import torch train_data = torch.tensor([[[ 58.]], [[367.]], [[324.]], [[620.]], [[146.]], [[681.]], [[582.]], [[432.]], [[ 87.]], [[415.]], [[443.]], [[680.]], [[ 0.]], [[230.]], [[484.]], [[497.]], [[324.]], [[620.]], [[681.]], [[ 84.]], [[484.]], [[448.]], [[144.]], [[536.]], [[680.]], [[ 0.]]], dtype = torch.float32) class POEM_LSTM(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers): super(POEM_LSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.LstmLayer = torch.nn.LSTM(input_size=self.input_size, hidden_size=self.hidden_size, num_layers=self.num_layers, bias= False) self.LinearLayer = torch.nn.Linear(in_features=self.hidden_size, out_features=self.input_size) def forward(self, x): LstmLayerOutput, _ = self.LstmLayer(x) # h_c = (h_t, c_t) FinalOutput = self.LinearLayer(LstmLayerOutput) #需要对输出进行圆整,因为onehot为0~681的整数 return FinalOutput poem_lstm = POEM_LSTM(1,3,2) #网络模型实例化 loss = torch.nn.MSELoss() opt = torch.optim.Adam(poem_lstm.parameters(), lr = 0.001) for i in range(200): # input = train_data[0] for j in range(0,26): opt.zero_grad() # 每个iteration梯度清0 output= poem_lstm(torch.tensor([[j]],dtype=torch.float32)) l_loss = loss(output, train_data[j]) l_loss.backward() opt.step() if i == 199: # print(poem_lstm.state_dict()) print(output) print(train_data[j]) print(l_loss) print('\n')
时间: 2023-05-27 10:07:24 浏览: 167
这段代码定义了一个名为POEM_LSTM的PyTorch模型,该模型包含一个LSTM层和一个线性层。输入数据train_data是一个三维张量,包含了28个时间步、每个时间步一个特征值。LSTM层将输入数据train_data传入,得到LstmLayerOutput作为输出。而LinearLayer将LstmLayerOutput作为输入,输出和输入相同的形状的张量。
相关问题
修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)
修改后的代码如下所示:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, cohen_kappa_score
data_ = pd.read_csv(r"C:\Users\zhangjinyue\Desktop\rice.csv", header=None)
data_ = np.array(data_).astype('float64')
train_data = data_[:, :520]
train_labels = data_[:, 520]
train_data, _, train_labels, _ = train_test_split(train_data, train_labels, test_size=0.33333)
train_data = torch.Tensor(train_data)
train_labels = torch.LongTensor(train_labels)
train_data = train_data.reshape(-1, 1, 20, 26)
start_epoch = 1
num_epoch = 1
BATCH_SIZE = 70
Ir = 0.001
classes = ('0', '1', '2', '3', '4', '5')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
best_acc = 0.0
train_dataset = data.TensorDataset(train_data, train_labels)
test_dataset = data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
```
请注意,我做了以下修改:
1. 移除了不需要的导入语句。
2. 修复了变量名拼写错误。
3. 移除了重复的代码行。
4. 修正了 `torch.utils.data.DataLoader` 的拼写错误。
5. 修正了数据集分割时的变量名错误。
请根据你的实际需求进一步调整代码。
基于以下代码,加入图像高斯模糊处理代码:import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets,transforms import matplotlib.pyplot as plt import numpy as np import pylab %matplotlib inline # 定义超参数 input_size = 28 #图像的总尺寸28*28 num_classes = 10 #标签的种类数 num_epochs = 10 #训练的总循环周期 batch_size = 64 #一个撮(批次)的大小,64张图片 # 训练集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) # 测试集 test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 构建batch数据 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
可以将以下代码加入到定义超参数的代码块后面,实现对训练集和测试集图像的高斯模糊处理:
```
# 定义高斯模糊的卷积核
blur_kernel = np.array([[1, 2, 1],
[2, 4, 2],
[1, 2, 1]]) / 16.
# 定义高斯模糊的函数
def gaussian_blur(x):
x = np.array(x)
_, c, h, w = x.shape
blur_kernel_tensor = torch.from_numpy(blur_kernel).unsqueeze(0).repeat(c, 1, 1, 1).float().to(x.device)
x_blur = F.conv2d(x, blur_kernel_tensor, padding=(1, 1))
return x_blur
# 对训练集图像进行高斯模糊处理
for i, (images, labels) in enumerate(train_loader):
train_loader.dataset.data[i*batch_size:(i+1)*batch_size] = gaussian_blur(images).squeeze().detach().numpy()*255
# 对测试集图像进行高斯模糊处理
for i, (images, labels) in enumerate(test_loader):
test_loader.dataset.data[i*batch_size:(i+1)*batch_size] = gaussian_blur(images).squeeze().detach().numpy()*255
```
注意,由于 MNIST 数据集中的像素值范围为 0~255,高斯模糊处理后的像素值可能会出现小数,需要将其乘以 255 后转换为整数的像素值。
阅读全文
相关推荐


















