【python爬虫实战】淘宝商品数据抓取+数据可视化(完整代码)
时间: 2025-05-16 08:02:26 浏览: 20
### Python爬虫抓取淘宝商品数据并进行可视化
为了实现从淘宝网获取商品数据并通过Python进行处理和可视化的流程,下面提供了一个简化版本的方案。需要注意的是,在实际开发过程中应当遵循目标网站的服务条款以及法律法规。
#### 准备工作
安装必要的库文件:
```bash
pip install requests beautifulsoup4 pandas matplotlib seaborn scrapy
```
创建Scrapy项目结构用于更高效的数据采集[^3]:
```bash
scrapy startproject taobao_spider
cd taobao_spider
```
定义Item对象存储所需字段信息:
```python
import scrapy
class Product(scrapy.Item):
title = scrapy.Field()
price = scrapy.Field()
sales_volume = scrapy.Field() # 销量
shop_name = scrapy.Field()
```
编写Spider脚本完成网页解析逻辑:
```python
import re
from urllib.parse import urljoin
from ..items import Product
class TaobaoSpider(scrapy.Spider):
name = "taobao"
allowed_domains = ["tmall.com"]
start_urls = ['https://list.tmall.com/search_product.htm?q=关键词']
def parse(self, response):
products = response.css('.product-iWrap')
for product in products:
item = Product()
try:
item['title'] = ''.join(product.xpath('./p[@class="productTitle"]/a//text()').extract()).strip()
item['price'] = float(re.findall(r'\d+\.\d+', product.css('em::text').get())[0])
item['sales_volume'] = int(re.sub('\D', '', product.css('.deal-cnt::text').get()))
item['shop_name'] = product.css('.shop-name a::attr(title)').get().strip()
yield item
except Exception as e:
print(f'Error parsing {item}: {e}')
next_page_url = response.css('#content b.next-page ~ a::attr(href)').get()
if next_page_url is not None:
absolute_next_page_url = urljoin(response.url, next_page_url)
yield scrapy.Request(url=absolute_next_page_url, callback=self.parse)
```
利用Pandas整理收集到的商品记录以便后续分析操作:
```python
import pandas as pd
dataframe = pd.DataFrame([
{'标题': 'iPhone X',
'价格': 7988,
'销量': 123456,
'店铺名称': 'Apple Store'}
])
# 假设这里是从数据库读入大量真实数据...
print(dataframe.head())
```
最后通过Matplotlib绘制图表展示销售趋势或其他特征分布情况:
```python
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style='whitegrid')
plt.figure(figsize=(10, 6))
ax = sns.barplot(x=dataframe.index[:10], y='销量', data=dataframe.iloc[:10])
ax.set_xticklabels(labels=dataframe.loc[dataframe.index[:10], '标题'], rotation=45)
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 3,
'{:.0f}'.format(height),
ha="center")
plt.title('Top 10 Best Selling Products on Tmall')
plt.show()
```
上述代码片段展示了如何构建一个简单的基于Scrapy框架的网络爬虫程序来提取天猫平台上的产品详情,并将其转换成易于理解的形式呈现出来。不过由于电商平台通常会设置反爬机制,因此建议读者仅限于学习目的尝试此方法,并严格遵守各站点的相关规定[^1]。
阅读全文
相关推荐



















