活动介绍

builtin-java classes where applicable 25/03/26 16:58:03 WARN HiveConf: HiveConf of name hive.metastore.event.db.notification.api.auth does not exist 25/03/26 16:58:09 ERROR SparkContext: Error initializing SparkContext. java.io.FileNotFoundException: File does not exist: hdfs://master:8020/spark-logs

时间: 2025-07-14 10:31:22 浏览: 14
<think>好的,我现在要解决用户遇到的SparkContext初始化时的FileNotFoundException问题,以及HiveConf警告关于hive.metastore.event.db.notification.api.auth的问题。首先,我需要分析这两个问题的可能原因,并提供相应的解决方案。 对于FileNotFoundException,用户提到是HDFS路径的问题。首先,需要确认文件或目录是否确实存在于HDFS中。可能用户在代码中指定的路径不正确,或者文件没有被正确上传到HDFS。这时候,我应该建议用户使用hadoop fs -ls命令检查路径是否存在。同时,在代码中,可能需要使用绝对路径,比如hdfs://namenode:port/path,避免相对路径导致的歧义。另外,权限问题也可能导致无法访问文件,需要检查HDFS权限设置,使用hadoop fs -chmod或-chown调整权限。还有,如果用户使用本地文件路径而不是HDFS路径,也会出现这个问题,需要确认是否正确使用了HDFS的URI。 接下来是HiveConf警告,关于hive.metastore.event.db.notification.api.auth。这个警告通常出现在Hive Metastore配置中相关参数未正确设置。可能用户使用的Hive版本需要特定的认证配置,或者相关的事件通知功能未被正确启用或禁用。解决方案包括检查hive-site.xml中的配置,确认hive.metastore.event.db.notification.api.auth是否设置为true或false,根据实际情况调整。如果用户不需要事件通知功能,可以将hive.metastore.event.db.listener.timetolive设置为0来禁用相关事件监听器。此外,同步Hive和Spark的配置文件,确保两者版本兼容,避免配置冲突。 另外,用户的环境可能存在版本兼容性问题,比如Spark和Hive的版本不匹配。需要确认使用的Spark版本是否与Hive Metastore兼容,必要时升级或降级版本。同时,查看完整的日志信息,寻找其他相关错误或警告,这有助于进一步定位问题。 在回答时,我需要确保结构清晰,分点列出每个问题的原因和解决步骤,并且给出的命令和代码示例正确无误。还要注意用户提到的站内引用,虽然引用内容看起来与当前问题关联不大,但可能需要适当提及或忽略。最后,生成的相关问题要围绕Spark和Hive的常见配置错误、权限问题以及环境兼容性展开,帮助用户进一步排查其他潜在问题。</think>针对SparkContext初始化时出现的`FileNotFoundException`和HiveConf警告问题,以下是分步解决方案: --- ### **1. HDFS路径导致的`FileNotFoundException`** #### 可能原因: - 代码中指定的HDFS路径不存在或权限不足 - 未正确使用HDFS协议头(如`hdfs://`) - Spark未正确配置HDFS客户端 #### 解决方案: 1. **检查路径存在性** 通过HDFS命令验证文件是否存在: ```bash hadoop fs -ls /your/hdfs/path ``` 若路径不存在,使用`hadoop fs -put`上传文件到HDFS[^1]。 2. **使用绝对路径** 在代码中显式指定HDFS协议头: ```scala val data = sc.textFile("hdfs://namenode:8020/your/hdfs/path") ``` 3. **检查权限** 修改HDFS目录权限: ```bash hadoop fs -chmod 755 /your/hdfs/path hadoop fs -chown spark_user:spark_group /your/hdfs/path ``` 4. **验证HDFS配置** 确保`core-site.xml`和`hdfs-site.xml`已放入Spark的`conf`目录。 --- ### **2. HiveConf警告`hive.metastore.event.db.notification.api.auth`** #### 可能原因: - Hive Metastore事件通知相关参数未正确配置 - Spark与Hive版本不兼容 #### 解决方案: 1. **调整Hive Metastore配置** 在`hive-site.xml`中添加以下参数: ```xml <property> <name>hive.metastore.event.db.notification.api.auth</name> <value>false</value> </property> ``` 2. **禁用无关事件监听器** 如果无需事件通知功能,设置事件监听存活时间: ```xml <property> <name>hive.metastore.event.db.listener.timetolive</name> <value>0</value> </property> ``` 3. **同步配置文件** 将Hive的`hive-site.xml`复制到Spark的`conf`目录,并重启Spark Session。 4. **版本兼容性检查** 确认Spark与Hive版本匹配(如Spark 3.x需搭配Hive 2.3+)。 --- ### **3. 其他建议** - 检查Spark日志中的完整堆栈信息,定位具体报错位置 - 使用`spark-submit`时添加`--verbose`参数输出详细日志 - 若使用Kerberos认证,确保已执行`kinit`并配置JAAS文件 ---
阅读全文

相关推荐

/home/hadoopmaster/jdk1.8.0_161/bin/java -javaagent:/home/hadoopmaster/idea-IC-221.6008.13/lib/idea_rt.jar=34515:/home/hadoopmaster/idea-IC-221.6008.13/bin -Dfile.encoding=UTF-8 -classpath /home/hadoopmaster/jdk1.8.0_161/jre/lib/charsets.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/deploy.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/cldrdata.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/dnsns.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/jaccess.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/jfxrt.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/localedata.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/nashorn.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/sunec.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/sunjce_provider.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/sunpkcs11.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/ext/zipfs.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/javaws.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/jce.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/jfr.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/jfxswt.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/jsse.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/management-agent.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/plugin.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/resources.jar:/home/hadoopmaster/jdk1.8.0_161/jre/lib/rt.jar:/root/IdeaProjects/kkk/out/production/kkk:/home/hadoopmaster/scala-2.12.15/lib/scala-reflect.jar:/home/hadoopmaster/scala-2.12.15/lib/scala-xml_2.12-1.0.6.jar:/home/hadoopmaster/scala-2.12.15/lib/scala-parser-combinators_2.12-1.0.7.jar:/home/hadoopmaster/scala-2.12.15/lib/scala-swing_2.12-2.0.3.jar:/home/hadoopmaster/scala-2.12.15/lib/scala-library.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xz-1.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jta-1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jpam-1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json-1.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/ST4-4.0.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/guice-3.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/ivy-2.5.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/oro-2.0.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/blas-2.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/core-1.1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/gson-2.2.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/tink-1.6.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/avro-1.10.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jsp-api-2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/okio-1.14.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/opencsv-2.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/shims-0.9.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xmlenc-0.52.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arpack-2.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/guava-14.0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jetty-6.1.26.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jline-2.14.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jsr305-3.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/lapack-2.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/log4j-1.2.17.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/minlog-1.3.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/stream-2.9.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/velocity-1.5.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/generex-1.0.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hk2-api-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/janino-3.0.16.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jdo-api-3.0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/objenesis-2.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/paranamer-2.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/py4j-0.10.9.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/pyrolite-4.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/HikariCP-2.5.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-io-2.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-cli-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/javax.inject-1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/libfb303-0.9.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/lz4-java-1.7.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/okhttp-3.12.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/snakeyaml-1.27.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/stax-api-1.0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/JTransforms-3.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/aopalliance-1.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/avro-ipc-1.10.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/breeze_2.12-1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-cli-1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-net-3.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/derby-10.14.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-jdbc-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hk2-utils-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/httpcore-4.4.14.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jaxb-api-2.2.11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-hk2-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jodd-core-3.5.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/orc-core-1.6.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/super-csv-2.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xml-apis-1.4.01.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/zookeeper-3.6.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/JLargeArrays-1.5.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/activation-1.1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/automaton-1.11-8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-dbcp-1.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-lang-2.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-text-1.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-serde-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-shims-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/javolution-5.5.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/libthrift-0.12.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/orc-shims-1.6.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/slf4j-api-1.7.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/zjsonpatch-0.3.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/zstd-jni-1.5.0-4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/chill-java-0.10.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/chill_2.12-0.10.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/guice-servlet-3.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-auth-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-hdfs-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-common-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hk2-locator-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/httpclient-4.5.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-xc-1.9.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jetty-util-6.1.26.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/joda-time-2.10.10.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kryo-shaded-4.0.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-jmx-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-jvm-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/rocksdbjni-6.20.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spire_2.12-0.17.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xercesImpl-2.12.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/aircompressor-0.21.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/algebra_2.12-2.0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/annotations-17.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/antlr4-runtime-4.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/api-util-1.0.0-M20.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arrow-format-2.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arrow-vector-2.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/avro-mapred-1.10.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-codec-1.15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-pool-1.5.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/compress-lzf-1.0.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-beeline-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/javax.jdo-3.2.0-m3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jaxb-runtime-2.3.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-client-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-common-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-server-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/leveldbjni-all-1.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-core-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-json-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/RoaringBitmap-0.9.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/antlr-runtime-3.5.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-math3-3.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-client-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-common-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-core-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/javassist-3.25.0-GA.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jul-to-slf4j-1.7.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/protobuf-java-2.5.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/snappy-java-1.1.8.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/transaction-api-1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/bonecp-0.8.0.RELEASE.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-crypto-1.1.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-digester-1.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-lang3-3.12.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/curator-client-2.7.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-exec-2.3.9-core.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-metastore-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-jaxrs-1.9.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.inject-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/orc-mapreduce-1.6.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-xml_2.12-1.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/shapeless_2.12-2.3.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/slf4j-log4j12-1.7.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-sql_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/threeten-extra-1.5.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/zookeeper-jute-3.6.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-compress-1.21.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-logging-1.1.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/curator-recipes-2.7.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-api-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-shims-0.23-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jcl-over-slf4j-1.7.30.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-column-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-common-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-hadoop-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-library-2.12.15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-reflect-2.12.15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-core_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-hive_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-repl_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-tags_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-yarn_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/api-asn1-api-1.0.0-M20.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/breeze-macros_2.12-1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/cats-kernel_2.12-2.1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-httpclient-3.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/flatbuffers-java-1.9.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-llap-common-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-service-rpc-3.1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-storage-api-2.7.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jetty-sslengine-6.1.26.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/metrics-graphite-4.2.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/netty-all-4.1.68.Final.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-jackson-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-compiler-2.12.15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-mesos_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-mllib_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spire-util_2.12-0.17.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/xbean-asm9-shaded-4.20.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/apacheds-i18n-2.0.0-M15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arpack_combined_all-0.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arrow-memory-core-2.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-beanutils-1.9.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-compiler-3.0.16.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/curator-framework-2.7.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/datanucleus-core-4.1.17.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-shims-common-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-core-asl-1.9.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-databind-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.ws.rs-api-2.1.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-client-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/macro-compat_2.12-1.1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-encoding-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-graphx_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-sketch_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-unsafe_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/univocity-parsers-2.9.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/arrow-memory-netty-2.0.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/datanucleus-rdbms-4.1.19.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-annotations-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-client-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-common-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-kvstore_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spire-macros_2.12-0.17.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-collections-3.2.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/commons-configuration-1.6.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/datanucleus-api-jdo-4.2.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-mapper-asl-1.9.13.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.servlet-api-4.0.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json4s-ast_2.12-3.7.0-M11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-catalyst_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-launcher_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/audience-annotations-0.5.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-shims-scheduler-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hive-vector-code-gen-2.3.9.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-annotations-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.xml.bind-api-2.3.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json4s-core_2.12-3.7.0-M11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-streaming_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spire-platform_2.12-0.17.0.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-apps-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-core-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-node-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-rbac-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/logging-interceptor-3.12.12.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/mesos-1.4.0-shaded-protobuf.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/osgi-resource-locator-1.0.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-kubernetes_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-tags_2.12-3.2.1-tests.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/aopalliance-repackaged-2.6.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/htrace-core-3.1.0-incubating.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/istack-commons-runtime-3.0.8.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.annotation-api-1.3.5.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jakarta.validation-api-2.0.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json4s-scalap_2.12-3.7.0-M11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-batch-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-mllib-local_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-container-servlet-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/json4s-jackson_2.12-3.7.0-M11.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-common-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-events-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-policy-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-dataformat-yaml-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-datatype-jsr310-2.11.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-metrics-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-server-common-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-network-common_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jackson-module-scala_2.12-2.12.3.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-discovery-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/parquet-format-structures-1.12.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-network-shuffle_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/apacheds-kerberos-codec-2.0.0-M15.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-app-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-extensions-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-networking-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-scheduling-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-core-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-yarn-server-web-proxy-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/jersey-container-servlet-core-2.34.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-autoscaling-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-flowcontrol-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-collection-compat_2.12-2.1.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/spark-hive-thriftserver_2.12-3.2.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-certificates-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-coordination-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-storageclass-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/scala-parser-combinators_2.12-1.1.2.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-common-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-apiextensions-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-shuffle-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/hadoop-mapreduce-client-jobclient-2.7.4.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/kubernetes-model-admissionregistration-5.4.1.jar:/home/hadoopmaster/spark-3.2.1-bin-hadoop2.7/jars/dropwizard-metrics-hadoop-metrics2-reporter-0.1.2.jar kkk.WordCount Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties 25/06/02 20:17:03 INFO SparkContext: Running Spark version 3.2.1 25/06/02 20:17:04 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 25/06/02 20:17:04 INFO ResourceUtils: ============================================================== 25/06/02 20:17:04 INFO ResourceUtils: No custom resources configured for spark.driver. 25/06/02 20:17:04 INFO ResourceUtils: ============================================================== 25/06/02 20:17:04 INFO SparkContext: Submitted application: WordCount 25/06/02 20:17:04 INFO ResourceProfile: Default ResourceProfile created, executor resources: Map(cores -> name: cores, amount: 1, script: , vendor: , memory -> name: memory, amount: 1024, script: , vendor: , offHeap -> name: offHeap, amount: 0, script: , vendor: ), task resources: Map(cpus -> name: cpus, amount: 1.0) 25/06/02 20:17:04 INFO ResourceProfile: Limiting resource is cpu 25/06/02 20:17:04 INFO ResourceProfileManager: Added ResourceProfile id: 0 25/06/02 20:17:04 INFO SecurityManager: Changing view acls to: root 25/06/02 20:17:04 INFO SecurityManager: Changing modify acls to: root 25/06/02 20:17:04 INFO SecurityManager: Changing view acls groups to: 25/06/02 20:17:04 INFO SecurityManager: Changing modify acls groups to: 25/06/02 20:17:04 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); groups with view permissions: Set(); users with modify permissions: Set(root); groups with modify permissions: Set() 25/06/02 20:17:05 INFO Utils: Successfully started service 'sparkDriver' on port 41615. 25/06/02 20:17:05 INFO SparkEnv: Registering MapOutputTracker 25/06/02 20:17:05 INFO SparkEnv: Registering BlockManagerMaster 25/06/02 20:17:05 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 25/06/02 20:17:05 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 25/06/02 20:17:05 INFO SparkEnv: Registering BlockManagerMasterHeartbeat 25/06/02 20:17:05 INFO DiskBlockManager: Created local directory at /tmp/blockmgr-68486311-3f69-48e8-8f69-e7afffcf5979 25/06/02 20:17:05 INFO MemoryStore: MemoryStore started with capacity 258.5 MiB 25/06/02 20:17:05 INFO SparkEnv: Registering OutputCommitCoordinator 25/06/02 20:17:06 INFO Utils: Successfully started service 'SparkUI' on port 4040. 25/06/02 20:17:06 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://hadoopmaster:4040 25/06/02 20:17:06 INFO Executor: Starting executor ID driver on host hadoopmaster 25/06/02 20:17:06 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 41907. 25/06/02 20:17:06 INFO NettyBlockTransferService: Server created on hadoopmaster:41907 25/06/02 20:17:06 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 25/06/02 20:17:06 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, hadoopmaster, 41907, None) 25/06/02 20:17:06 INFO BlockManagerMasterEndpoint: Registering block manager hadoopmaster:41907 with 258.5 MiB RAM, BlockManagerId(driver, hadoopmaster, 41907, None) 25/06/02 20:17:06 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, hadoopmaster, 41907, None) 25/06/02 20:17:06 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, hadoopmaster, 41907, None) 25/06/02 20:17:08 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 244.0 KiB, free 258.2 MiB) 25/06/02 20:17:09 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 23.4 KiB, free 258.2 MiB) 25/06/02 20:17:09 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on hadoopmaster:41907 (size: 23.4 KiB, free: 258.5 MiB) 25/06/02 20:17:09 INFO SparkContext: Created broadcast 0 from textFile at WordCount.scala:9 Exception in thread "main" org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: file:/home/hadoopmaster/words.txt at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:287) at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229) at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315) at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:205) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49) at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:300) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.rdd.RDD.partitions(RDD.scala:296) at org.apache.spark.Partitioner$.$anonfun$defaultPartitioner$4(Partitioner.scala:78) at org.apache.spark.Partitioner$.$anonfun$defaultPartitioner$4$adapted(Partitioner.scala:78) at scala.collection.immutable.List.map(List.scala:293) at org.apache.spark.Partitioner$.defaultPartitioner(Partitioner.scala:78) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$reduceByKey$4(PairRDDFunctions.scala:322) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:414) at org.apache.spark.rdd.PairRDDFunctions.reduceByKey(PairRDDFunctions.scala:322) at kkk.WordCount$.main(WordCount.scala:10) at kkk.WordCount.main(WordCount.scala) 25/06/02 20:17:09 INFO SparkContext: Invoking stop() from shutdown hook 25/06/02 20:17:09 INFO SparkUI: Stopped Spark web UI at http://hadoopmaster:4040 25/06/02 20:17:09 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! 25/06/02 20:17:09 INFO MemoryStore: MemoryStore cleared 25/06/02 20:17:09 INFO BlockManager: BlockManager stopped 25/06/02 20:17:09 INFO BlockManagerMaster: BlockManagerMaster stopped 25/06/02 20:17:09 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! 25/06/02 20:17:10 INFO SparkContext: Successfully stopped SparkContext 25/06/02 20:17:10 INFO ShutdownHookManager: Shutdown hook called 25/06/02 20:17:10 INFO ShutdownHookManager: Deleting directory /tmp/spark-213e3a91-227c-4e0a-8254-ab5c0f00786d Process finished with exit code 1

SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/opt/spark/spark-2.4.0-bin-hadoop2.7/jars/slf4j-log4j12-1.7.16.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/Hadoop/hadoop-2.7.2/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/opt/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 25/03/21 15:56:07 WARN Utils: Your hostname, master resolves to a loopback address: 127.0.0.1; using 192.168.180.130 instead (on interface ens33) 25/03/21 15:56:07 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address 25/03/21 15:56:08 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 25/03/21 15:56:09 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041. 25/03/21 15:56:12 WARN FileStreamSink: Error while looking for metadata directory. Traceback (most recent call last): File "/home/abz/PycharmProjects/untitled1/2024.10.22.test.py", line 6, in <module> df = spark.read.csv("传媒综合.csv", header=True, inferSchema=True, sep="|", encoding='utf-8') File "/opt/spark/spark-2.4.0-bin-hadoop2.7/python/pyspark/sql/readwriter.py", line 472, in csv return self._df(self._jreader.csv(self._spark._sc._jvm.PythonUtils.toSeq(path))) File "/opt/spark/spark-2.4.0-bin-hadoop2.7/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__ File "/opt/spark/spark-2.4.0-bin-hadoop2.7/python/pyspark/sql/utils.py", line 63, in deco return f(*a, **kw) File "/opt/spark/spark-2.4.0-bin-hadoop2.7/python/lib/py4j-0

import os from pyspark.sql import SparkSession from pyspark.ml.classification import LogisticRegression from pyspark.ml.evaluation import MulticlassClassificationEvaluator from T2 import spark # 设置环境变量 spark_files = 'D:\spark实训\spark_files' os.environ['PYSPARK_PYTHON'] = os.path.join(spark_files, 'spark_virenvs\python.exe') os.environ['SPARK_HOME'] = os.path.join(spark_files, 'spark-3.4.4-bin-hadoop3') os.environ['JAVA_HOME'] = os.path.join(spark_files, 'Java\jdk-18.0.1') # 加载数据集 train_data = spark.read.csv("D:\spark大数据快速运算大作业\数据集\题目二\data_train.txt", inferSchema=True, header=False) test_data = spark.read.csv("D:\spark大数据快速运算大作业\数据集\题目二\data_test.txt", inferSchema=True, header=False) # 数据预处理 from pyspark.ml.feature import VectorAssembler assembler = VectorAssembler( inputCols=[f"_{i}" for i in range(1, 55)], # 前54列为特征 outputCol="features" ) train = assembler.transform(train_data).withColumnRenamed("_55", "label") test = assembler.transform(test_data).withColumnRenamed("_55", "label") from pyspark.ml.classification import RandomForestClassifier rf = RandomForestClassifier( numTrees=100, maxDepth=10, seed=42, labelCol="label", featuresCol="features" ) rf_model = rf.fit(train) rf_predictions = rf_model.transform(test) lr = LogisticRegression( maxIter=100, regParam=0.01, family="multinomial", # 多分类设置 labelCol="label", featuresCol="features" ) lr_model = lr.fit(train) lr_predictions = lr_model.transform(test) evaluator = MulticlassClassificationEvaluator( labelCol="label", predictionCol="prediction", metricName="accuracy" ) rf_accuracy = evaluator.evaluate(rf_predictions) lr_accuracy = evaluator.evaluate(lr_predictions) # F1分数评估 evaluator.setMetricName("f1") rf_f1 = evaluator.evaluate(rf_predictions) lr_f1 = evaluator.evaluate(lr_predictions) # 模型训练与评估完整流程 def train_evaluate(model, train_data, test_data): model = model.fit(train_data) predictions = model.transform(test_data) # 计算评估指标 accuracy = evaluator.setMetricName("accuracy").evaluate(predictions) f1 = evaluator.setMetricName("f1").evaluate(predictions) # 特征重要性(随机森林特有) if isinstance(model, RandomForestClassificationModel): importances = model.featureImportances print("Top 5 features:", importances.values.argsort()[-5:][::-1]) return accuracy, f1 # 执行比较 rf_acc, rf_f1 = train_evaluate(rf, train, test) lr_acc, lr_f1 = train_evaluate(lr, train, test)D:\spark实训\spark_files\spark_virenvs\python.exe D:\spark大数据快速运算大作业\22.py 25/06/12 17:24:08 WARN Shell: Did not find winutils.exe: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 25/06/12 17:24:08 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 正在加载数据... 训练随机森林模型... 随机森林训练时间: 21.42秒 随机森林评估结果: 准确率: 0.6507 F1分数: 0.6208 训练逻辑回归模型... 25/06/12 17:24:38 WARN InstanceBuilder: Failed to load implementation from:dev.ludovic.netlib.blas.JNIBLAS 逻辑回归训练时间: 14.64秒 逻辑回归评估结果: 准确率: 0.6712 F1分数: 0.6558 ===== 模型比较 ===== 随机森林训练时间: 21.42秒 vs 逻辑回归训练时间: 14.64秒 随机森林准确率: 0.6507 vs 逻辑回归准确率: 0.6712 随机森林F1分数: 0.6208 vs 逻辑回归F1分数: 0.6558 随机森林特征重要性(前10): 特征 0: 0.3683 特征 13: 0.2188 特征 35: 0.0529 特征 23: 0.0500 特征 25: 0.0368 特征 51: 0.0336 特征 52: 0.0281 特征 17: 0.0279 特征 5: 0.0244 特征 36: 0.0236 25/06/12 17:24:49 ERROR Instrumentation: java.lang.RuntimeException: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:735) at org.apache.hadoop.util.Shell.getSetPermissionCommand(Shell.java:270) at org.apache.hadoop.util.Shell.getSetPermissionCommand(Shell.java:286) at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:978) at org.apache.hadoop.fs.RawLocalFileSystem.mkOneDirWithMode(RawLocalFileSystem.java:660) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:700) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.ChecksumFileSystem.mkdirs(ChecksumFileSystem.java:788) at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.setupJob(FileOutputCommitter.java:356) at org.apache.hadoop.mapred.FileOutputCommitter.setupJob(FileOutputCommitter.java:131) at org.apache.hadoop.mapred.OutputCommitter.setupJob(OutputCommitter.java:265) at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.setupJob(HadoopMapReduceCommitProtocol.scala:188) at org.apache.spark.internal.io.SparkHadoopWriter$.write(SparkHadoopWriter.scala:79) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopDataset$1(PairRDDFunctions.scala:1091) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopDataset(PairRDDFunctions.scala:1089) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$4(PairRDDFunctions.scala:1062) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1027) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$3(PairRDDFunctions.scala:1009) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1008) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$2(PairRDDFunctions.scala:965) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:963) at org.apache.spark.rdd.RDD.$anonfun$saveAsTextFile$2(RDD.scala:1593) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1593) at org.apache.spark.rdd.RDD.$anonfun$saveAsTextFile$1(RDD.scala:1579) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1579) at org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:413) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$saveImpl$1(Pipeline.scala:250) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$saveImpl$1$adapted(Pipeline.scala:247) at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191) at scala.util.Try$.apply(Try.scala:213) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191) at org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:247) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:346) at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:168) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.super$save(Pipeline.scala:344) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$4(Pipeline.scala:344) at org.apache.spark.ml.MLEvents.withSaveInstanceEvent(events.scala:174) at org.apache.spark.ml.MLEvents.withSaveInstanceEvent$(events.scala:169) at org.apache.spark.ml.util.Instrumentation.withSaveInstanceEvent(Instrumentation.scala:42) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$3(Pipeline.scala:344) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$3$adapted(Pipeline.scala:344) at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191) at scala.util.Try$.apply(Try.scala:213) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.save(Pipeline.scala:344) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) at py4j.ClientServerConnection.run(ClientServerConnection.java:106) at java.lang.Thread.run(Thread.java:748) Caused by: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems at org.apache.hadoop.util.Shell.fileNotFoundException(Shell.java:547) at org.apache.hadoop.util.Shell.getHadoopHomeDir(Shell.java:568) at org.apache.hadoop.util.Shell.getQualifiedBin(Shell.java:591) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:688) at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:79) at org.apache.hadoop.conf.Configuration.getTimeDurationHelper(Configuration.java:1907) at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1867) at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1840) at org.apache.hadoop.util.ShutdownHookManager.getShutdownTimeout(ShutdownHookManager.java:183) at org.apache.hadoop.util.ShutdownHookManager$HookEntry.<init>(ShutdownHookManager.java:207) at org.apache.hadoop.util.ShutdownHookManager.addShutdownHook(ShutdownHookManager.java:304) at org.apache.spark.util.SparkShutdownHookManager.install(ShutdownHookManager.scala:181) at org.apache.spark.util.ShutdownHookManager$.shutdownHooks$lzycompute(ShutdownHookManager.scala:50) at org.apache.spark.util.ShutdownHookManager$.shutdownHooks(ShutdownHookManager.scala:48) at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:153) at org.apache.spark.util.ShutdownHookManager$.<init>(ShutdownHookManager.scala:58) at org.apache.spark.util.ShutdownHookManager$.<clinit>(ShutdownHookManager.scala) at org.apache.spark.util.Utils$.createTempDir(Utils.scala:341) at org.apache.spark.util.Utils$.createTempDir(Utils.scala:331) at org.apache.spark.deploy.SparkSubmit.prepareSubmitEnvironment(SparkSubmit.scala:370) at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:955) at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:192) at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:215) at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:91) at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1111) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1120) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. at org.apache.hadoop.util.Shell.checkHadoopHomeInner(Shell.java:467) at org.apache.hadoop.util.Shell.checkHadoopHome(Shell.java:438) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:515) ... 23 more 25/06/12 17:24:49 ERROR Instrumentation: java.lang.RuntimeException: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:735) at org.apache.hadoop.util.Shell.getSetPermissionCommand(Shell.java:270) at org.apache.hadoop.util.Shell.getSetPermissionCommand(Shell.java:286) at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:978) at org.apache.hadoop.fs.RawLocalFileSystem.mkOneDirWithMode(RawLocalFileSystem.java:660) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:700) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.ChecksumFileSystem.mkdirs(ChecksumFileSystem.java:788) at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.setupJob(FileOutputCommitter.java:356) at org.apache.hadoop.mapred.FileOutputCommitter.setupJob(FileOutputCommitter.java:131) at org.apache.hadoop.mapred.OutputCommitter.setupJob(OutputCommitter.java:265) at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.setupJob(HadoopMapReduceCommitProtocol.scala:188) at org.apache.spark.internal.io.SparkHadoopWriter$.write(SparkHadoopWriter.scala:79) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopDataset$1(PairRDDFunctions.scala:1091) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopDataset(PairRDDFunctions.scala:1089) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$4(PairRDDFunctions.scala:1062) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1027) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$3(PairRDDFunctions.scala:1009) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1008) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$2(PairRDDFunctions.scala:965) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:963) at org.apache.spark.rdd.RDD.$anonfun$saveAsTextFile$2(RDD.scala:1593) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1593) at org.apache.spark.rdd.RDD.$anonfun$saveAsTextFile$1(RDD.scala:1579) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1579) at org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:413) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$saveImpl$1(Pipeline.scala:250) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$saveImpl$1$adapted(Pipeline.scala:247) at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191) at scala.util.Try$.apply(Try.scala:213) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191) at org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:247) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:346) at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:168) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.super$save(Pipeline.scala:344) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$4(Pipeline.scala:344) at org.apache.spark.ml.MLEvents.withSaveInstanceEvent(events.scala:174) at org.apache.spark.ml.MLEvents.withSaveInstanceEvent$(events.scala:169) at org.apache.spark.ml.util.Instrumentation.withSaveInstanceEvent(Instrumentation.scala:42) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$3(Pipeline.scala:344) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$3$adapted(Pipeline.scala:344) at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191) at scala.util.Try$.apply(Try.scala:213) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.save(Pipeline.scala:344) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) at py4j.ClientServerConnection.run(ClientServerConnection.java:106) at java.lang.Thread.run(Thread.java:748) Caused by: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems at org.apache.hadoop.util.Shell.fileNotFoundException(Shell.java:547) at org.apache.hadoop.util.Shell.getHadoopHomeDir(Shell.java:568) at org.apache.hadoop.util.Shell.getQualifiedBin(Shell.java:591) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:688) at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:79) at org.apache.hadoop.conf.Configuration.getTimeDurationHelper(Configuration.java:1907) at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1867) at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1840) at org.apache.hadoop.util.ShutdownHookManager.getShutdownTimeout(ShutdownHookManager.java:183) at org.apache.hadoop.util.ShutdownHookManager$HookEntry.<init>(ShutdownHookManager.java:207) at org.apache.hadoop.util.ShutdownHookManager.addShutdownHook(ShutdownHookManager.java:304) at org.apache.spark.util.SparkShutdownHookManager.install(ShutdownHookManager.scala:181) at org.apache.spark.util.ShutdownHookManager$.shutdownHooks$lzycompute(ShutdownHookManager.scala:50) at org.apache.spark.util.ShutdownHookManager$.shutdownHooks(ShutdownHookManager.scala:48) at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:153) at org.apache.spark.util.ShutdownHookManager$.<init>(ShutdownHookManager.scala:58) at org.apache.spark.util.ShutdownHookManager$.<clinit>(ShutdownHookManager.scala) at org.apache.spark.util.Utils$.createTempDir(Utils.scala:341) at org.apache.spark.util.Utils$.createTempDir(Utils.scala:331) at org.apache.spark.deploy.SparkSubmit.prepareSubmitEnvironment(SparkSubmit.scala:370) at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:955) at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:192) at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:215) at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:91) at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1111) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1120) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. at org.apache.hadoop.util.Shell.checkHadoopHomeInner(Shell.java:467) at org.apache.hadoop.util.Shell.checkHadoopHome(Shell.java:438) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:515) ... 23 more Traceback (most recent call last): File "D:\spark大数据快速运算大作业\22.py", line 6, in <module> from T2 import spark File "D:\spark大数据快速运算大作业\T2.py", line 113, in <module> rf_model.write().overwrite().save("models/random_forest_model") File "D:\spark实训\spark_files\spark_virenvs\lib\site-packages\pyspark\ml\util.py", line 197, in save self._jwrite.save(path) File "D:\spark实训\spark_files\spark_virenvs\lib\site-packages\py4j\java_gateway.py", line 1322, in __call__ return_value = get_return_value( File "D:\spark实训\spark_files\spark_virenvs\lib\site-packages\pyspark\errors\exceptions\captured.py", line 169, in deco return f(*a, **kw) File "D:\spark实训\spark_files\spark_virenvs\lib\site-packages\py4j\protocol.py", line 326, in get_return_value raise Py4JJavaError( py4j.protocol.Py4JJavaError: An error occurred while calling o963.save. : java.lang.RuntimeException: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:735) at org.apache.hadoop.util.Shell.getSetPermissionCommand(Shell.java:270) at org.apache.hadoop.util.Shell.getSetPermissionCommand(Shell.java:286) at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:978) at org.apache.hadoop.fs.RawLocalFileSystem.mkOneDirWithMode(RawLocalFileSystem.java:660) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:700) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirsWithOptionalPermission(RawLocalFileSystem.java:699) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:672) at org.apache.hadoop.fs.ChecksumFileSystem.mkdirs(ChecksumFileSystem.java:788) at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.setupJob(FileOutputCommitter.java:356) at org.apache.hadoop.mapred.FileOutputCommitter.setupJob(FileOutputCommitter.java:131) at org.apache.hadoop.mapred.OutputCommitter.setupJob(OutputCommitter.java:265) at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.setupJob(HadoopMapReduceCommitProtocol.scala:188) at org.apache.spark.internal.io.SparkHadoopWriter$.write(SparkHadoopWriter.scala:79) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopDataset$1(PairRDDFunctions.scala:1091) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopDataset(PairRDDFunctions.scala:1089) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$4(PairRDDFunctions.scala:1062) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1027) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$3(PairRDDFunctions.scala:1009) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1008) at org.apache.spark.rdd.PairRDDFunctions.$anonfun$saveAsHadoopFile$2(PairRDDFunctions.scala:965) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:963) at org.apache.spark.rdd.RDD.$anonfun$saveAsTextFile$2(RDD.scala:1593) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1593) at org.apache.spark.rdd.RDD.$anonfun$saveAsTextFile$1(RDD.scala:1579) at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:405) at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1579) at org.apache.spark.ml.util.DefaultParamsWriter$.saveMetadata(ReadWrite.scala:413) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$saveImpl$1(Pipeline.scala:250) at org.apache.spark.ml.Pipeline$SharedReadWrite$.$anonfun$saveImpl$1$adapted(Pipeline.scala:247) at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191) at scala.util.Try$.apply(Try.scala:213) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191) at org.apache.spark.ml.Pipeline$SharedReadWrite$.saveImpl(Pipeline.scala:247) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.saveImpl(Pipeline.scala:346) at org.apache.spark.ml.util.MLWriter.save(ReadWrite.scala:168) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.super$save(Pipeline.scala:344) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$4(Pipeline.scala:344) at org.apache.spark.ml.MLEvents.withSaveInstanceEvent(events.scala:174) at org.apache.spark.ml.MLEvents.withSaveInstanceEvent$(events.scala:169) at org.apache.spark.ml.util.Instrumentation.withSaveInstanceEvent(Instrumentation.scala:42) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$3(Pipeline.scala:344) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.$anonfun$save$3$adapted(Pipeline.scala:344) at org.apache.spark.ml.util.Instrumentation$.$anonfun$instrumented$1(Instrumentation.scala:191) at scala.util.Try$.apply(Try.scala:213) at org.apache.spark.ml.util.Instrumentation$.instrumented(Instrumentation.scala:191) at org.apache.spark.ml.PipelineModel$PipelineModelWriter.save(Pipeline.scala:344) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) at py4j.ClientServerConnection.run(ClientServerConnection.java:106) at java.lang.Thread.run(Thread.java:748) Caused by: java.io.FileNotFoundException: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. -see https://wiki.apache.org/hadoop/WindowsProblems at org.apache.hadoop.util.Shell.fileNotFoundException(Shell.java:547) at org.apache.hadoop.util.Shell.getHadoopHomeDir(Shell.java:568) at org.apache.hadoop.util.Shell.getQualifiedBin(Shell.java:591) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:688) at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:79) at org.apache.hadoop.conf.Configuration.getTimeDurationHelper(Configuration.java:1907) at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1867) at org.apache.hadoop.conf.Configuration.getTimeDuration(Configuration.java:1840) at org.apache.hadoop.util.ShutdownHookManager.getShutdownTimeout(ShutdownHookManager.java:183) at org.apache.hadoop.util.ShutdownHookManager$HookEntry.<init>(ShutdownHookManager.java:207) at org.apache.hadoop.util.ShutdownHookManager.addShutdownHook(ShutdownHookManager.java:304) at org.apache.spark.util.SparkShutdownHookManager.install(ShutdownHookManager.scala:181) at org.apache.spark.util.ShutdownHookManager$.shutdownHooks$lzycompute(ShutdownHookManager.scala:50) at org.apache.spark.util.ShutdownHookManager$.shutdownHooks(ShutdownHookManager.scala:48) at org.apache.spark.util.ShutdownHookManager$.addShutdownHook(ShutdownHookManager.scala:153) at org.apache.spark.util.ShutdownHookManager$.<init>(ShutdownHookManager.scala:58) at org.apache.spark.util.ShutdownHookManager$.<clinit>(ShutdownHookManager.scala) at org.apache.spark.util.Utils$.createTempDir(Utils.scala:341) at org.apache.spark.util.Utils$.createTempDir(Utils.scala:331) at org.apache.spark.deploy.SparkSubmit.prepareSubmitEnvironment(SparkSubmit.scala:370) at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:955) at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:192) at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:215) at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:91) at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1111) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1120) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) Caused by: java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset. at org.apache.hadoop.util.Shell.checkHadoopHomeInner(Shell.java:467) at org.apache.hadoop.util.Shell.checkHadoopHome(Shell.java:438) at org.apache.hadoop.util.Shell.<clinit>(Shell.java:515) ... 23 more Process finished with exit code 1

zip
资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
zip
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运

大家在看

recommend-type

IM1266交直流自适应测量智能家居物联网用电监测微型电能计量模块技术手册.pdf

IM1266交直流自适应电能计量模块 1:可采集监测交/直流电压、电流、有功功率、电能、温度等电参数 2:产品自带外壳,设计美观,集成度高,体积小,嵌入式安装。 3:支持MODbus-RTU和DL/T645-2007双协议,通讯及应用简单。 4:工业级产品,测量电路或交流或直流,均能准确测量各项电参数。
recommend-type

CHM转HTML及汉化工具.rar

看CHM英文文档,有时候很累,这时候可以使用chmdecoder和google将其快速转化成中文,然后使用CHM汉化工具复制
recommend-type

filter LTC1068 模块AD设计 Altium设计 硬件原理图+PCB文件.rar

filter LTC1068 模块AD设计 Altium设计 硬件原理图+PCB文件,2层板设计,Altium Designer 设计的工程文件,包括完整的原理图及PCB文件,可以用Altium(AD)软件打开或修改,可作为你产品设计的参考。
recommend-type

谐响应分析步骤-ANSYS谐响应分析

谐响应分析 第三节:步骤 四个主要步骤: 建模 选择分析类型和选项 施加谐波载荷并求解 观看结果
recommend-type

基于边折叠的网格快速简化

Fast mesh simplification via edge collapsing This project contains an implementation of a "multiple choice" mesh simplfication algorithm. Over a number of iterations a random fraction of the total edges in the supplied mesh are processed with a subset of these processed edges collapsed (the lowest scoring collapses win when a collision occurs). The only non-standard dependency is the qef_simd.h single file header which you can find in my "qef" project, a version is also included here.

最新推荐

recommend-type

STC单片机实现电压测量功能

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
recommend-type

天津各个幼儿园的收费情况.doc

天津各个幼儿园的收费情况.doc
recommend-type

幼儿园中班语言教案在妈妈肚子里范文.doc

幼儿园中班语言教案在妈妈肚子里范文.doc
recommend-type

基于IEEE33节点的配电网重构:最优流法与网损电压对比研究 v2.1

基于IEEE33节点的配电网重构工作,重点探讨了最优流法的应用及其对网损和电压的影响。文章首先概述了配电网重构的重要性和目的,接着详细解析了用于电力系统潮流计算的程序,该程序使用牛顿-拉夫逊法进行迭代计算,以找到节点电压和功率的平衡。具体步骤包括定义变量、计算导纳矩阵、初始化功率参数、创建雅可比矩阵、求解修正方程、修正节点电压并判断收敛条件。随后,文章描述了通过调整开关状态来进行配电网重构的具体实践,最终对比了重构前后网损和电压的变化情况,验证了最优流法的有效性。 适合人群:从事电力系统研究、电网规划和运行的技术人员,尤其是对配电网重构和潮流计算感兴趣的工程师和研究人员。 使用场景及目标:适用于需要优化电网结构、降低网损、提升电压质量和供电可靠性的实际应用场景。目标是帮助技术人员理解和掌握最优流法在配电网重构中的应用,从而提高电力系统的效率和稳定性。 其他说明:文章不仅提供了理论和技术细节,还展示了具体的实践案例,有助于读者全面理解配电网重构的工作流程和技术要点。
recommend-type

Fragment中ListView组件的使用方法

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载与列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建与定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
recommend-type

Python程序TXLWizard生成TXL文件及转换工具介绍

### 知识点详细说明: #### 1. 图形旋转与TXL向导 图形旋转是图形学领域的一个基本操作,用于改变图形的方向。在本上下文中,TXL向导(TXLWizard)是由Esteban Marin编写的Python程序,它实现了特定的图形旋转功能,主要用于电子束光刻掩模的生成。光刻掩模是半导体制造过程中非常关键的一个环节,它确定了在硅片上沉积材料的精确位置。TXL向导通过生成特定格式的TXL文件来辅助这一过程。 #### 2. TXL文件格式与用途 TXL文件格式是一种基于文本的文件格式,它设计得易于使用,并且可以通过各种脚本语言如Python和Matlab生成。这种格式通常用于电子束光刻中,因为它的文本形式使得它可以通过编程快速创建复杂的掩模设计。TXL文件格式支持引用对象和复制对象数组(如SREF和AREF),这些特性可以用于优化电子束光刻设备的性能。 #### 3. TXLWizard的特性与优势 - **结构化的Python脚本:** TXLWizard 使用结构良好的脚本来创建遮罩,这有助于开发者创建清晰、易于维护的代码。 - **灵活的Python脚本:** 作为Python程序,TXLWizard 可以利用Python语言的灵活性和强大的库集合来编写复杂的掩模生成逻辑。 - **可读性和可重用性:** 生成的掩码代码易于阅读,开发者可以轻松地重用和修改以适应不同的需求。 - **自动标签生成:** TXLWizard 还包括自动为图形对象生成标签的功能,这在管理复杂图形时非常有用。 #### 4. TXL转换器的功能 - **查看.TXL文件:** TXL转换器(TXLConverter)允许用户将TXL文件转换成HTML或SVG格式,这样用户就可以使用任何现代浏览器或矢量图形应用程序来查看文件。 - **缩放和平移:** 转换后的文件支持缩放和平移功能,这使得用户在图形界面中更容易查看细节和整体结构。 - **快速转换:** TXL转换器还提供快速的文件转换功能,以实现有效的蒙版开发工作流程。 #### 5. 应用场景与技术参考 TXLWizard的应用场景主要集中在电子束光刻技术中,特别是用于设计和制作半导体器件时所需的掩模。TXLWizard作为一个向导,不仅提供了生成TXL文件的基础框架,还提供了一种方式来优化掩模设计,提高光刻过程的效率和精度。对于需要进行光刻掩模设计的工程师和研究人员来说,TXLWizard提供了一种有效的方法来实现他们的设计目标。 #### 6. 系统开源特性 标签“系统开源”表明TXLWizard遵循开放源代码的原则,这意味着源代码对所有人开放,允许用户自由地查看、修改和分发软件。开源项目通常拥有活跃的社区,社区成员可以合作改进软件,添加新功能,或帮助解决遇到的问题。这种开放性促进了技术创新,并允许用户根据自己的需求定制软件。 #### 7. 压缩包子文件的文件名称列表 文件名称列表中的“txlwizard-master”可能指的是TXLWizard项目的主版本库或主分支。这个名称表明了这是项目源代码的中心点,其他开发者会从这个主分支拉取代码进行合作开发或部署。以“-master”结尾通常是版本控制系统中表示主要开发线路的常见约定,例如Git中的master(现在更常被称为main)分支。 通过这些知识点的详细解释,我们可以看到TXLWizard不仅是一个用于生成TXL文件的工具,它还整合了一系列的功能,使得电子束光刻掩模的设计工作更为高效和直观。同时,作为一个开源项目,它能够借助社区的力量不断进步,为用户带来更多的便利和创新。
recommend-type

【创新图生成:扣子平台的技术前沿与创新思维】:引领图像生成技术的新潮流

# 1. 扣子平台的图像生成技术概述 在当今数字化时代,图像生成技术正成为推动技术创新和社会变革的关键力量。扣子平台正是这一技术革新的代表。本章将对扣子平台的图像生成技术进行一个全面概述,探究它如何将理论技术转化为实际应用,并带来显著的社会影响。 扣子平台运用了先进的图像生成技术,将现实世界和数字空间无缝融合,打造了沉浸式的视觉体验。其技术的核心是通过高度复杂的算法模型,快速生成高质
recommend-type

海康威视机器视觉工程师考核

<think>好的,我现在需要帮助用户了解海康威视机器视觉工程师的考核内容和要求。根据用户提供的引用资料,特别是引用[1]和[2],里面提到了考核素材包分为初级和中级,涵盖理论、算法、应用案例等。首先,我要整理这些信息,确保结构清晰,符合用户要求的格式。 接下来,我需要确认素材包的具体内容,比如初级和中级的不同点。引用[2]提到初级包含基础理论、算法实现和实际案例,中级则增加复杂算法和项目分析。这部分需要分点说明,方便用户理解层次。 另外,用户可能想知道如何准备考核,比如下载素材、学习顺序、模拟考核等,引用[2]中有使用说明和注意事项,这部分也要涵盖进去。同时要注意提醒用户考核窗口已关闭,
recommend-type

Linux环境下Docker Hub公共容器映像检测工具集

在给出的知识点中,我们需要详细解释有关Docker Hub、公共容器映像、容器编排器以及如何与这些工具交互的详细信息。同时,我们会涵盖Linux系统下的相关操作和工具使用,以及如何在ECS和Kubernetes等容器编排工具中运用这些检测工具。 ### Docker Hub 和公共容器映像 Docker Hub是Docker公司提供的一项服务,它允许用户存储、管理以及分享Docker镜像。Docker镜像可以视为应用程序或服务的“快照”,包含了运行特定软件所需的所有必要文件和配置。公共容器映像指的是那些被标记为公开可见的Docker镜像,任何用户都可以拉取并使用这些镜像。 ### 静态和动态标识工具 静态和动态标识工具在Docker Hub上用于识别和分析公共容器映像。静态标识通常指的是在不运行镜像的情况下分析镜像的元数据和内容,例如检查Dockerfile中的指令、环境变量、端口映射等。动态标识则需要在容器运行时对容器的行为和性能进行监控和分析,如资源使用率、网络通信等。 ### 容器编排器与Docker映像 容器编排器是用于自动化容器部署、管理和扩展的工具。在Docker环境中,容器编排器能够自动化地启动、停止以及管理容器的生命周期。常见的容器编排器包括ECS和Kubernetes。 - **ECS (Elastic Container Service)**:是由亚马逊提供的容器编排服务,支持Docker容器,并提供了一种简单的方式来运行、停止以及管理容器化应用程序。 - **Kubernetes**:是一个开源平台,用于自动化容器化应用程序的部署、扩展和操作。它已经成为容器编排领域的事实标准。 ### 如何使用静态和动态标识工具 要使用这些静态和动态标识工具,首先需要获取并安装它们。从给定信息中了解到,可以通过克隆仓库或下载压缩包并解压到本地系统中。之后,根据需要针对不同的容器编排环境(如Dockerfile、ECS、Kubernetes)编写配置,以集成和使用这些检测工具。 ### Dockerfile中的工具使用 在Dockerfile中使用工具意味着将检测工具的指令嵌入到构建过程中。这可能包括安装检测工具的命令、运行容器扫描的步骤,以及将扫描结果集成到镜像构建流程中,确保只有通过安全和合规检查的容器镜像才能被构建和部署。 ### ECS与Kubernetes中的工具集成 在ECS或Kubernetes环境中,工具的集成可能涉及到创建特定的配置文件、定义服务和部署策略,以及编写脚本或控制器来自动执行检测任务。这样可以在容器编排的过程中实现实时监控,确保容器编排器只使用符合预期的、安全的容器镜像。 ### Linux系统下的操作 在Linux系统下操作这些工具,用户可能需要具备一定的系统管理和配置能力。这包括使用Linux命令行工具、管理文件系统权限、配置网络以及安装和配置软件包等。 ### 总结 综上所述,Docker Hub上的静态和动态标识工具提供了一种方法来检测和分析公共容器映像,确保这些镜像的安全性和可靠性。这些工具在Linux开发环境中尤为重要,因为它们帮助开发人员和运维人员确保他们的容器映像满足安全要求。通过在Dockerfile、ECS和Kubernetes中正确使用这些工具,可以提高应用程序的安全性,减少由于使用不安全的容器镜像带来的风险。此外,掌握Linux系统下的操作技能,可以更好地管理和维护这些工具,确保它们能够有效地发挥作用。
recommend-type

【扣子平台图像艺术探究:理论与实践的完美结合】:深入学习图像生成的艺术

# 1. 图像艺术的理论基础 艺术领域的每一个流派和技巧都有其理论基础。在图像艺术中,理论基础不仅是对艺术表现形式的认知,也是掌握艺术创作内在逻辑的关键。深入理解图像艺术的理论基础,能够帮助艺术家们在创作过程中更加明确地表达自己的艺术意图,以及更好地与观众沟通。 图像艺术的理论