ImportError: /home/user/miniconda3/envs/mxl/lib/python3.8/site-packages/selective_scan_cuda.cpython-38-x86_64-linux-gnu.so: undefined symbol:

时间: 2025-07-05 08:33:43 浏览: 23
null
阅读全文

相关推荐

^CTraceback (most recent call last): File "/home/sunrise/桌面/yolov5-7.0 (kk)/detect.py", line 6, in <module> import torch File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/__init__.py", line 2143, in <module> from . import _meta_registrations File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_meta_registrations.py", line 9, in <module> from torch._decomp import ( File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_decomp/__init__.py", line 245, in <module> import torch._decomp.decompositions File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_decomp/decompositions.py", line 12, in <module> import torch._prims as prims File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_prims/__init__.py", line 588, in <module> bessel_i0e = _make_elementwise_unary_prim( File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_prims/__init__.py", line 472, in _make_elementwise_unary_prim return _make_prim( File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_prims/__init__.py", line 320, in _make_prim prim_def = torch.library.custom_op( File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_library/custom_ops.py", line 142, in custom_op return inner(fn) File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_library/custom_ops.py", line 123, in inner result = CustomOpDef(namespace, opname, schema_str, fn) File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_library/custom_ops.py", line 169, in __init__ self._register_to_dispatcher() File "/home/sunrise/miniconda3/envs/py38/lib/python3.8/site-packages/torch/_library/custom_ops.py", line 475, in _register_to_dispatcher autograd_impl = _library.autograd.make_autograd_impl(self._opoverload, self) File "/home/sunrise/miniconda3/envs/py38/lib/py

(li) lenovo@lenovo-ThinkStation-P920:/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan$ pip install -v --no-cache-dir --force-reinstall . 2>&1 | tee build.log Using pip 25.1 from /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/pip (python 3.10) Looking in indexes: https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple Processing /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan Preparing metadata (setup.py): started Running command python setup.py egg_info A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running egg_info creating /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info writing /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/PKG-INFO writing dependency_links to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/dependency_links.txt writing requirements to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/requires.txt writing top-level names to /tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/top_level.txt writing manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' reading manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' writing manifest file '/tmp/pip-pip-egg-info-w2djvsss/selective_scan.egg-info/SOURCES.txt' Preparing metadata (setup.py): finished with status 'done' Collecting torch (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/0a/7c/0a5b3aee977596459ec45be2220370fde8e017f651fecc40522fd478cb1e/torch-2.7.1-cp310-cp310-manylinux_2_28_x86_64.whl (821.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 821.2/821.2 MB 1.1 MB/s eta 0:00:00 Collecting packaging (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl (66 kB) Collecting ninja (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/eb/7a/455d2877fe6cf99886849c7f9755d897df32eaf3a0fba47b56e615f880f7/ninja-1.11.1.4-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (422 kB) Collecting einops (from selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/87/62/9773de14fe6c45c23649e98b83231fffd7b9892b6cf863251dc2afa73643/einops-0.8.1-py3-none-any.whl (64 kB) Collecting filelock (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/4d/36/2a115987e2d8c300a974597416d9de88f2444426de9571f4b59b2cca3acc/filelock-3.18.0-py3-none-any.whl (16 kB) Collecting typing-extensions>=4.10.0 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/69/e0/552843e0d356fbb5256d21449fa957fa4eff3bbc135a74a691ee70c7c5da/typing_extensions-4.14.0-py3-none-any.whl (43 kB) Collecting sympy>=1.13.3 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl (6.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.3/6.3 MB 946.1 kB/s eta 0:00:00 Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/eb/8d/776adee7bbf76365fdd7f2552710282c79a4ead5d2a46408c9043a2b70ba/networkx-3.5-py3-none-any.whl (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/6c/4f/ccdb8ad3a38e583f214547fd2f7ff1fc160c43a75af88e6aec213404b96a/networkx-3.5.tar.gz (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3f/a1/46c1b6e202e3109d2a035b21a7e5534c5bb233ee30752d7f16a0bd4c3989/networkx-3.5rc0-py3-none-any.whl (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Link requires a different Python (3.10.18 not in: '>=3.11'): https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/90/7e/0319606a20ced20730806b9f7fe91d8a92f7da63d76a5c388f87d3f7d294/networkx-3.5rc0.tar.gz (from https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple/networkx/) (requires-python:>=3.11) Collecting networkx (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl (1.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.7/1.7 MB 883.3 kB/s eta 0:00:00 Collecting jinja2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl (134 kB) Collecting fsspec (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/bb/61/78c7b3851add1481b048b5fdc29067397a1784e2910592bc81bb3f608635/fsspec-2025.5.1-py3-none-any.whl (199 kB) Collecting nvidia-cuda-nvrtc-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/75/2e/46030320b5a80661e88039f59060d1790298b4718944a65a7f2aeda3d9e9/nvidia_cuda_nvrtc_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl (23.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cuda-runtime-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/e1/23/e717c5ac26d26cf39a27fbc076240fad2e3b817e5889d671b67f4f9f49c5/nvidia_cuda_runtime_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (897 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 897.7/897.7 kB 1.7 MB/s eta 0:00:00 Collecting nvidia-cuda-cupti-cu12==12.6.80 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/49/60/7b6497946d74bcf1de852a21824d63baad12cd417db4195fc1bfe59db953/nvidia_cuda_cupti_cu12-12.6.80-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (8.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.9/8.9 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cudnn-cu12==9.5.1.17 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/2a/78/4535c9c7f859a64781e43c969a3a7e84c54634e319a996d43ef32ce46f83/nvidia_cudnn_cu12-9.5.1.17-py3-none-manylinux_2_28_x86_64.whl (571.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 571.0/571.0 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cublas-cu12==12.6.4.1 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/af/eb/ff4b8c503fa1f1796679dce648854d58751982426e4e4b37d6fce49d259c/nvidia_cublas_cu12-12.6.4.1-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (393.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 393.1/393.1 MB 889.2 kB/s eta 0:00:00 Collecting nvidia-cufft-cu12==11.3.0.4 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8f/16/73727675941ab8e6ffd86ca3a4b7b47065edcca7a997920b831f8147c99d/nvidia_cufft_cu12-11.3.0.4-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (200.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 200.2/200.2 MB 761.5 kB/s eta 0:00:00 Collecting nvidia-curand-cu12==10.3.7.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/73/1b/44a01c4e70933637c93e6e1a8063d1e998b50213a6b65ac5a9169c47e98e/nvidia_curand_cu12-10.3.7.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (56.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.3/56.3 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-cusolver-cu12==11.7.1.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/f0/6e/c2cf12c9ff8b872e92b4a5740701e51ff17689c4d726fca91875b07f655d/nvidia_cusolver_cu12-11.7.1.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (158.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.2/158.2 MB 881.4 kB/s eta 0:00:00 Collecting nvidia-cusparse-cu12==12.5.4.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/06/1e/b8b7c2f4099a37b96af5c9bb158632ea9e5d9d27d7391d7eb8fc45236674/nvidia_cusparse_cu12-12.5.4.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (216.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 216.6/216.6 MB 1.4 MB/s eta 0:00:00 Collecting nvidia-cusparselt-cu12==0.6.3 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/3b/9a/72ef35b399b0e183bc2e8f6f558036922d453c4d8237dab26c666a04244b/nvidia_cusparselt_cu12-0.6.3-py3-none-manylinux2014_x86_64.whl (156.8 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 156.8/156.8 MB 887.6 kB/s eta 0:00:00 Collecting nvidia-nccl-cu12==2.26.2 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/67/ca/f42388aed0fddd64ade7493dbba36e1f534d4e6fdbdd355c6a90030ae028/nvidia_nccl_cu12-2.26.2-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (201.3 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 201.3/201.3 MB 1.1 MB/s eta 0:00:00 Collecting nvidia-nvtx-cu12==12.6.77 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/56/9a/fff8376f8e3d084cd1530e1ef7b879bb7d6d265620c95c1b322725c694f4/nvidia_nvtx_cu12-12.6.77-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (89 kB) Collecting nvidia-nvjitlink-cu12==12.6.85 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/9d/d7/c5383e47c7e9bf1c99d5bd2a8c935af2b6d705ad831a7ec5c97db4d82f4f/nvidia_nvjitlink_cu12-12.6.85-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl (19.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 19.7/19.7 MB 1.9 MB/s eta 0:00:00 Collecting nvidia-cufile-cu12==1.11.1.6 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b2/66/cc9876340ac68ae71b15c743ddb13f8b30d5244af344ec8322b449e35426/nvidia_cufile_cu12-1.11.1.6-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.1 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 1.9 MB/s eta 0:00:00 Collecting triton==3.3.1 (from torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/8d/a9/549e51e9b1b2c9b854fd761a1d23df0ba2fbc60bd0c13b489ffa518cfcb7/triton-3.3.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (155.6 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 155.6/155.6 MB 758.4 kB/s eta 0:00:00 Collecting setuptools>=40.8.0 (from triton==3.3.1->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl (1.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 872.9 kB/s eta 0:00:00 Collecting mpmath<1.4,>=1.1.0 (from sympy>=1.13.3->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl (536 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 919.5 kB/s eta 0:00:00 Collecting MarkupSafe>=2.0 (from jinja2->torch->selective_scan==0.0.2) Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/22/35/137da042dfb4720b638d2937c38a9c2df83fe32d20e8c8f3185dbfef05f7/MarkupSafe-3.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (20 kB) Building wheels for collected packages: selective_scan DEPRECATION: Building 'selective_scan' using the legacy setup.py bdist_wheel mechanism, which will be removed in a future version. pip 25.3 will enforce this behaviour change. A possible replacement is to use the standardized build interface by setting the --use-pep517 option, (possibly combined with --no-build-isolation), or adding a pyproject.toml file to the source tree of 'selective_scan'. Discussion can be found at https://github.com/pypa/pip/issues/6334 Building wheel for selective_scan (setup.py): started Running command python setup.py bdist_wheel A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running bdist_wheel running build running build_ext /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py:425: UserWarning: There are no g++ version bounds defined for CUDA version 11.8 warnings.warn(f'There are no {compiler_name} version bounds defined for CUDA version {cuda_str_version}') building 'selective_scan_cuda_core' extension creating /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus Emitting ninja build file /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/3] c++ -MMD -MF '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o'.d -pthread -B /home/lenovo/anaconda3/envs/li/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o' -O3 -std=c++17 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o c++ -MMD -MF '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o'.d -pthread -B /home/lenovo/anaconda3/envs/li/compiler_compat -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC -O2 -isystem /home/lenovo/anaconda3/envs/li/include -fPIC '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan.o' -O3 -std=c++17 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 In file included from /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContext.h:3, from /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan.cpp:5: /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/ATen/cuda/CUDAContextLight.h:6:10: fatal error: cuda_runtime_api.h: 没有那个文件或目录 6 | #include <cuda_runtime_api.h> | ^~~~~~~~~~~~~~~~~~~~ compilation terminated. [2/3] /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_fwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_fwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_fwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. fatal : Could not open input file /tmp/tmpxft_00005756_00000000-7_selective_scan_core_fwd.cpp1.ii [3/3] /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_bwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 FAILED: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o /home/lenovo/anaconda3/envs/li/bin/nvcc --generate-dependencies-with-compile --dependency-output '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o'.d '-I/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan' -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/TH -I/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/include/THC -I/home/lenovo/anaconda3/envs/li/include -I/home/lenovo/anaconda3/envs/li/include/python3.10 -c -c '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/csrc/selective_scan/cus/selective_scan_core_bwd.cu' -o '/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/build/temp.linux-x86_64-cpython-310/csrc/selective_scan/cus/selective_scan_core_bwd.o' -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -O3 -std=c++17 -U__CUDA_NO_HALF_OPERATORS__ -U__CUDA_NO_HALF_CONVERSIONS__ -U__CUDA_NO_BFLOAT16_OPERATORS__ -U__CUDA_NO_BFLOAT16_CONVERSIONS__ -U__CUDA_NO_BFLOAT162_OPERATORS__ -U__CUDA_NO_BFLOAT162_CONVERSIONS__ --expt-relaxed-constexpr --expt-extended-lambda --use_fast_math --ptxas-options=-v -lineinfo -arch=sm_86 --threads 4 -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=selective_scan_cuda_core -D_GLIBCXX_USE_CXX11_ABI=0 <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. <command-line>: fatal error: cuda_runtime.h: 没有那个文件或目录 compilation terminated. fatal : Could not open input file /tmp/tmpxft_00005755_00000000-7_selective_scan_core_bwd.cpp1.ii ninja: build stopped: subcommand failed. Traceback (most recent call last): File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2096, in _run_ninja_build subprocess.run( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/subprocess.py", line 526, in run raise CalledProcessError(retcode, process.args, subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 146, in <module> setup( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/__init__.py", line 117, in setup return distutils.core.setup(**attrs) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 186, in setup return run_commands(dist) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/core.py", line 202, in run_commands dist.run_commands() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1002, in run_commands self.run_command(cmd) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/bdist_wheel.py", line 370, in run self.run_command("build") File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/cmd.py", line 357, in run_command self.distribution.run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py", line 1104, in run_command super().run_command(command) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/dist.py", line 1021, in run_command cmd_obj.run() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 99, in run _build_ext.run(self) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 368, in run self.build_extensions() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 871, in build_extensions build_ext.build_extensions(self) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 484, in build_extensions self._build_extensions_serial() File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 510, in _build_extensions_serial self.build_extension(ext) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/command/build_ext.py", line 264, in build_extension _build_ext.build_extension(self, ext) File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/_distutils/command/build_ext.py", line 565, in build_extension objects = self.compiler.compile( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 684, in unix_wrap_ninja_compile _write_ninja_file_and_compile_objects( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 1774, in _write_ninja_file_and_compile_objects _run_ninja_build( File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2112, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> See above for output. note: This error originates from a subprocess, and is likely not a problem with pip. full command: /home/lenovo/anaconda3/envs/li/bin/python3.10 -u -c ' exec(compile('"'"''"'"''"'"' # This is -- a caller that pip uses to run setup.py # # - It imports setuptools before invoking setup.py, to enable projects that directly # import from distutils.core to work with newer packaging standards. # - It provides a clear error message when setuptools is not installed. # - It sets sys.argv[0] to the underlying setup.py, when invoking setup.py so # setuptools doesn'"'"'t think the script is -c. This avoids the following warning: # manifest_maker: standard file '"'"'-c'"'"' not found". # - It generates a shim setup.py, for handling setup.cfg-only projects. import os, sys, tokenize, traceback try: import setuptools except ImportError: print( "ERROR: Can not execute setup.py since setuptools failed to import in " "the build environment with exception:", file=sys.stderr, ) traceback.print_exc() sys.exit(1) __file__ = %r sys.argv[0] = __file__ if os.path.exists(__file__): filename = __file__ with tokenize.open(__file__) as f: setup_py_code = f.read() else: filename = "<auto-generated setuptools caller>" setup_py_code = "from setuptools import setup; setup()" exec(compile(setup_py_code, filename, "exec")) '"'"''"'"''"'"' % ('"'"'/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py'"'"',), "", "exec"))' bdist_wheel -d /tmp/pip-wheel-fm2tmb40 cwd: /media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/ Building wheel for selective_scan (setup.py): finished with status 'error' ERROR: Failed building wheel for selective_scan Running setup.py clean for selective_scan Running command python setup.py clean A module that was compiled using NumPy 1.x cannot be run in NumPy 2.2.6 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. Traceback (most recent call last): File "<string>", line 2, in <module> File "", line 35, in <module> File "/media/lenovo/PHILIPS/Mamba_20250409_ torch22_cuda118/VMamba-main/kernels/selective_scan/setup.py", line 17, in <module> import torch File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/__init__.py", line 1471, in <module> from .functional import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/functional.py", line 9, in <module> import torch.nn.functional as F File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/__init__.py", line 1, in <module> from .modules import * # noqa: F403 File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/__init__.py", line 35, in <module> from .transformer import TransformerEncoder, TransformerDecoder, \ File "/home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 20, in <module> device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.) device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'), torch.__version__ = 2.2.0+cu118 CUDA_HOME = /home/lenovo/anaconda3/envs/li CUDA version: 11.8 /home/lenovo/anaconda3/envs/li/lib/python3.10/site-packages/setuptools/dist.py:759: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: BSD License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() running clean removing 'build/temp.linux-x86_64-cpython-310' (and everything under it) 'build/lib.linux-x86_64-cpython-310' does not exist -- can't clean it 'build/bdist.linux-x86_64' does not exist -- can't clean it 'build/scripts-3.10' does not exist -- can't clean it removing 'build' Failed to build selective_scan ERROR: Failed to build installable wheels for some pyproject.toml based projects (selective_scan)

最新推荐

recommend-type

后端项目中常用的设计模式总结.doc

后端项目中常用的设计模式总结.doc
recommend-type

PKID查壳工具最新版发布,轻松识别安卓安装包加壳

根据提供的文件信息,我们可以详细解读以下知识点: ### PKiD(查壳)工具介绍 #### 标题分析 - **PKiD(查壳)**: 这是一个专门用于分析安卓安装包(APK文件)是否被加壳的应用程序。"查壳"是一种用于检测软件是否被保护层(即“壳”)包裹的技术术语。加壳是一种常见的软件保护手段,用于隐藏真实的代码逻辑,防止恶意逆向分析。 - **RAR格式文件**: 文件使用了RAR格式进行压缩,这是WinRAR软件用于文件压缩和解压缩的专有格式。 #### 描述分析 - **ApkScan-PKID查壳工具.zip**: 这指的是一款名为ApkScan的工具,它包含了PKID查壳功能。该工具被打包成ZIP格式,便于用户下载和使用。 - **安卓安装包**: 这是指Android平台的应用程序安装包,通常以APK作为文件扩展名。 - **加壳检测**: PKID查壳工具用于检测APK文件是否被加壳,加壳是一种常见的软件保护技术,用于加密和保护软件免遭逆向工程。 - **脱壳测试**: 如果检测到加壳,脱壳测试将用于尝试去除或绕过保护层,以便进行安全分析、调试或修改程序。 #### 标签分析 - **查壳**: 再次强调了工具的主要功能,即检测APK文件中的加壳情况。 - **最新版**: 表示这个文件是PKID查壳工具的最新版本。 - **PKID**: 这是工具的核心名称,代表着该软件的主要功能和用途。 #### 文件列表分析 - **PKiD(查壳).exe**: 这是一个可执行文件,说明PKID查壳工具是一个独立的应用程序,用户可以通过双击此文件直接运行程序,而无需安装。 ### 技术背景 #### 查壳工具的工作原理 查壳工具通常通过分析APK文件的头部信息、资源文件和代码段来检测加壳。它可能会检查PE文件格式的特定区域(APK基于DEX,但PE检查的概念相似),这些区域在加壳过程中可能会被特定的代码模式、字符串或签名标记。例如,某些壳会在文件头部加入特定的字符串,或者修改方法计数等信息。 #### 加壳技术 加壳技术通常用于防止软件被轻易反编译或逆向工程。它可以阻止潜在的窃取知识产权、绕过付费或防止代码分析等。加壳过程包括加密和压缩原始代码,然后在运行时解压和解密代码以供执行。 #### 脱壳技术 脱壳技术是指绕过或移除软件保护壳的过程。这通常需要对壳的工作原理有深入了解,并且需要一定的逆向工程技能。脱壳过程可能包括识别壳的签名、分析保护机制、修改代码和重定位等步骤。 #### 安全测试与逆向工程 查壳工具对于安全测试和逆向工程人员来说是非常重要的工具。它们可以帮助识别软件是否被加壳,从而决定是否需要进行脱壳操作以便深入分析软件的安全漏洞或版权问题。 #### 使用场景 - **安全测试**: 安全工程师在对移动应用程序进行安全评估时,需要确认是否有必要进行脱壳处理。 - **逆向工程**: 开发人员可能需要逆向工程某个应用,以更好地理解其工作原理或为了兼容性问题进行修改。 - **软件保护**: 对于软件开发者而言,了解常见的加壳和脱壳技术有助于更好地保护自己的应用免遭未授权的篡改和分析。 ### 结论 了解和掌握PKID查壳工具的使用对于任何需要对APK文件进行安全性分析的专业人士来说都是基础且关键的技能。该工具提供了一种快速判断软件是否加壳的方法,而且在发现壳的情况下,还可以推测出壳的来源公司,这对于后续的分析和处理提供了便利。然而,值得注意的是,进行脱壳操作往往需要对原始程序代码进行逆向工程,这在很多情况下可能涉及法律和道德问题,因此在使用此类工具时,必须确保其合法性和符合道德规范。
recommend-type

【PDF.js问题诊断手册】:快速定位与解决常见问题

# 摘要 PDF.js是一个广泛应用于Web环境中的PDF文件渲染库,其基本原理和应用概况将在本文第一章进行概述。第二章深入探讨PDF.js的问题诊断基础,包括架构分析、问题分类和日志分析技巧。随后,本文将具体讨论PDF.js在显示问题、加载与性能问题以及兼容性与安全问题的诊断与
recommend-type

grep -Ei

<think>首先,用户的问题是关于使用grep命令进行忽略大小写的扩展正则表达式搜索。用户指定了:"grep -Ei ignore case and use extended regular expressions"。所以,我需要解释如何使用grep的-E和-i选项。 从系统指令中: - 所有行内数学表达式必须用$...$格式。 - 独立公式用$$...$$。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾添加引用标识,如[^1]。 - 回答结构清晰,逐步解决问题。 参考引用: - 引用[1]提到使用-E选项进行扩展正则表达式,而不是基本正则表达式。这更清晰,因为反斜
recommend-type

一键关闭系统更新的工具介绍

从给定的文件信息中我们可以分析出几个相关的知识点,以下是详细说明: 【标题】“系统禁止更新工具.7z”暗示着这个压缩文件内包含的可能是一款软件工具,其主要功能是阻止或禁止操作系统的更新。这种工具可能针对的是Windows、Linux或者其他操作系统的自动更新功能。一般来说,用户可能出于稳定性考虑,希望控制更新时间,或者是因为特定的软件环境依赖于旧版本的系统兼容性,不希望系统自动更新导致兼容性问题。 【描述】“一健关闭系统更新”说明了该工具的使用方式非常简单直接。用户只需通过简单的操作,比如点击一个按钮或者执行一个命令,就能实现关闭系统自动更新的目的。这种一键式操作符合用户追求的易用性原则,使得不太精通系统操作的用户也能轻松控制更新设置。 【标签】“系统工具”表明这是一个与操作系统紧密相关的辅助工具。系统工具通常包括系统清理、性能优化、磁盘管理等多种功能,而本工具专注于管理系统更新,使其成为系统维护中的一环。 【压缩包子文件的文件名称列表】“系统禁止更新工具”是压缩包内的文件名。由于文件格式为“.7z”,这说明该工具采用了7-Zip压缩格式。7-Zip是一款开源且免费的压缩软件,支持非常高的压缩比,并且能够处理各种压缩文件格式,如ZIP、RAR等。它支持创建密码保护的压缩文件和分卷压缩,这在需要转移大量数据时特别有用。然而在这个上下文中,“系统禁止更新工具”文件名暗示了该压缩包内只包含了一个程序,即专门用于关闭系统更新的工具。 根据标题和描述,我们可以推测该工具可能的实现机制,例如: 1. 修改系统服务的配置:在Windows系统中,可以通过修改Windows Update服务的属性来禁用该服务,从而阻止系统自动下载和安装更新。 2. 修改注册表设置:通过编辑Windows注册表中的某些特定键值,可以关闭系统更新功能。这通常涉及到对HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate和HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU等路径下的设置进行修改。 3. 使用第三方软件:某些第三方工具提供了一键禁用系统更新的功能,通过修改操作系统的相关文件和配置来实现更新的禁用。这包括阻止Windows Update的运行、拦截更新下载等。 该工具的使用可能带来一些后果,比如系统安全风险的增加、系统漏洞得不到及时修复以及可能违反某些软件许可协议。用户在使用这类工具时应该清楚这些潜在的影响,并自行承担相应的风险。 总结来说,该“系统禁止更新工具”可以视为一个针对特定用户需求,尤其是企业用户或个人用户中对系统稳定性有较高要求的人群,提供的一个便捷的解决方案。它通过直接修改系统设置来禁止操作系统自动更新,但用户在使用此工具时需要谨慎,因为这可能会带来系统安全和稳定性的风险。
recommend-type

【PC3000高级应用】:复杂故障快速诊断与解决

# 摘要 本文详细介绍了PC3000在数据恢复领域的应用及其重要性,阐述了其基本操作、界面理解以及在复杂故障诊断中的应用方法。深入剖析了PC3
recommend-type

我的数据是names(data) [1] "分组" "排序" "PACU" "V1" "V2" "V3" ;后四个数据分别代表四个时间点的测量值,请你用ART模型进行规范检验,我需要得到分组(即不同处理方法)的差异

<think>我们正在处理一个重复测量设计的数据分析问题,用户希望使用ART(Align Rank Transform)方法分析包含分组因素和多个时间点的数据。数据格式包括分组变量(group)、受试者编号(subject)以及四个时间点(V1-V3)的测量值。 ART分析步骤: 1. 数据准备:将宽格式数据转换为长格式(每个时间点一行) 2. 使用ARTool包进行对齐秩变换 3. 构建混合效应模型(包含分组、时间及其交互) 4. 对变换后的数据进行方差分析 5. 进行事后检验(如存在显著效应) 引用说明: - 用户提供的引用[1][2][3][4]与当前问题无关,因此忽略这些引用 -
recommend-type

鼎捷易飞ERPV9.0委外进货单批量导入解决方案

根据提供的文件信息,我们可以从标题、描述、标签以及压缩包文件列表中提取以下知识点: 1. 委外进货单批量导入程序及模版格式 标题提到的“委外进货单批量导入程序”指的是一个软件应用,其主要功能是允许用户批量地将委外进货数据导入到ERP系统中。批量导入通常是指在ERP系统中不需要逐条手动输入数据,而是通过预先定义好的模板,一次性将大量数据导入系统。这样的程序对于提高工作效率、减少重复性工作以及避免人为错误具有重要意义。 2. 鼎捷易飞ERPV9.0 描述中提到的“鼎捷易飞ERPV9.0”是一个特定版本的ERP系统,由鼎捷软件公司开发。ERP(Enterprise Resource Planning,企业资源计划)系统是一种用于整合企业内部所有资源信息,实现信息流、物流、资金流、工作流的高度集成和自动化管理的软件。ERPV9.0是该系列产品的版本号,表明该程序和文件模板是为这一特定版本的ERP系统设计。 3. .NET C#源代码 标题中的“.NET C#源代码”表示程序是使用.NET框架和C#语言开发的。.NET是微软公司开发的一个软件框架,用于构建和运行Windows应用程序。C#(读作“C Sharp”)是.NET框架下的一种编程语言,具有面向对象、类型安全和垃圾回收等特点。开发者可能提供了源代码,以便企业用户可以自行修改、调整以满足特定需求。 4. 使用方法和步骤 描述中详细说明了程序的使用方法: - 首先编辑模版格式数据,即将需要导入的数据按照特定的格式要求填写到模板中。 - 然后在程序中选择单别(可能指的是单据类型)和日期等条件。 - 点击“导入数据”按钮,程序将提示用户选择含有数据的模板文件。 - 程序会进行数据校验,以确保数据的正确性。校验规则是特定的,如果用户不需要特定的校验条件,可以在程序中直接删除这部分代码。 - 最后,数据校验无误后,程序可以生成相应的进货单据。 5. 自定义程序和模板 在标签中提到的“易飞ERP委外进货单导入程序”、“委外进货单导入程序”和“易飞ERP自定义程序”表明,所提供的程序可以根据用户的特定需求进行定制。同时,模板格式的使用,也意味着用户可以根据自己的业务需要和ERP系统的要求调整模板内容,以便更好地适应数据导入过程。 6. 压缩包子文件的文件名称列表 提供的压缩包包含两个文件: - “委外进货单批量导入格式.xls”指的是一个Excel格式的文件,这个文件应该是一个符合要求的导入模板,用户需要按照这个模板的格式来准备需要导入的数据。 - “委外入库导入(源代码).zip”是一个包含源代码的压缩文件,其中可能包含程序的完整源代码,也可能仅包含与导入功能相关的部分代码。 7. 文件列表和数据导入流程 通过文件列表可以理解整个数据导入流程: - 用户首先需要准备好数据,并将其按照“委外进货单批量导入格式.xls”模板中的要求填入相应的数据。 - 用户然后使用“委外入库导入(源代码).zip”中的程序,根据程序使用说明进行配置。 - 最后,用户通过程序界面导入整理好的Excel模板文件,程序会自动处理数据导入的过程,并进行必要的数据校验,最终生成所需的进货单据。 以上总结的知识点涵盖了该压缩包文件的内容、用途、技术细节以及操作步骤,为了解和使用该委外进货单批量导入程序提供了充分的信息。
recommend-type

硬盘数据恢复秘籍:PC3000流程全面解读

# 摘要 本文全面概述了硬盘数据恢复的各个方面,从基础理论到实际操作,再到行业规范和面临的挑战。首先介绍了硬盘数据恢复的基本概念和PC3000工具的工作原理,随后详细讨论了PC3000的硬件组成、软件功能及操作流程。接着,深入探讨了硬盘的基础知识、常见故障类型、故障识别方法以及数据恢复前的准备工作。通过实际案例演练,文章展示了PC3000在模拟故障和实际数据恢复中的应用,同时强调了高级数据恢复技巧
recommend-type

MRAM在PLC中起到的作用

<think>首先,用户的问题是基于之前的引用内容,特别是引用[1],它讨论了MRAM在PLC中的应用。用户明确说:“我想了解MRAM在PLC中的作用”,并问“MRAM在可编程逻辑控制器(PLC)中的功能和应用”。 关键引用是引用[1]: - MRAM具有纳秒级高速写入、万亿次擦写寿命和宽工作温区。 - PLC是工业自动化系统的核心,需要快速读写和高擦写寿命。 - 传统方案使用SRAM和电池,但存在系统复杂、硬件成本高、数据丢失风险。 - MRAM可以替代这种方案,因为它支持连续20年毫秒级间隔的擦写操作。 - 在异常掉电时,MRAM能快速保存数据,无需备份电池。 - 具体例子:数字输入模块