univocity-parsers-2.9.1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\velocity-1.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\woodstox-core-5.0.3.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\xbean-asm7-shaded-4.15.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\xz-1.5.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\zjsonpatch-0.3.0.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\zookeeper-3.4.14.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\zstd-jni-1.4.8-1.jar;D:\spark\spark-3.1.1-bin-hadoop3.2\jars\arrow-vector-2.0.0.jar" car.LoadModelRideHailing Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties 25/06/08 17:05:07 INFO SparkContext: Running Spark version 3.1.1 25/06/08 17:05:07 INFO ResourceUtils: ============================================================== 25/06/08 17:05:07 INFO ResourceUtils: No custom resources configured for spark.driver. 25/06/08 17:05:07 INFO ResourceUtils: ============================================================== 25/06/08 17:05:07 INFO SparkContext: Submitted application: LoadModelRideHailing 25/06/08 17:05:07 INFO ResourceProfile: Default ResourceProfile created, executor resources: Map(cores -> name: cores, amount: 1, script: , vendor: , memory -> name: memory, amount: 1024, script: , vendor: , offHeap -> name: offHeap, amount: 0, script: , vendor: ), task resources: Map(cpus -> name: cpus, amount: 1.0) 25/06/08 17:05:07 INFO ResourceProfile: Limiting resource is cpu 25/06/08 17:05:07 INFO ResourceProfileManager: Added ResourceProfile id: 0 25/06/08 17:05:07 INFO SecurityManager: Changing view acls to: wyatt 25/06/08 17:05:07 INFO SecurityManager: Changing modify acls to: wyatt 25/06/08 17:05:07 INFO SecurityManager: Changing view acls groups to: 25/06/08 17:05:07 INFO SecurityManager: Changing modify acls groups to: 25/06/08 17:05:07 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(wyatt); groups with view permissions: Set(); users with modify permissions: Set(wyatt); groups with modify permissions: Set() 25/06/08 17:05:07 INFO Utils: Successfully started service 'sparkDriver' on port 59361. 25/06/08 17:05:07 INFO SparkEnv: Registering MapOutputTracker 25/06/08 17:05:07 INFO SparkEnv: Registering BlockManagerMaster 25/06/08 17:05:08 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 25/06/08 17:05:08 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 25/06/08 17:05:08 INFO SparkEnv: Registering BlockManagerMasterHeartbeat 25/06/08 17:05:08 INFO DiskBlockManager: Created local directory at C:\Users\wyatt\AppData\Local\Temp\blockmgr-8fe065e2-024c-4e2f-8662-45d2fe3de444 25/06/08 17:05:08 INFO MemoryStore: MemoryStore started with capacity 1899.0 MiB 25/06/08 17:05:08 INFO SparkEnv: Registering OutputCommitCoordinator 25/06/08 17:05:08 INFO Utils: Successfully started service 'SparkUI' on port 4040. 25/06/08 17:05:08 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://windows10.microdone.cn:4040 25/06/08 17:05:08 INFO Executor: Starting executor ID driver on host windows10.microdone.cn 25/06/08 17:05:08 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 59392. 25/06/08 17:05:08 INFO NettyBlockTransferService: Server created on windows10.microdone.cn:59392 25/06/08 17:05:08 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 25/06/08 17:05:08 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, windows10.microdone.cn, 59392, None) 25/06/08 17:05:08 INFO BlockManagerMasterEndpoint: Registering block manager windows10.microdone.cn:59392 with 1899.0 MiB RAM, BlockManagerId(driver, windows10.microdone.cn, 59392, None) 25/06/08 17:05:08 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, windows10.microdone.cn, 59392, None) 25/06/08 17:05:08 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, windows10.microdone.cn, 59392, None) Exception in thread "main" java.lang.IllegalArgumentException: 测试数据中不包含 features 列,请检查数据! at car.LoadModelRideHailing$.main(LoadModelRideHailing.scala:23) at car.LoadModelRideHailing.main(LoadModelRideHailing.scala) 进程已结束,退出代码为 1 package car import org.apache.spark.ml.classification.{LogisticRegressionModel, RandomForestClassificationModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.sql.{SparkSession, functions => F} object LoadModelRideHailing { def main(args: Array[String]): Unit = { val spark = SparkSession.builder() .master("local[3]") .appName("LoadModelRideHailing") .getOrCreate() spark.sparkContext.setLogLevel("Error") // 使用经过特征工程处理后的测试数据 val TestData = spark.read.option("header", "true").csv("C:\\Users\\wyatt\\Documents\\ride_hailing_test_data.csv") // 将 label 列转换为数值类型 val testDataWithNumericLabel = TestData.withColumn("label", F.col("label").cast("double")) // 检查 features 列是否存在 if (!testDataWithNumericLabel.columns.contains("features")) { throw new IllegalArgumentException("测试数据中不包含 features 列,请检查数据!") } // 修正后的模型路径(确保文件夹存在且包含元数据) val LogisticModel = LogisticRegressionModel.load("C:\\Users\\wyatt\\Documents\\ride_hailing_logistic_model") // 示例路径 val LogisticPre = LogisticModel.transform(testDataWithNumericLabel) val LogisticAcc = new MulticlassClassificationEvaluator() .setLabelCol("label") .setPredictionCol("prediction") .setMetricName("accuracy") .evaluate(LogisticPre) println("逻辑回归模型后期数据准确率:" + LogisticAcc) // 随机森林模型路径同步修正 val RandomForest = RandomForestClassificationModel.load("C:\\Users\\wyatt\\Documents\\ride_hailing_random_forest_model") // 示例路径 val RandomForestPre = RandomForest.transform(testDataWithNumericLabel) val RandomForestAcc = new MulticlassClassificationEvaluator() .setLabelCol("label") .setPredictionCol("prediction") .setMetricName("accuracy") .evaluate(RandomForestPre) println("随机森林模型后期数据准确率:" + RandomForestAcc) spark.stop() } }

时间: 2025-08-04 15:55:39 浏览: 15
<think>我们正在处理一个SparkML管道中的问题:测试数据中缺少features列。在SparkML中,通常我们会构建一个管道,该管道包括多个转换器和一个最终的估计器(模型)。当我们在训练数据上调用`fit`方法时,管道会生成一个PipelineModel,然后我们可以使用这个PipelineModel对测试数据进行转换(`transform`),此时PipelineModel会依次应用每个阶段(包括转换和最终的模型预测)。测试数据缺少features列,这通常意味着在测试数据中没有完成与训练数据相同的特征预处理步骤。在SparkML管道中,特征列(通常命名为"features")通常是由管道中的一个或多个转换步骤生成的。例如,我们可能会使用VectorAssembler将多个特征列组合成一个特征向量,并输出到"features"列。因此,处理这个错误的正确方法是:1.确保测试数据与训练数据经过相同的预处理步骤。在SparkML中,这是通过使用同一个PipelineModel来实现的。所以,我们不需要手动为测试数据创建特征列,而是应该使用训练得到的PipelineModel进行转换。2.检查代码逻辑,确保在测试阶段使用了正确的PipelineModel进行转换。根据用户提供的引用内容,我们可以看到训练时使用了交叉验证(CrossValidator)来训练模型,交叉验证会返回一个最佳模型(也是一个PipelineModel,因为整个管道是作为估计器传入的)。然后,我们应该使用这个训练得到的模型对测试数据进行转换。引用[1]中训练模型的部分:```scalavalmodel=cv.fit(trainingData)//这里训练得到的model就是PipelineModel(因为cv的estimator是一个pipeline)```然后,在引用[2]中,我们可以看到使用模型进行预测的代码:```scalavalprediction=model.transform(test)```这里的`model`就是上面训练得到的PipelineModel,它会对测试数据应用整个管道(包括特征预处理和模型预测)。如果测试数据在进入模型转换之前没有经过预处理(比如缺少VectorAssembler等步骤产生的列),那么使用这个PipelineModel转换时会自动应用这些步骤。所以,问题可能出在:测试数据在调用`model.transform(test)`之前,没有包含管道中前期转换步骤所需要的列。管道模型在转换测试数据时,需要测试数据具有与训练数据相同的输入列,以便能够应用相同的转换规则。如果测试数据缺少这些输入列,则会出现错误。解决方案:1.检查训练数据包含哪些列,确保测试数据也有相同的列(除了标签列可能不是必需的,但特征列必须存在且结构相同)。2.确保测试数据与训练数据的列名一致。例如,训练数据中可能有一个列名为"f1"的特征,而测试数据中同样的特征应该也叫"f1"。3.检查管道中的各个阶段,特别是特征组合阶段(如VectorAssembler)的输入列是否在测试数据中都能找到。如果测试数据确实缺少某些列,则需要修正测试数据使其包含所有需要的列。如果测试数据中有这些列但列名不一致,则需要在转换前进行重命名。如果以上都满足,那么使用PipelineModel进行转换时,会自动生成"features"列,从而避免这个错误。如果用户仍然遇到问题,建议检查管道中各个阶段的输入输出列,确保在测试数据上的转换可以正确进行。另外,注意引用[2]中使用了`MulticlassClassificationEvaluator`,它在评估时需要预测列和标签列。在测试数据中,标签列(即目标变量)应该是存在的(但如果没有,可能预测也能进行,但评估时需要标签列)。总结处理步骤:-确保测试数据包含所有原始特征列(与训练时相同)。-使用训练得到的PipelineModel(即上面代码中的`model`)对测试数据进行转换,此时会自动生成"features"列和最终的预测结果。-如果测试数据中不包含某些特征,需要根据实际情况进行填补或重构测试数据。根据以上分析,给出代码层面的建议:假设训练数据包含列:col1,col2,col3,label在管道中,我们使用VectorAssembler将col1,col2,col3组合成features列,那么测试数据也必须包含col1,col2,col3列。示例代码片段(基于用户提供的引用):训练阶段:```scala//假设我们有一个转换器VectorAssembler,它将一些列组合成特征向量valassembler=newVectorAssembler().setInputCols(Array("col1","col2","col3")).setOutputCol("features")//其他阶段:如索引标签列(如果有)//然后建立管道valpipeline=newPipeline().setStages(Array(assembler,lightgbm))//lightgbm是最终的估计器//交叉验证等...valcv=newCrossValidator().setEstimator(pipeline)//...其他设置valmodel=cv.fit(trainingData)//trainingData必须包含col1,col2,col3,和标签列```测试阶段:```scala//测试数据testData必须包含与训练相同的特征列:col1,col2,col3//它可能包含标签列,也可能没有(但如果有评估,则需要标签列)valpredictions=model.transform(testData)```如果测试数据缺少这些列,我们需要在转换之前先进行预处理(添加或重命名列)使其具有这些列。因此,用户需要检查测试数据是否包含管道中所有转换器所需的输入列。如果缺失,需要补充;如果列名不一致,需要重命名。</think> 针对 Spark ML 测试数据缺少 `features` 列的错误,以下是处理步骤和解决方案: ### 错误原因分析 在 Spark ML 管道中,`features` 列通常由特征预处理阶段(如 `VectorAssembler`)生成[^1]。当测试数据直接调用 `model.transform(testData)` 时,如果测试数据未经过完整的管道预处理,将缺失该列。主要成因包括: 1. **未使用完整管道模型**:测试数据未通过训练时相同的 `PipelineModel` 进行转换 2. **特征工程缺失**:测试数据缺少 `VectorAssembler` 等特征预处理步骤 3. **列名不一致**:训练/测试数据的特征列名称不匹配 ### 解决方案(Scala代码) ```scala // 1. 确保使用完整的PipelineModel进行预测(非单一模型) val model: PipelineModel = cv.fit(trainingData) // 完整管道模型 // 2. 验证测试数据包含原始特征列(非features) require(testData.columns.contains("col1") && testData.columns.contains("col2"), "缺失特征列") // 3. 通过管道模型转换测试数据 val predictions = model.transform(testData) // 自动生成features列 // 4. 显式检查features列存在(调试用) if (predictions.columns.contains("features")) { println("成功生成特征向量") } ``` ### 关键修复点 1. **统一使用 PipelineModel** 必须用训练得到的完整管道模型(`PipelineModel`类型)转换测试数据,而非直接调用 `LightGBM` 或 `XGBoost` 等单一模型。 2. **前置特征验证** 在 `transform()` 前检查测试数据是否包含所有**原始输入特征列**(即 `VectorAssembler` 的输入列): ```scala val requiredCols = Array("age", "income", "product_view") // 替换为实际列名 requiredCols.foreach(col => assert(testData.columns.contains(col), s"测试数据缺失列: $col") ) ``` 3. **管道构建规范** 确保训练管道包含特征工程阶段: ```scala val assembler = new VectorAssembler() .setInputCols(Array("col1", "col2")) .setOutputCol("features") // ← 必须命名为features val pipeline = new Pipeline() .setStages(Array(assembler, lightgbm)) // 特征工程在前 ``` ### 错误排查流程 ```mermaid graph TD A[测试数据报错] --> B{检查features列是否存在} B -- 存在 --> C[检查列数据类型] B -- 不存在 --> D{验证原始特征列} D -- 列缺失 --> E[修复数据源] D -- 列存在 --> F[检查PipelineModel类型] F -- 非PipelineModel --> G[用cv.fit替换model.fit] F -- 是PipelineModel --> H[检查VectorAssembler设置] ``` ### 注意事项 1. `PipelineModel.transform()` 会**自动执行特征工程**,无需手动创建 `features` 列 2. 训练/测试数据的**特征顺序必须完全一致** 3. 使用 `.schema` 对比数据结构: ```scala trainingData.schema.foreach(println) testData.schema.foreach(println) ``` > **引用说明**:Spark ML 要求测试数据与训练数据具有相同的特征结构,管道模型通过元数据自动处理特征生成[^1][^2]。
阅读全文

相关推荐

zip
资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
zip
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
zip
资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 牛顿迭代法是一种高效的数值方法,用于求解方程的根,尤其擅长处理一元高次方程。它基于切线逼近原理,通过迭代逐步逼近方程的实根。对于一元三次方程 ax 3 +bx 2 +cx+d=0(其中 a 6 =0),牛顿迭代法可以找到所有可能的实根,而不仅仅是其中一个。三次方程最多有三个实根或复根的组合。 牛顿迭代法的步骤如下: 初始化:选择一个初始值 x 0 ,尽量使其接近实际根。初始值的选择对收敛速度影响很大。 构造迭代公式:迭代公式为 x n+1 =x n − f ′ (x n ) f(x n ) ,其中 f(x) 是方程,f ′ (x) 是其导数。对于一元三次方程,f(x)=ax 3 +bx 2 +cx+d,其导数 f ′ (x)=3ax 2 +2bx+c。 迭代计算:从 x 0 开始,利用迭代公式计算 x 1 ,x 2 ,…,直到满足终止条件,如连续两次迭代的差值小于阈值 ϵ,或达到最大迭代次数。 检查根:每次迭代得到的 x n 可能是根。若 ∣f(x n )∣<ϵ,则认为 x n 是近似根。 在求解一元三次方程时,牛顿迭代法可能会遇到多重根或复根。对于多重根,迭代可能收敛缓慢甚至不收敛,需要特别处理。对于复根,牛顿迭代法可能无法直接找到,因为复数的导数涉及复数除法,通常需要使用牛顿-拉弗森迭代的复数扩展版本。 为了避免陷入局部极值,可以尝试多个不同的初始值进行迭代,从而找到所有实根。牛顿迭代法的收敛性依赖于函数的连续性和二阶导数的存在性,因此在使用前需要满足这些条件。在编程实现时,需考虑数值稳定性以及异常情况的处理,例如分母为零、迭代不收敛等。牛顿迭代法在求解一元三次方程的实根时,表现出了优于其他简单方法的优势。

最新推荐

recommend-type

STC单片机实现电压测量功能

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
recommend-type

天津各个幼儿园的收费情况.doc

天津各个幼儿园的收费情况.doc
recommend-type

幼儿园中班语言教案在妈妈肚子里范文.doc

幼儿园中班语言教案在妈妈肚子里范文.doc
recommend-type

基于IEEE33节点的配电网重构:最优流法与网损电压对比研究 v2.1

基于IEEE33节点的配电网重构工作,重点探讨了最优流法的应用及其对网损和电压的影响。文章首先概述了配电网重构的重要性和目的,接着详细解析了用于电力系统潮流计算的程序,该程序使用牛顿-拉夫逊法进行迭代计算,以找到节点电压和功率的平衡。具体步骤包括定义变量、计算导纳矩阵、初始化功率参数、创建雅可比矩阵、求解修正方程、修正节点电压并判断收敛条件。随后,文章描述了通过调整开关状态来进行配电网重构的具体实践,最终对比了重构前后网损和电压的变化情况,验证了最优流法的有效性。 适合人群:从事电力系统研究、电网规划和运行的技术人员,尤其是对配电网重构和潮流计算感兴趣的工程师和研究人员。 使用场景及目标:适用于需要优化电网结构、降低网损、提升电压质量和供电可靠性的实际应用场景。目标是帮助技术人员理解和掌握最优流法在配电网重构中的应用,从而提高电力系统的效率和稳定性。 其他说明:文章不仅提供了理论和技术细节,还展示了具体的实践案例,有助于读者全面理解配电网重构的工作流程和技术要点。
recommend-type

Fragment中ListView组件的使用方法

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
recommend-type

Python程序TXLWizard生成TXL文件及转换工具介绍

### 知识点详细说明: #### 1. 图形旋转与TXL向导 图形旋转是图形学领域的一个基本操作,用于改变图形的方向。在本上下文中,TXL向导(TXLWizard)是由Esteban Marin编写的Python程序,它实现了特定的图形旋转功能,主要用于电子束光刻掩模的生成。光刻掩模是半导体制造过程中非常关键的一个环节,它确定了在硅片上沉积材料的精确位置。TXL向导通过生成特定格式的TXL文件来辅助这一过程。 #### 2. TXL文件格式与用途 TXL文件格式是一种基于文本的文件格式,它设计得易于使用,并且可以通过各种脚本语言如Python和Matlab生成。这种格式通常用于电子束光刻中,因为它的文本形式使得它可以通过编程快速创建复杂的掩模设计。TXL文件格式支持引用对象和复制对象数组(如SREF和AREF),这些特性可以用于优化电子束光刻设备的性能。 #### 3. TXLWizard的特性与优势 - **结构化的Python脚本:** TXLWizard 使用结构良好的脚本来创建遮罩,这有助于开发者创建清晰、易于维护的代码。 - **灵活的Python脚本:** 作为Python程序,TXLWizard 可以利用Python语言的灵活性和强大的库集合来编写复杂的掩模生成逻辑。 - **可读性和可重用性:** 生成的掩码代码易于阅读,开发者可以轻松地重用和修改以适应不同的需求。 - **自动标签生成:** TXLWizard 还包括自动为图形对象生成标签的功能,这在管理复杂图形时非常有用。 #### 4. TXL转换器的功能 - **查看.TXL文件:** TXL转换器(TXLConverter)允许用户将TXL文件转换成HTML或SVG格式,这样用户就可以使用任何现代浏览器或矢量图形应用程序来查看文件。 - **缩放和平移:** 转换后的文件支持缩放和平移功能,这使得用户在图形界面中更容易查看细节和整体结构。 - **快速转换:** TXL转换器还提供快速的文件转换功能,以实现有效的蒙版开发工作流程。 #### 5. 应用场景与技术参考 TXLWizard的应用场景主要集中在电子束光刻技术中,特别是用于设计和制作半导体器件时所需的掩模。TXLWizard作为一个向导,不仅提供了生成TXL文件的基础框架,还提供了一种方式来优化掩模设计,提高光刻过程的效率和精度。对于需要进行光刻掩模设计的工程师和研究人员来说,TXLWizard提供了一种有效的方法来实现他们的设计目标。 #### 6. 系统开源特性 标签“系统开源”表明TXLWizard遵循开放源代码的原则,这意味着源代码对所有人开放,允许用户自由地查看、修改和分发软件。开源项目通常拥有活跃的社区,社区成员可以合作改进软件,添加新功能,或帮助解决遇到的问题。这种开放性促进了技术创新,并允许用户根据自己的需求定制软件。 #### 7. 压缩包子文件的文件名称列表 文件名称列表中的“txlwizard-master”可能指的是TXLWizard项目的主版本库或主分支。这个名称表明了这是项目源代码的中心点,其他开发者会从这个主分支拉取代码进行合作开发或部署。以“-master”结尾通常是版本控制系统中表示主要开发线路的常见约定,例如Git中的master(现在更常被称为main)分支。 通过这些知识点的详细解释,我们可以看到TXLWizard不仅是一个用于生成TXL文件的工具,它还整合了一系列的功能,使得电子束光刻掩模的设计工作更为高效和直观。同时,作为一个开源项目,它能够借助社区的力量不断进步,为用户带来更多的便利和创新。
recommend-type

【创新图生成:扣子平台的技术前沿与创新思维】:引领图像生成技术的新潮流

# 1. 扣子平台的图像生成技术概述 在当今数字化时代,图像生成技术正成为推动技术创新和社会变革的关键力量。扣子平台正是这一技术革新的代表。本章将对扣子平台的图像生成技术进行一个全面概述,探究它如何将理论技术转化为实际应用,并带来显著的社会影响。 扣子平台运用了先进的图像生成技术,将现实世界和数字空间无缝融合,打造了沉浸式的视觉体验。其技术的核心是通过高度复杂的算法模型,快速生成高质
recommend-type

海康威视机器视觉工程师考核

<think>好的,我现在需要帮助用户了解海康威视机器视觉工程师的考核内容和要求。根据用户提供的引用资料,特别是引用[1]和[2],里面提到了考核素材包分为初级和中级,涵盖理论、算法、应用案例等。首先,我要整理这些信息,确保结构清晰,符合用户要求的格式。 接下来,我需要确认素材包的具体内容,比如初级和中级的不同点。引用[2]提到初级包含基础理论、算法实现和实际案例,中级则增加复杂算法和项目分析。这部分需要分点说明,方便用户理解层次。 另外,用户可能想知道如何准备考核,比如下载素材、学习顺序、模拟考核等,引用[2]中有使用说明和注意事项,这部分也要涵盖进去。同时要注意提醒用户考核窗口已关闭,
recommend-type

Linux环境下Docker Hub公共容器映像检测工具集

在给出的知识点中,我们需要详细解释有关Docker Hub、公共容器映像、容器编排器以及如何与这些工具交互的详细信息。同时,我们会涵盖Linux系统下的相关操作和工具使用,以及如何在ECS和Kubernetes等容器编排工具中运用这些检测工具。 ### Docker Hub 和公共容器映像 Docker Hub是Docker公司提供的一项服务,它允许用户存储、管理以及分享Docker镜像。Docker镜像可以视为应用程序或服务的“快照”,包含了运行特定软件所需的所有必要文件和配置。公共容器映像指的是那些被标记为公开可见的Docker镜像,任何用户都可以拉取并使用这些镜像。 ### 静态和动态标识工具 静态和动态标识工具在Docker Hub上用于识别和分析公共容器映像。静态标识通常指的是在不运行镜像的情况下分析镜像的元数据和内容,例如检查Dockerfile中的指令、环境变量、端口映射等。动态标识则需要在容器运行时对容器的行为和性能进行监控和分析,如资源使用率、网络通信等。 ### 容器编排器与Docker映像 容器编排器是用于自动化容器部署、管理和扩展的工具。在Docker环境中,容器编排器能够自动化地启动、停止以及管理容器的生命周期。常见的容器编排器包括ECS和Kubernetes。 - **ECS (Elastic Container Service)**:是由亚马逊提供的容器编排服务,支持Docker容器,并提供了一种简单的方式来运行、停止以及管理容器化应用程序。 - **Kubernetes**:是一个开源平台,用于自动化容器化应用程序的部署、扩展和操作。它已经成为容器编排领域的事实标准。 ### 如何使用静态和动态标识工具 要使用这些静态和动态标识工具,首先需要获取并安装它们。从给定信息中了解到,可以通过克隆仓库或下载压缩包并解压到本地系统中。之后,根据需要针对不同的容器编排环境(如Dockerfile、ECS、Kubernetes)编写配置,以集成和使用这些检测工具。 ### Dockerfile中的工具使用 在Dockerfile中使用工具意味着将检测工具的指令嵌入到构建过程中。这可能包括安装检测工具的命令、运行容器扫描的步骤,以及将扫描结果集成到镜像构建流程中,确保只有通过安全和合规检查的容器镜像才能被构建和部署。 ### ECS与Kubernetes中的工具集成 在ECS或Kubernetes环境中,工具的集成可能涉及到创建特定的配置文件、定义服务和部署策略,以及编写脚本或控制器来自动执行检测任务。这样可以在容器编排的过程中实现实时监控,确保容器编排器只使用符合预期的、安全的容器镜像。 ### Linux系统下的操作 在Linux系统下操作这些工具,用户可能需要具备一定的系统管理和配置能力。这包括使用Linux命令行工具、管理文件系统权限、配置网络以及安装和配置软件包等。 ### 总结 综上所述,Docker Hub上的静态和动态标识工具提供了一种方法来检测和分析公共容器映像,确保这些镜像的安全性和可靠性。这些工具在Linux开发环境中尤为重要,因为它们帮助开发人员和运维人员确保他们的容器映像满足安全要求。通过在Dockerfile、ECS和Kubernetes中正确使用这些工具,可以提高应用程序的安全性,减少由于使用不安全的容器镜像带来的风险。此外,掌握Linux系统下的操作技能,可以更好地管理和维护这些工具,确保它们能够有效地发挥作用。
recommend-type

【扣子平台图像艺术探究:理论与实践的完美结合】:深入学习图像生成的艺术

# 1. 图像艺术的理论基础 艺术领域的每一个流派和技巧都有其理论基础。在图像艺术中,理论基础不仅是对艺术表现形式的认知,也是掌握艺术创作内在逻辑的关键。深入理解图像艺术的理论基础,能够帮助艺术家们在创作过程中更加明确地表达自己的艺术意图,以及更好地与观众沟通。 图像艺术的理论