mac部署esp-idf

时间: 2025-05-12 13:36:04 浏览: 17
### 配置和部署ESP-IDF开发环境 #### 软件安装 在 macOS 上配置 ESP-IDF 开发环境的第一步是确保系统已安装必要的依赖项。这些依赖项可以通过 Homebrew 工具轻松管理[^2]。 以下是所需的主要软件包及其用途: - **CMake**: 构建系统的必要组件。 - **Ninja**: 替代 Make 的构建工具,通常更快更高效。 - **dfu-util**: 用于通过 USB 接口更新固件。 - **ccache**: 提高重复编译的速度。 - **pyserial**: 支持串口通信的库。 运行以下命令来安装上述工具: ```bash brew install cmake ninja dfu-util ccache python ``` 如果某些工具无法正常安装,可以使用 `brew info` 命令检查具体错误信息,并尝试手动解决这些问题。 #### 设置 Python 环境 ESP-IDF 使用 Python 来执行许多脚本操作,默认情况下会调用系统自带的 Python 版本。然而,在较新的 macOS 系统中,Python 可能已被移除或版本过低。因此,建议将默认的 Python 解释器设置为 Python 3 或更高版本。 安装完成后,验证 Python 是否可用以及其版本号是否满足要求: ```bash python3 --version ``` 接着,安装所需的 Python 库: ```bash pip3 install --user -r $IDF_PATH/requirements.txt ``` 这里 `$IDF_PATH` 是指向 esp-idf 文件夹路径的变量。如果未定义该变量,则需替换为实际路径。 #### 获取并初始化 esp-idf 从官方仓库克隆最新的 esp-idf 源码到本地机器上: ```bash git clone https://github.com/espressif/esp-idf.git cd esp-idf git checkout release/v4.4 # 根据需求选择合适的分支或者标签 ``` 完成克隆后,加载开发环境中的 shell 脚本来简化后续流程: ```bash source ./export.sh ``` 此脚本负责导出所有必需的环境变量以便顺利进行项目创建、编译等工作流。 #### 编译与上传示例程序 进入 examples 目录挑选一个简单的例子作为测试对象: ```bash idf.py set-target esp32 idf.py build idf.py flash monitor ``` 以上三条指令分别指定目标芯片型号、构建工程产物并将生成的二进制文件刷入设备同时开启监视模式。 --- ###
阅读全文

相关推荐

#include "Dri_BT.h" // 定义蓝牙状态 static bool bt_initialized = false; /* 定义esp32收到手机数据时的回调弱函数 */ void __attribute__((weak)) App_Communication_DealBtData(uint8_t *data, uint16_t dataLen) { } // 设置蓝牙名称 static char example_device_name[ESP_BLE_ADV_NAME_LEN_MAX] = "Zkevin_SmartHumidifier"; static uint8_t adv_config_done = 0; static uint16_t heart_rate_handle_table[HRS_IDX_NB]; static uint8_t test_manufacturer[3] = {'E', 'S', 'P'}; static uint8_t sec_service_uuid[16] = { /* LSB <--------------------------------------------------------------------------------> MSB */ // first uuid, 16bit, [12],[13] is the value 0xfb, 0x34, 0x9b, 0x5f, 0x80, 0x00, 0x00, 0x80, 0x00, 0x10, 0x00, 0x00, 0x18, 0x0D, 0x00, 0x00, }; // config adv data static esp_ble_adv_data_t heart_rate_adv_config = { .set_scan_rsp = false, .include_txpower = true, .min_interval = 0x0006, // slave connection min interval, Time = min_interval * 1.25 msec .max_interval = 0x0010, // slave connection max interval, Time = max_interval * 1.25 msec .appearance = 0x00, .manufacturer_len = 0, // TEST_MANUFACTURER_DATA_LEN, .p_manufacturer_data = NULL, //&test_manufacturer[0], .service_data_len = 0, .p_service_data = NULL, .service_uuid_len = sizeof(sec_service_uuid), .p_service_uuid = sec_service_uuid, .flag = (ESP_BLE_ADV_FLAG_GEN_DISC | ESP_BLE_ADV_FLAG_BREDR_NOT_SPT), }; // config scan response data static esp_ble_adv_data_t heart_rate_scan_rsp_config = { .set_scan_rsp = true, .include_name = true, .manufacturer_len = sizeof(test_manufacturer), .p_manufacturer_data = test_manufacturer, }; static esp_ble_adv_params_t heart_rate_adv_params = { .adv_int_min = 0x100, .adv_int_max = 0x100, .adv_type = ADV_TYPE_IND, .own_addr_type = BLE_ADDR_TYPE_RPA_PUBLIC, .channel_map = ADV_CHNL_ALL, .adv_filter_policy = ADV_FILTER_ALLOW_SCAN_ANY_CON_ANY, }; struct gatts_profile_inst { esp_gatts_cb_t gatts_cb; uint16_t gatts_if; uint16_t app_id; uint16_t conn_id; uint16_t service_handle; esp_gatt_srvc_id_t service_id; uint16_t char_handle; esp_bt_uuid_t char_uuid; esp_gatt_perm_t perm; esp_gatt_char_prop_t property; uint16_t descr_handle; esp_bt_uuid_t descr_uuid; }; static void gatts_profile_event_handler(esp_gatts_cb_event_t event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_param_t *param); /* One gatt-based profile one app_id and one gatts_if, this array will store the gatts_if returned by ESP_GATTS_REG_EVT */ static struct gatts_profile_inst heart_rate_profile_tab[HEART_PROFILE_NUM] = { [HEART_PROFILE_APP_IDX] = { .gatts_cb = gatts_profile_event_handler, .gatts_if = ESP_GATT_IF_NONE, /* Not get the gatt_if, so initial is ESP_GATT_IF_NONE */ }, }; /* * Heart Rate PROFILE ATTRIBUTES **************************************************************************************** */ /// Heart Rate Sensor Service static const uint16_t heart_rate_svc = ESP_GATT_UUID_HEART_RATE_SVC; #define CHAR_DECLARATION_SIZE (sizeof(uint8_t)) static const uint16_t primary_service_uuid = ESP_GATT_UUID_PRI_SERVICE; static const uint16_t character_declaration_uuid = ESP_GATT_UUID_CHAR_DECLARE; static const uint16_t character_client_config_uuid = ESP_GATT_UUID_CHAR_CLIENT_CONFIG; static const uint8_t char_prop_notify = ESP_GATT_CHAR_PROP_BIT_NOTIFY; static const uint8_t char_prop_read = ESP_GATT_CHAR_PROP_BIT_READ; static const uint8_t char_prop_read_write = ESP_GATT_CHAR_PROP_BIT_WRITE | ESP_GATT_CHAR_PROP_BIT_READ; /// Heart Rate Sensor Service - Heart Rate Measurement Characteristic, notify static const uint16_t heart_rate_meas_uuid = ESP_GATT_HEART_RATE_MEAS; static const uint8_t heart_measurement_ccc[2] = {0x00, 0x00}; /// Heart Rate Sensor Service -Body Sensor Location characteristic, read static const uint16_t body_sensor_location_uuid = ESP_GATT_BODY_SENSOR_LOCATION; static const uint8_t body_sensor_loc_val[1] = {0x00}; /// Heart Rate Sensor Service - Heart Rate Control Point characteristic, write&read static const uint16_t heart_rate_ctrl_point = ESP_GATT_HEART_RATE_CNTL_POINT; static const uint8_t heart_ctrl_point[1] = {0x00}; /// Full HRS Database Description - Used to add attributes into the database static const esp_gatts_attr_db_t heart_rate_gatt_db[HRS_IDX_NB] = { // Heart Rate Service Declaration [HRS_IDX_SVC] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&primary_service_uuid, ESP_GATT_PERM_READ, sizeof(uint16_t), sizeof(heart_rate_svc), (uint8_t *)&heart_rate_svc}}, // Heart Rate Measurement Characteristic Declaration [HRS_IDX_HR_MEAS_CHAR] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ, CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&char_prop_notify}}, // Heart Rate Measurement Characteristic Value [HRS_IDX_HR_MEAS_VAL] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&heart_rate_meas_uuid, ESP_GATT_PERM_READ, HRPS_HT_MEAS_MAX_LEN, 0, NULL}}, // Heart Rate Measurement Characteristic - Client Characteristic Configuration Descriptor [HRS_IDX_HR_MEAS_NTF_CFG] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_client_config_uuid, ESP_GATT_PERM_READ | ESP_GATT_PERM_WRITE, sizeof(uint16_t), sizeof(heart_measurement_ccc), (uint8_t *)heart_measurement_ccc}}, // Body Sensor Location Characteristic Declaration [HRS_IDX_BOBY_SENSOR_LOC_CHAR] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ, CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&char_prop_read}}, // Body Sensor Location Characteristic Value [HRS_IDX_BOBY_SENSOR_LOC_VAL] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&body_sensor_location_uuid, ESP_GATT_PERM_READ_ENCRYPTED, sizeof(uint8_t), sizeof(body_sensor_loc_val), (uint8_t *)body_sensor_loc_val}}, // Heart Rate Control Point Characteristic Declaration [HRS_IDX_HR_CTNL_PT_CHAR] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&character_declaration_uuid, ESP_GATT_PERM_READ, CHAR_DECLARATION_SIZE, CHAR_DECLARATION_SIZE, (uint8_t *)&char_prop_read_write}}, // Heart Rate Control Point Characteristic Value [HRS_IDX_HR_CTNL_PT_VAL] = {{ESP_GATT_AUTO_RSP}, {ESP_UUID_LEN_16, (uint8_t *)&heart_rate_ctrl_point, ESP_GATT_PERM_WRITE_ENCRYPTED | ESP_GATT_PERM_READ_ENCRYPTED, sizeof(uint8_t), sizeof(heart_ctrl_point), (uint8_t *)heart_ctrl_point}}, }; static char *esp_key_type_to_str(esp_ble_key_type_t key_type) { char *key_str = NULL; switch (key_type) { case ESP_LE_KEY_NONE: key_str = "ESP_LE_KEY_NONE"; break; case ESP_LE_KEY_PENC: key_str = "ESP_LE_KEY_PENC"; break; case ESP_LE_KEY_PID: key_str = "ESP_LE_KEY_PID"; break; case ESP_LE_KEY_PCSRK: key_str = "ESP_LE_KEY_PCSRK"; break; case ESP_LE_KEY_PLK: key_str = "ESP_LE_KEY_PLK"; break; case ESP_LE_KEY_LLK: key_str = "ESP_LE_KEY_LLK"; break; case ESP_LE_KEY_LENC: key_str = "ESP_LE_KEY_LENC"; break; case ESP_LE_KEY_LID: key_str = "ESP_LE_KEY_LID"; break; case ESP_LE_KEY_LCSRK: key_str = "ESP_LE_KEY_LCSRK"; break; default: key_str = "INVALID BLE KEY TYPE"; break; } return key_str; } static char *esp_auth_req_to_str(esp_ble_auth_req_t auth_req) { char *auth_str = NULL; switch (auth_req) { case ESP_LE_AUTH_NO_BOND: auth_str = "ESP_LE_AUTH_NO_BOND"; break; case ESP_LE_AUTH_BOND: auth_str = "ESP_LE_AUTH_BOND"; break; case ESP_LE_AUTH_REQ_MITM: auth_str = "ESP_LE_AUTH_REQ_MITM"; break; case ESP_LE_AUTH_REQ_BOND_MITM: auth_str = "ESP_LE_AUTH_REQ_BOND_MITM"; break; case ESP_LE_AUTH_REQ_SC_ONLY: auth_str = "ESP_LE_AUTH_REQ_SC_ONLY"; break; case ESP_LE_AUTH_REQ_SC_BOND: auth_str = "ESP_LE_AUTH_REQ_SC_BOND"; break; case ESP_LE_AUTH_REQ_SC_MITM: auth_str = "ESP_LE_AUTH_REQ_SC_MITM"; break; case ESP_LE_AUTH_REQ_SC_MITM_BOND: auth_str = "ESP_LE_AUTH_REQ_SC_MITM_BOND"; break; default: auth_str = "INVALID BLE AUTH REQ"; break; } return auth_str; } static void show_bonded_devices(void) { int dev_num = esp_ble_get_bond_device_num(); if (dev_num == 0) { ESP_LOGI(GATTS_TABLE_TAG, "Bonded devices number zero\n"); return; } esp_ble_bond_dev_t *dev_list = (esp_ble_bond_dev_t *)malloc(sizeof(esp_ble_bond_dev_t) * dev_num); if (!dev_list) { ESP_LOGI(GATTS_TABLE_TAG, "malloc failed, return\n"); return; } esp_ble_get_bond_device_list(&dev_num, dev_list); ESP_LOGI(GATTS_TABLE_TAG, "Bonded devices number %d", dev_num); for (int i = 0; i < dev_num; i++) { ESP_LOGI(GATTS_TABLE_TAG, "[%u] addr_type %u, addr " ESP_BD_ADDR_STR "", i, dev_list[i].bd_addr_type, ESP_BD_ADDR_HEX(dev_list[i].bd_addr)); } free(dev_list); } static void __attribute__((unused)) remove_all_bonded_devices(void) { int dev_num = esp_ble_get_bond_device_num(); if (dev_num == 0) { ESP_LOGI(GATTS_TABLE_TAG, "Bonded devices number zero\n"); return; } esp_ble_bond_dev_t *dev_list = (esp_ble_bond_dev_t *)malloc(sizeof(esp_ble_bond_dev_t) * dev_num); if (!dev_list) { ESP_LOGI(GATTS_TABLE_TAG, "malloc failed, return\n"); return; } esp_ble_get_bond_device_list(&dev_num, dev_list); for (int i = 0; i < dev_num; i++) { esp_ble_remove_bond_device(dev_list[i].bd_addr); } free(dev_list); } static void gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param) { ESP_LOGV(GATTS_TABLE_TAG, "GAP_EVT, event %d", event); switch (event) { case ESP_GAP_BLE_SCAN_RSP_DATA_SET_COMPLETE_EVT: adv_config_done &= (~SCAN_RSP_CONFIG_FLAG); if (adv_config_done == 0) { esp_ble_gap_start_advertising(&heart_rate_adv_params); } break; case ESP_GAP_BLE_ADV_DATA_SET_COMPLETE_EVT: adv_config_done &= (~ADV_CONFIG_FLAG); if (adv_config_done == 0) { esp_ble_gap_start_advertising(&heart_rate_adv_params); } break; case ESP_GAP_BLE_ADV_START_COMPLETE_EVT: // advertising start complete event to indicate advertising start successfully or failed if (param->adv_start_cmpl.status != ESP_BT_STATUS_SUCCESS) { ESP_LOGE(GATTS_TABLE_TAG, "Advertising start failed, status %x", param->adv_start_cmpl.status); break; } ESP_LOGI(GATTS_TABLE_TAG, "Advertising start successfully"); break; case ESP_GAP_BLE_PASSKEY_REQ_EVT: /* passkey request event */ ESP_LOGI(GATTS_TABLE_TAG, "Passkey request"); /* Call the following function to input the passkey which is displayed on the remote device */ // esp_ble_passkey_reply(heart_rate_profile_tab[HEART_PROFILE_APP_IDX].remote_bda, true, 0x00); break; case ESP_GAP_BLE_OOB_REQ_EVT: { ESP_LOGI(GATTS_TABLE_TAG, "OOB request"); uint8_t tk[16] = {1}; // If you paired with OOB, both devices need to use the same tk esp_ble_oob_req_reply(param->ble_security.ble_req.bd_addr, tk, sizeof(tk)); break; } case ESP_GAP_BLE_LOCAL_IR_EVT: /* BLE local IR event */ ESP_LOGI(GATTS_TABLE_TAG, "Local identity root"); break; case ESP_GAP_BLE_LOCAL_ER_EVT: /* BLE local ER event */ ESP_LOGI(GATTS_TABLE_TAG, "Local encryption root"); break; case ESP_GAP_BLE_NC_REQ_EVT: /* The app will receive this evt when the IO has DisplayYesNO capability and the peer device IO also has DisplayYesNo capability. show the passkey number to the user to confirm it with the number displayed by peer device. */ esp_ble_confirm_reply(param->ble_security.ble_req.bd_addr, true); ESP_LOGI(GATTS_TABLE_TAG, "Numeric Comparison request, passkey %" PRIu32, param->ble_security.key_notif.passkey); break; case ESP_GAP_BLE_SEC_REQ_EVT: /* send the positive(true) security response to the peer device to accept the security request. If not accept the security request, should send the security response with negative(false) accept value*/ esp_ble_gap_security_rsp(param->ble_security.ble_req.bd_addr, true); break; case ESP_GAP_BLE_PASSKEY_NOTIF_EVT: /// the app will receive this evt when the IO has Output capability and the peer device IO has Input capability. /// show the passkey number to the user to input it in the peer device. ESP_LOGI(GATTS_TABLE_TAG, "Passkey notify, passkey %06" PRIu32, param->ble_security.key_notif.passkey); break; case ESP_GAP_BLE_KEY_EVT: // shows the ble key info share with peer device to the user. ESP_LOGI(GATTS_TABLE_TAG, "Key exchanged, key_type %s", esp_key_type_to_str(param->ble_security.ble_key.key_type)); break; case ESP_GAP_BLE_AUTH_CMPL_EVT: { esp_bd_addr_t bd_addr; memcpy(bd_addr, param->ble_security.auth_cmpl.bd_addr, sizeof(esp_bd_addr_t)); ESP_LOGI(GATTS_TABLE_TAG, "Authentication complete, addr_type %u, addr " ESP_BD_ADDR_STR "", param->ble_security.auth_cmpl.addr_type, ESP_BD_ADDR_HEX(bd_addr)); if (!param->ble_security.auth_cmpl.success) { ESP_LOGI(GATTS_TABLE_TAG, "Pairing failed, reason 0x%x", param->ble_security.auth_cmpl.fail_reason); } else { ESP_LOGI(GATTS_TABLE_TAG, "Pairing successfully, auth_mode %s", esp_auth_req_to_str(param->ble_security.auth_cmpl.auth_mode)); } show_bonded_devices(); break; } case ESP_GAP_BLE_REMOVE_BOND_DEV_COMPLETE_EVT: { ESP_LOGD(GATTS_TABLE_TAG, "Bond device remove, status %d, device " ESP_BD_ADDR_STR "", param->remove_bond_dev_cmpl.status, ESP_BD_ADDR_HEX(param->remove_bond_dev_cmpl.bd_addr)); break; } case ESP_GAP_BLE_SET_LOCAL_PRIVACY_COMPLETE_EVT: if (param->local_privacy_cmpl.status != ESP_BT_STATUS_SUCCESS) { ESP_LOGE(GATTS_TABLE_TAG, "Local privacy config failed, status %x", param->local_privacy_cmpl.status); break; } ESP_LOGI(GATTS_TABLE_TAG, "Local privacy config successfully"); esp_err_t ret = esp_ble_gap_config_adv_data(&heart_rate_adv_config); if (ret) { ESP_LOGE(GATTS_TABLE_TAG, "config adv data failed, error code = %x", ret); } else { adv_config_done |= ADV_CONFIG_FLAG; } ret = esp_ble_gap_config_adv_data(&heart_rate_scan_rsp_config); if (ret) { ESP_LOGE(GATTS_TABLE_TAG, "config adv data failed, error code = %x", ret); } else { adv_config_done |= SCAN_RSP_CONFIG_FLAG; } break; default: break; } } static void gatts_profile_event_handler(esp_gatts_cb_event_t event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_param_t *param) { ESP_LOGV(GATTS_TABLE_TAG, "event = %x", event); switch (event) { case ESP_GATTS_REG_EVT: ESP_LOGI(GATTS_TABLE_TAG, "GATT server register, status %d, app_id %d, gatts_if %d", param->reg.status, param->reg.app_id, gatts_if); esp_ble_gap_set_device_name(example_device_name); // generate a resolvable random address esp_ble_gap_config_local_privacy(true); esp_ble_gatts_create_attr_tab(heart_rate_gatt_db, gatts_if, HRS_IDX_NB, HEART_RATE_SVC_INST_ID); break; case ESP_GATTS_READ_EVT: break; case ESP_GATTS_WRITE_EVT: ESP_LOGI(GATTS_TABLE_TAG, "Characteristic write, value "); ESP_LOG_BUFFER_HEX(GATTS_TABLE_TAG, param->write.value, param->write.len); App_Communication_DealBtData(param->write.value, param->write.len); break; case ESP_GATTS_EXEC_WRITE_EVT: break; case ESP_GATTS_MTU_EVT: break; case ESP_GATTS_CONF_EVT: break; case ESP_GATTS_UNREG_EVT: break; case ESP_GATTS_DELETE_EVT: break; case ESP_GATTS_START_EVT: break; case ESP_GATTS_STOP_EVT: break; case ESP_GATTS_CONNECT_EVT: ESP_LOGI(GATTS_TABLE_TAG, "Connected, conn_id %u, remote " ESP_BD_ADDR_STR "", param->connect.conn_id, ESP_BD_ADDR_HEX(param->connect.remote_bda)); /* start security connect with peer device when receive the connect event sent by the master */ esp_ble_set_encryption(param->connect.remote_bda, ESP_BLE_SEC_ENCRYPT_MITM); break; case ESP_GATTS_DISCONNECT_EVT: ESP_LOGI(GATTS_TABLE_TAG, "Disconnected, remote " ESP_BD_ADDR_STR ", reason 0x%x", ESP_BD_ADDR_HEX(param->disconnect.remote_bda), param->disconnect.reason); /* start advertising again when missing the connect */ esp_ble_gap_start_advertising(&heart_rate_adv_params); break; case ESP_GATTS_OPEN_EVT: break; case ESP_GATTS_CANCEL_OPEN_EVT: break; case ESP_GATTS_CLOSE_EVT: break; case ESP_GATTS_LISTEN_EVT: break; case ESP_GATTS_CONGEST_EVT: break; case ESP_GATTS_CREAT_ATTR_TAB_EVT: { if (param->create.status == ESP_GATT_OK) { if (param->add_attr_tab.num_handle == HRS_IDX_NB) { ESP_LOGI(GATTS_TABLE_TAG, "Attribute table create successfully, num_handle %x", param->add_attr_tab.num_handle); memcpy(heart_rate_handle_table, param->add_attr_tab.handles, sizeof(heart_rate_handle_table)); esp_ble_gatts_start_service(heart_rate_handle_table[HRS_IDX_SVC]); } else { ESP_LOGE(GATTS_TABLE_TAG, "Attribute table create abnormally, num_handle (%d) doesn't equal to HRS_IDX_NB(%d)", param->add_attr_tab.num_handle, HRS_IDX_NB); } } else { ESP_LOGE(GATTS_TABLE_TAG, "Attribute table create failed, error code = %x", param->create.status); } break; } default: break; } } static void gatts_event_handler(esp_gatts_cb_event_t event, esp_gatt_if_t gatts_if, esp_ble_gatts_cb_param_t *param) { /* If event is register event, store the gatts_if for each profile */ if (event == ESP_GATTS_REG_EVT) { if (param->reg.status == ESP_GATT_OK) { heart_rate_profile_tab[HEART_PROFILE_APP_IDX].gatts_if = gatts_if; } else { ESP_LOGI(GATTS_TABLE_TAG, "Reg app failed, app_id %04x, status %d", param->reg.app_id, param->reg.status); return; } } do { int idx; for (idx = 0; idx < HEART_PROFILE_NUM; idx++) { if (gatts_if == ESP_GATT_IF_NONE || /* ESP_GATT_IF_NONE, not specify a certain gatt_if, need to call every profile cb function */ gatts_if == heart_rate_profile_tab[idx].gatts_if) { if (heart_rate_profile_tab[idx].gatts_cb) { heart_rate_profile_tab[idx].gatts_cb(event, gatts_if, param); } } } } while (0); } /** * @brief 初始化蓝牙模块 * */ void Dri_BT_Init(void) { // 避免重复初始化 if (bt_initialized) { ESP_LOGI(GATTS_TABLE_TAG, "Bluetooth already initialized"); return; } esp_err_t ret; // 获取当前蓝牙状态 esp_bt_controller_status_t bt_status = esp_bt_controller_get_status(); // 蓝牙未被初始化 if (bt_status == ESP_BT_CONTROLLER_STATUS_IDLE) { // 初始化NVS.为了存入蓝牙连接信息; ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) { ESP_ERROR_CHECK(nvs_flash_erase()); ret = nvs_flash_init(); } ESP_ERROR_CHECK(ret); // 释放经典蓝牙部署 ESP_ERROR_CHECK(esp_bt_controller_mem_release(ESP_BT_MODE_CLASSIC_BT)); // 初始化蓝牙硬件配置 esp_bt_controller_config_t bt_cfg = BT_CONTROLLER_INIT_CONFIG_DEFAULT(); esp_bt_controller_init(&bt_cfg); esp_bt_controller_enable(ESP_BT_MODE_BLE); // 初始化蓝牙应用层软件配置 esp_bluedroid_init(); esp_bluedroid_enable(); } // 蓝牙未初始化 if (!bt_initialized) { // 注册回调函数 esp_ble_gatts_register_callback(gatts_event_handler); esp_ble_gap_register_callback(gap_event_handler); esp_ble_gatts_app_register(ESP_HEART_RATE_APP_ID); // 设置安全参数,未来传输数据需要加密,采用非对称加密方式(公钥和私钥) esp_ble_auth_req_t auth_req = ESP_LE_AUTH_REQ_SC_MITM_BOND; // bonding with peer device after authentication esp_ble_io_cap_t iocap = ESP_IO_CAP_NONE; // set the IO capability to No output No input uint8_t key_size = 16; // the key size should be 7~16 bytes uint8_t init_key = ESP_BLE_ENC_KEY_MASK | ESP_BLE_ID_KEY_MASK; uint8_t rsp_key = ESP_BLE_ENC_KEY_MASK | ESP_BLE_ID_KEY_MASK; // 安全密钥 uint32_t passkey = 123456; uint8_t auth_option = ESP_BLE_ONLY_ACCEPT_SPECIFIED_AUTH_DISABLE; uint8_t oob_support = ESP_BLE_OOB_DISABLE; esp_ble_gap_set_security_param(ESP_BLE_SM_SET_STATIC_PASSKEY, &passkey, sizeof(uint32_t)); esp_ble_gap_set_security_param(ESP_BLE_SM_AUTHEN_REQ_MODE, &auth_req, sizeof(uint8_t)); esp_ble_gap_set_security_param(ESP_BLE_SM_IOCAP_MODE, &iocap, sizeof(uint8_t)); esp_ble_gap_set_security_param(ESP_BLE_SM_MAX_KEY_SIZE, &key_size, sizeof(uint8_t)); esp_ble_gap_set_security_param(ESP_BLE_SM_ONLY_ACCEPT_SPECIFIED_SEC_AUTH, &auth_option, sizeof(uint8_t)); esp_ble_gap_set_security_param(ESP_BLE_SM_OOB_SUPPORT, &oob_support, sizeof(uint8_t)); esp_ble_gap_set_security_param(ESP_BLE_SM_SET_INIT_KEY, &init_key, sizeof(uint8_t)); esp_ble_gap_set_security_param(ESP_BLE_SM_SET_RSP_KEY, &rsp_key, sizeof(uint8_t)); } bt_initialized = true; } #include "Dri_Wifi.h" // 蓝牙的两种情况 // 二维码扫描前需要配网低功耗蓝牙和自定义GATT低功耗蓝牙 // WIFI配网成功后,只需要自定义GATT低功耗蓝牙 typedef enum { BT_MODE_GATT, // GATT服务模式 BT_MODE_DUAL // 双模式(同时支持配网和GATT) } bt_mode_t; // 默认双模式 static bt_mode_t current_bt_mode = BT_MODE_DUAL; static wifi_conn wifi_success_cb; static const char *TAG = "WIFI"; const int WIFI_CONNECTED_EVENT = BIT0; static EventGroupHandle_t wifi_event_group; #define PROV_QR_VERSION "v1" #define PROV_TRANSPORT_BLE "ble" #define QRCODE_BASE_URL "https://espressif.github.io/esp-jumpstart/qrcode.html" // WIFI各种事件的回调函数 static void event_handler(void *arg, esp_event_base_t event_base, int32_t event_id, void *event_data) { // 记录失败次数 static int retries; // 记录WIFI连接失败次数 static uint8_t wifi_conn_retries = 0; if (event_base == WIFI_PROV_EVENT) // WIFI配置事件 { switch (event_id) { case WIFI_PROV_START: ESP_LOGI(TAG, "Provisioning started"); break; case WIFI_PROV_CRED_RECV: { wifi_sta_config_t *wifi_sta_cfg = (wifi_sta_config_t *)event_data; ESP_LOGI(TAG, "Received Wi-Fi credentials" "\n\tSSID : %s\n\tPassword : %s", (const char *)wifi_sta_cfg->ssid, (const char *)wifi_sta_cfg->password); break; } case WIFI_PROV_CRED_FAIL: { wifi_prov_sta_fail_reason_t *reason = (wifi_prov_sta_fail_reason_t *)event_data; ESP_LOGE(TAG, "Provisioning failed!\n\tReason : %s" "\n\tPlease reset to factory and retry provisioning", (*reason == WIFI_PROV_STA_AUTH_ERROR) ? "Wi-Fi station authentication failed" : "Wi-Fi access-point not found"); retries++; if (retries >= 5) { ESP_LOGI(TAG, "Failed to connect with provisioned AP, resetting provisioned credentials"); wifi_prov_mgr_reset_sm_state_on_failure(); retries = 0; } break; } case WIFI_PROV_CRED_SUCCESS: ESP_LOGI(TAG, "Provisioning successful"); retries = 0; break; case WIFI_PROV_END: // 配置完成后,取消初始化管理器 wifi_prov_mgr_deinit(); break; default: break; } } else if (event_base == WIFI_EVENT) // WIFI事件 { switch (event_id) { case WIFI_EVENT_STA_START: esp_wifi_connect(); break; case WIFI_EVENT_STA_DISCONNECTED: ESP_LOGI(TAG, "Disconnected. Connecting to the AP again..."); wifi_conn_retries++; if (wifi_conn_retries >= 10) { // 重置WIFI配置 wifi_prov_mgr_reset_provisioning(); // 重启芯片 esp_restart(); } esp_wifi_connect(); break; default: break; } } else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) // 连接成功 { // 重置记录WIFI连接失败次数 wifi_conn_retries = 0; // 引用运行回调函数代码 wifi_success_cb(); ip_event_got_ip_t *event = (ip_event_got_ip_t *)event_data; ESP_LOGI(TAG, "Connected with IP Address:" IPSTR, IP2STR(&event->ip_info.ip)); xEventGroupSetBits(wifi_event_group, WIFI_CONNECTED_EVENT); } else if (event_base == PROTOCOMM_TRANSPORT_BLE_EVENT) // 蓝牙事件 { switch (event_id) { case PROTOCOMM_TRANSPORT_BLE_CONNECTED: ESP_LOGI(TAG, "BLE transport: Connected!"); break; case PROTOCOMM_TRANSPORT_BLE_DISCONNECTED: ESP_LOGI(TAG, "BLE transport: Disconnected!"); break; default: break; } } } static void wifi_init_sta(void) { /* Start Wi-Fi in station mode */ ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA)); ESP_ERROR_CHECK(esp_wifi_start()); } static void get_device_service_name(char *service_name, size_t max) { uint8_t eth_mac[6]; const char *ssid_prefix = "PROV_"; esp_wifi_get_mac(WIFI_IF_STA, eth_mac); snprintf(service_name, max, "%s%02X%02X%02X", ssid_prefix, eth_mac[3], eth_mac[4], eth_mac[5]); } esp_err_t custom_prov_data_handler(uint32_t session_id, const uint8_t *inbuf, ssize_t inlen, uint8_t **outbuf, ssize_t *outlen, void *priv_data) { if (inbuf) { ESP_LOGI(TAG, "Received data: %.*s", inlen, (char *)inbuf); } char response[] = "SUCCESS"; *outbuf = (uint8_t *)strdup(response); if (*outbuf == NULL) { ESP_LOGE(TAG, "System out of memory"); return ESP_ERR_NO_MEM; } *outlen = strlen(response) + 1; /* +1 for NULL terminating byte */ return ESP_OK; } static void wifi_prov_print_qr(const char *name, const char *username, const char *pop, const char *transport) { if (!name || !transport) { ESP_LOGW(TAG, "Cannot generate QR code payload. Data missing."); return; } char payload[150] = {0}; snprintf(payload, sizeof(payload), "{\"ver\":\"%s\",\"name\":\"%s\"" ",\"transport\":\"%s\"}", PROV_QR_VERSION, name, transport); ESP_LOGI(TAG, "Scan this QR code from the provisioning application for Provisioning."); esp_qrcode_config_t cfg = ESP_QRCODE_CONFIG_DEFAULT(); esp_qrcode_generate(&cfg, payload); ESP_LOGI(TAG, "If QR code is not visible, copy paste the below URL in a browser.\n%s?data=%s", QRCODE_BASE_URL, payload); } /** * @brief 初始化WIFI模块 * */ void Dri_Wifi_Init(wifi_conn wifi_conn_success) { // 赋值回调函数 wifi_success_cb = wifi_conn_success; // 初始化NVS,用于保存WIFI名称于Flash esp_err_t ret = nvs_flash_init(); if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) { ESP_ERROR_CHECK(nvs_flash_erase()); ESP_ERROR_CHECK(nvs_flash_init()); } // 初始化TCP/IP ESP_ERROR_CHECK(esp_netif_init()); // 创建事件循环组 ESP_ERROR_CHECK(esp_event_loop_create_default()); wifi_event_group = xEventGroupCreate(); // 注册各种事件回调函数 ESP_ERROR_CHECK(esp_event_handler_register(WIFI_PROV_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL)); ESP_ERROR_CHECK(esp_event_handler_register(PROTOCOMM_TRANSPORT_BLE_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL)); ESP_ERROR_CHECK(esp_event_handler_register(PROTOCOMM_SECURITY_SESSION_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL)); ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL)); ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL)); // 根据TCP/IP网络协议,初始化WIFI esp_netif_create_default_wifi_sta(); wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT(); ESP_ERROR_CHECK(esp_wifi_init(&cfg)); // 初始化自定义GATT蓝牙 Dri_BT_Init(); // 配网配置信息 wifi_prov_mgr_config_t config = { .scheme = wifi_prov_scheme_ble, .scheme_event_handler = WIFI_PROV_SCHEME_BLE_EVENT_HANDLER_FREE_BTDM, }; // 配网初始化 ESP_ERROR_CHECK(wifi_prov_mgr_init(config)); bool provisioned = false; // wifi_prov_mgr_reset_provisioning(); // 检查是否配网 ESP_ERROR_CHECK(wifi_prov_mgr_is_provisioned(&provisioned)); // 根据是否配网,做对应操作 // 没有配网 if (!provisioned) { ESP_LOGI(TAG, "Starting provisioning"); // 配网模式:同时支持配网和GATT current_bt_mode = BT_MODE_DUAL; // WIFI设备名称 char service_name[12]; get_device_service_name(service_name, sizeof(service_name)); // 无安全设置 const char *service_key = NULL; // WIFI设备唯一标识 uint8_t custom_service_uuid[] = { /* LSB <--------------------------------------- * ---------------------------------------> MSB */ 0xb4, 0xdf, 0x5a, 0x1c, 0x3f, 0x6b, 0xf4, 0xbf, 0xea, 0x4a, 0x82, 0x03, 0x04, 0x90, 0x1a, 0x02, }; wifi_prov_scheme_ble_set_service_uuid(custom_service_uuid); // 创建WIFI设备节点信息 wifi_prov_mgr_endpoint_create("custom-data"); // 启动配网设备 wifi_prov_security_t security = WIFI_PROV_SECURITY_0; ESP_ERROR_CHECK(wifi_prov_mgr_start_provisioning(security, (const void *)NULL, service_name, service_key)); // 在网络中进行设备注册 wifi_prov_mgr_endpoint_register("custom-data", custom_prov_data_handler, NULL); // 打印二维码 wifi_prov_print_qr(service_name, NULL, NULL, PROV_TRANSPORT_BLE); // 启动双服务广播 start_dual_service_advertising(); } else { ESP_LOGI(TAG, "Already provisioned, starting Wi-Fi STA"); // 已配网:仅GATT模式 current_bt_mode = BT_MODE_GATT; // 配网初始化 wifi_prov_mgr_deinit(); // 启动WIFI wifi_init_sta(); // 启动GATT服务广播 esp_ble_gap_start_advertising(&heart_rate_adv_params); } // 等待WIFI连接成功 xEventGroupWaitBits(wifi_event_group, WIFI_CONNECTED_EVENT, true, true, portMAX_DELAY); } 蓝牙的两种情况怎么实现

最新推荐

recommend-type

深入解析 C++ 中的 iostream 模块

资源下载链接为: https://pan.quark.cn/s/9648a1f24758 我们一直以来都在使用 C++ 的输入输出功能进行各种练习。这些输入输出功能是由 iostream 库提供的,因此有必要对这个标准库进行讨论。它与 C 语言的 stdio 库不同,iostream 库从一开始就是通过多重继承和虚拟继承构建的面向对象的层次结构,并作为 C++ 标准库的一部分提供给程序员使用。iostream 库为内置类型对象提供了输入输出支持,同时也支持文件的输入输出。此外,类的设计者可以通过扩展 iostream 库,使其能够支持自定义类型的输入输出操作。那么,为什么需要通过扩展才能为自定义类型提供支持呢?
recommend-type

FPGA设计工具Quartus II 11.0使用教程

Quartus II 11.0是Altera公司推出的一款FPGA设计工具,适用于数字系统的设计、验证与实现。本教程介绍其基础知识和使用技巧,帮助初学者快速上手。Quartus II是Altera的主要开发环境,提供从设计输入到硬件编程的完整流程,包括逻辑综合、仿真、时序分析、引脚分配和配置等。11.0版本在性能和效率方面进行了多项优化。安装时需下载并解压“Quartus_II_11.0.rar”,按向导安装后启动。创建项目时,选择设备和开发板,命名并保存。添加源文件如VHDL或Verilog代码及IP核。设计输入使用文本编辑器编写HDL代码,需注意模块定义、信号声明和算法描述。编译时配置选项并执行“Build Design”,随后进行功能仿真,检查逻辑正确性。编译后自动进行时序分析,生成报告,并通过调整时钟偏移和优化逻辑提升性能。引脚分配需与硬件匹配,生成配置文件并通过JTAG或SPI编程。11.0版本新增了高速接口IP核支持,如PCI Express和Serial ATA,引入更强大的Qsys工具,提升综合速度和资源利用率。Quartus II 11.0功能强大,适合复杂数字系统开发。本资源来源于网络分享,仅用于学习交流,禁止用于商业用途,如有侵权请联系删除。
recommend-type

四桥臂三相逆变器动态电压恢复器 MATLAB仿真

四桥臂三相逆变器动态电压恢复器MATLAB仿真模型简介。资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
recommend-type

PKID查壳工具最新版发布,轻松识别安卓安装包加壳

根据提供的文件信息,我们可以详细解读以下知识点: ### PKiD(查壳)工具介绍 #### 标题分析 - **PKiD(查壳)**: 这是一个专门用于分析安卓安装包(APK文件)是否被加壳的应用程序。"查壳"是一种用于检测软件是否被保护层(即“壳”)包裹的技术术语。加壳是一种常见的软件保护手段,用于隐藏真实的代码逻辑,防止恶意逆向分析。 - **RAR格式文件**: 文件使用了RAR格式进行压缩,这是WinRAR软件用于文件压缩和解压缩的专有格式。 #### 描述分析 - **ApkScan-PKID查壳工具.zip**: 这指的是一款名为ApkScan的工具,它包含了PKID查壳功能。该工具被打包成ZIP格式,便于用户下载和使用。 - **安卓安装包**: 这是指Android平台的应用程序安装包,通常以APK作为文件扩展名。 - **加壳检测**: PKID查壳工具用于检测APK文件是否被加壳,加壳是一种常见的软件保护技术,用于加密和保护软件免遭逆向工程。 - **脱壳测试**: 如果检测到加壳,脱壳测试将用于尝试去除或绕过保护层,以便进行安全分析、调试或修改程序。 #### 标签分析 - **查壳**: 再次强调了工具的主要功能,即检测APK文件中的加壳情况。 - **最新版**: 表示这个文件是PKID查壳工具的最新版本。 - **PKID**: 这是工具的核心名称,代表着该软件的主要功能和用途。 #### 文件列表分析 - **PKiD(查壳).exe**: 这是一个可执行文件,说明PKID查壳工具是一个独立的应用程序,用户可以通过双击此文件直接运行程序,而无需安装。 ### 技术背景 #### 查壳工具的工作原理 查壳工具通常通过分析APK文件的头部信息、资源文件和代码段来检测加壳。它可能会检查PE文件格式的特定区域(APK基于DEX,但PE检查的概念相似),这些区域在加壳过程中可能会被特定的代码模式、字符串或签名标记。例如,某些壳会在文件头部加入特定的字符串,或者修改方法计数等信息。 #### 加壳技术 加壳技术通常用于防止软件被轻易反编译或逆向工程。它可以阻止潜在的窃取知识产权、绕过付费或防止代码分析等。加壳过程包括加密和压缩原始代码,然后在运行时解压和解密代码以供执行。 #### 脱壳技术 脱壳技术是指绕过或移除软件保护壳的过程。这通常需要对壳的工作原理有深入了解,并且需要一定的逆向工程技能。脱壳过程可能包括识别壳的签名、分析保护机制、修改代码和重定位等步骤。 #### 安全测试与逆向工程 查壳工具对于安全测试和逆向工程人员来说是非常重要的工具。它们可以帮助识别软件是否被加壳,从而决定是否需要进行脱壳操作以便深入分析软件的安全漏洞或版权问题。 #### 使用场景 - **安全测试**: 安全工程师在对移动应用程序进行安全评估时,需要确认是否有必要进行脱壳处理。 - **逆向工程**: 开发人员可能需要逆向工程某个应用,以更好地理解其工作原理或为了兼容性问题进行修改。 - **软件保护**: 对于软件开发者而言,了解常见的加壳和脱壳技术有助于更好地保护自己的应用免遭未授权的篡改和分析。 ### 结论 了解和掌握PKID查壳工具的使用对于任何需要对APK文件进行安全性分析的专业人士来说都是基础且关键的技能。该工具提供了一种快速判断软件是否加壳的方法,而且在发现壳的情况下,还可以推测出壳的来源公司,这对于后续的分析和处理提供了便利。然而,值得注意的是,进行脱壳操作往往需要对原始程序代码进行逆向工程,这在很多情况下可能涉及法律和道德问题,因此在使用此类工具时,必须确保其合法性和符合道德规范。
recommend-type

【心理学火柴人视频制作秘籍】:Coze工作流全攻略,带你从入门到精通

# 1. 心理学火柴人视频制作概述 ## 1.1 创作心理学火柴人视频的动机 心理学火柴人视频作为一种富有创意的视觉传达方式,不仅能够将复杂的心理学理论变得生动和易于理解,而且还能为观众提供轻松愉悦的学习体验。这种视频通常采用简化的角色——火柴人,通过动画的形式演绎心理学相关的内容,使得原本抽象的理论变得具体、形象。 ## 1.2 火柴人视频的普及与应用 随着互联
recommend-type

frame.onload不执行?

<think>在解决`frame.onload`不执行的问题时,我们需要考虑多种可能的原因和解决方案。下面我将详细解释这个问题,并提供相应的代码示例。##可能的原因及解决方案###1.事件绑定时机不正确如果我们在设置`src`属性之后再绑定`onload`事件,可能会错过事件的触发(因为资源可能已经加载完成)。所以,我们应该在设置`src`之前绑定`onload`事件。###2.资源加载失败如果资源加载失败,`onload`事件可能不会触发,而触发`onerror`事件。因此,我们需要同时监听`onerror`事件。###3.iframe内容为空如果我们使用`document.write`来设
recommend-type

一键关闭系统更新的工具介绍

从给定的文件信息中我们可以分析出几个相关的知识点,以下是详细说明: 【标题】“系统禁止更新工具.7z”暗示着这个压缩文件内包含的可能是一款软件工具,其主要功能是阻止或禁止操作系统的更新。这种工具可能针对的是Windows、Linux或者其他操作系统的自动更新功能。一般来说,用户可能出于稳定性考虑,希望控制更新时间,或者是因为特定的软件环境依赖于旧版本的系统兼容性,不希望系统自动更新导致兼容性问题。 【描述】“一健关闭系统更新”说明了该工具的使用方式非常简单直接。用户只需通过简单的操作,比如点击一个按钮或者执行一个命令,就能实现关闭系统自动更新的目的。这种一键式操作符合用户追求的易用性原则,使得不太精通系统操作的用户也能轻松控制更新设置。 【标签】“系统工具”表明这是一个与操作系统紧密相关的辅助工具。系统工具通常包括系统清理、性能优化、磁盘管理等多种功能,而本工具专注于管理系统更新,使其成为系统维护中的一环。 【压缩包子文件的文件名称列表】“系统禁止更新工具”是压缩包内的文件名。由于文件格式为“.7z”,这说明该工具采用了7-Zip压缩格式。7-Zip是一款开源且免费的压缩软件,支持非常高的压缩比,并且能够处理各种压缩文件格式,如ZIP、RAR等。它支持创建密码保护的压缩文件和分卷压缩,这在需要转移大量数据时特别有用。然而在这个上下文中,“系统禁止更新工具”文件名暗示了该压缩包内只包含了一个程序,即专门用于关闭系统更新的工具。 根据标题和描述,我们可以推测该工具可能的实现机制,例如: 1. 修改系统服务的配置:在Windows系统中,可以通过修改Windows Update服务的属性来禁用该服务,从而阻止系统自动下载和安装更新。 2. 修改注册表设置:通过编辑Windows注册表中的某些特定键值,可以关闭系统更新功能。这通常涉及到对HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate和HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU等路径下的设置进行修改。 3. 使用第三方软件:某些第三方工具提供了一键禁用系统更新的功能,通过修改操作系统的相关文件和配置来实现更新的禁用。这包括阻止Windows Update的运行、拦截更新下载等。 该工具的使用可能带来一些后果,比如系统安全风险的增加、系统漏洞得不到及时修复以及可能违反某些软件许可协议。用户在使用这类工具时应该清楚这些潜在的影响,并自行承担相应的风险。 总结来说,该“系统禁止更新工具”可以视为一个针对特定用户需求,尤其是企业用户或个人用户中对系统稳定性有较高要求的人群,提供的一个便捷的解决方案。它通过直接修改系统设置来禁止操作系统自动更新,但用户在使用此工具时需要谨慎,因为这可能会带来系统安全和稳定性的风险。
recommend-type

罗技GHUB驱动21.03.24版自定义设置与性能优化:专家级使用技巧

# 摘要 本文综合介绍了罗技GHUB驱动的安装、自定义设置、性能优化、进阶应用以及故障排除。通过对GHUB软件界面和功能的详细介绍,阐述了硬件识别、宏命令创建以及游戏特有设置的定制。同时,文中探讨了性能调整的理论基础,并提供实践中针对网络延迟和数据传输优化的具体技巧。进一步探讨了高级个性化配置和第三方软件集成的策略,最后针对
recommend-type

RX72M单片机读取差分编码器,输入输出滤波,差分转单端后将5V电压转为3.3v输入给单片机

<think>嗯,我需要帮助用户解决关于RX72M单片机读取差分编码器的问题。用户的需求很明确:如何用RX72M单片机读取差分编码器,实现输入输出滤波,将差分信号转为单端信号,并进行5V到3.3V的电平转换。首先回顾用户之前的几个引用。引用1提到ADC的差分输入模式,这让我想到用户可能需要处理模拟信号,但差分编码器通常是数字信号。用户的主要需求集中在数字信号处理,比如正交编码器的脉冲信号。因此,可能需要参考引用1中的差分输入设置,但注意这里适用的是数字接口而非ADC。引用2关于74HC245和SN74LVC1T45DBVR芯片的内容非常有价值。这两个都是电平转换方案,尤其是SN74LVC1T4
recommend-type

鼎捷易飞ERPV9.0委外进货单批量导入解决方案

根据提供的文件信息,我们可以从标题、描述、标签以及压缩包文件列表中提取以下知识点: 1. 委外进货单批量导入程序及模版格式 标题提到的“委外进货单批量导入程序”指的是一个软件应用,其主要功能是允许用户批量地将委外进货数据导入到ERP系统中。批量导入通常是指在ERP系统中不需要逐条手动输入数据,而是通过预先定义好的模板,一次性将大量数据导入系统。这样的程序对于提高工作效率、减少重复性工作以及避免人为错误具有重要意义。 2. 鼎捷易飞ERPV9.0 描述中提到的“鼎捷易飞ERPV9.0”是一个特定版本的ERP系统,由鼎捷软件公司开发。ERP(Enterprise Resource Planning,企业资源计划)系统是一种用于整合企业内部所有资源信息,实现信息流、物流、资金流、工作流的高度集成和自动化管理的软件。ERPV9.0是该系列产品的版本号,表明该程序和文件模板是为这一特定版本的ERP系统设计。 3. .NET C#源代码 标题中的“.NET C#源代码”表示程序是使用.NET框架和C#语言开发的。.NET是微软公司开发的一个软件框架,用于构建和运行Windows应用程序。C#(读作“C Sharp”)是.NET框架下的一种编程语言,具有面向对象、类型安全和垃圾回收等特点。开发者可能提供了源代码,以便企业用户可以自行修改、调整以满足特定需求。 4. 使用方法和步骤 描述中详细说明了程序的使用方法: - 首先编辑模版格式数据,即将需要导入的数据按照特定的格式要求填写到模板中。 - 然后在程序中选择单别(可能指的是单据类型)和日期等条件。 - 点击“导入数据”按钮,程序将提示用户选择含有数据的模板文件。 - 程序会进行数据校验,以确保数据的正确性。校验规则是特定的,如果用户不需要特定的校验条件,可以在程序中直接删除这部分代码。 - 最后,数据校验无误后,程序可以生成相应的进货单据。 5. 自定义程序和模板 在标签中提到的“易飞ERP委外进货单导入程序”、“委外进货单导入程序”和“易飞ERP自定义程序”表明,所提供的程序可以根据用户的特定需求进行定制。同时,模板格式的使用,也意味着用户可以根据自己的业务需要和ERP系统的要求调整模板内容,以便更好地适应数据导入过程。 6. 压缩包子文件的文件名称列表 提供的压缩包包含两个文件: - “委外进货单批量导入格式.xls”指的是一个Excel格式的文件,这个文件应该是一个符合要求的导入模板,用户需要按照这个模板的格式来准备需要导入的数据。 - “委外入库导入(源代码).zip”是一个包含源代码的压缩文件,其中可能包含程序的完整源代码,也可能仅包含与导入功能相关的部分代码。 7. 文件列表和数据导入流程 通过文件列表可以理解整个数据导入流程: - 用户首先需要准备好数据,并将其按照“委外进货单批量导入格式.xls”模板中的要求填入相应的数据。 - 用户然后使用“委外入库导入(源代码).zip”中的程序,根据程序使用说明进行配置。 - 最后,用户通过程序界面导入整理好的Excel模板文件,程序会自动处理数据导入的过程,并进行必要的数据校验,最终生成所需的进货单据。 以上总结的知识点涵盖了该压缩包文件的内容、用途、技术细节以及操作步骤,为了解和使用该委外进货单批量导入程序提供了充分的信息。