keras_tqdm安装失败

时间: 2024-06-09 17:03:37 浏览: 163
`keras-tqdm`是一个用于Keras训练过程中的进度条的第三方库,它结合了Keras和tqdm库,提供了一个直观的训练进度跟踪。如果在安装过程中遇到问题,可能有以下几个原因: 1. **依赖缺失**:确保你已经正确安装了Python的必要库,如`numpy`, `tensorflow`(或`keras`),以及`tqdm`本身。如果缺少其中任何一个,安装`keras-tqdm`时会失败。 2. **版本冲突**:Keras和`tqdm`的版本不兼容也可能会导致问题。检查你的`pip`包列表中这两个库的版本,确保它们可以协同工作。 3. **权限问题**:如果你没有足够的权限,可能会无法写入安装文件夹。尝试使用`sudo`命令以管理员权限安装。 4. **网络问题**:在下载过程中网络连接不稳定可能导致安装失败,尝试切换到稳定的网络环境重新安装。 5. **已安装的残留**:如果之前尝试过但失败,可能会留下一些残余文件。先尝试用`pip uninstall keras-tqdm`移除已安装的版本,然后再重新安装。 6. **包源问题**:如果使用的Python包管理器的源有问题,可能需要更换一个可靠的源,比如Anaconda的`conda-forge`或PyPI的源。
相关问题

import tensorflow as tf import numpy as np import cv2 import os import json from tqdm import tqdm class ObjectRecognitionDeployer: def __init__(self, model_path, class_labels): """ 初始化部署器 :param model_path: 模型文件路径 (Keras或TFLite) :param class_labels: 类别标签列表 """ self.class_labels = class_labels self.model_path = model_path self.interpreter = None self.input_details = None self.output_details = None # 根据模型类型加载 if model_path.endswith('.tflite'): self.load_tflite_model(model_path) else: self.model = tf.keras.models.load_model(model_path) self.input_shape = self.model.input_shape[1:3] def load_tflite_model(self, model_path): """加载并配置TFLite模型""" # 加载模型 self.interpreter = tf.lite.Interpreter(model_path=model_path) self.interpreter.allocate_tensors() # 获取输入输出详细信息 self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() # 保存输入形状 self.input_shape = tuple(self.input_details[0]['shape'][1:3]) # 安全地打印模型元数据 self.print_model_metadata(model_path) def print_model_metadata(self, model_path): """安全地打印TFLite模型元数据""" try: from tflite_support import metadata displayer = metadata.MetadataDisplayer.with_model_file(model_path) print("--- 模型元数据 ---") print(displayer.get_metadata_json()) print("--- 关联文件 ---") print(displayer.get_packed_associated_file_list()) except (ImportError, ValueError) as e: print(f"警告: 无法获取模型元数据 - {str(e)}") print("使用输入/输出详细信息代替:") print(f"输入: {self.input_details}") print(f"输出: {self.output_details}") def preprocess_image(self, image, input_size, input_dtype=np.float32): """ 预处理图像 :param image: 输入图像 (numpy数组或文件路径) :param input_size: 模型输入尺寸 (height, width) :param input_dtype: 期望的输入数据类型 :return: 预处理后的图像张量 """ if isinstance(image, str): if not os.path.exists(image): raise FileNotFoundError(f"图像文件不存在: {image}") img = cv2.imread(image) if img is None: raise ValueError(f"无法读取图像: {image}") else: img = image # 调整尺寸和颜色空间 img = cv2.resize(img, (input_size[1], input_size[0])) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 根据数据类型进行归一化 if input_dtype == np.uint8: img = img.astype(np.uint8) # 量化模型使用uint8 else: # 浮点模型使用float32 img = img.astype(np.float32) / 255.0 # 添加批次维度 img = np.expand_dims(img, axis=0) return img def predict(self, image): """ 执行预测 :param image: 输入图像 (numpy数组或文件路径) :return: 预测结果 (类别名称, 置信度) """ if self.interpreter is not None: # TFLite模型推理 return self.predict_tflite(image) else: # Keras模型推理 return self.predict_keras(image) def predict_keras(self, image): """使用Keras模型预测""" # 预处理 img = self.preprocess_image(image, self.input_shape, np.float32) # 预测 predictions = self.model.predict(img, verbose=0)[0] class_idx = np.argmax(predictions) confidence = predictions[class_idx] class_name = self.class_labels[class_idx] return class_name, confidence def predict_tflite(self, image): """使用TFLite模型预测""" # 获取输入数据类型 input_dtype = self.input_details[0]['dtype'] # 预处理 img = self.preprocess_image(image, self.input_shape, input_dtype) # 设置输入张量 self.interpreter.set_tensor(self.input_details[0]['index'], img) # 执行推理 self.interpreter.invoke() # 获取输出 output_data = self.interpreter.get_tensor(self.output_details[0]['index']) predictions = output_data[0] # 解析结果 class_idx = np.argmax(predictions) confidence = predictions[class_idx] # 如果输出是量化数据,需要反量化 if self.output_details[0]['dtype'] == np.uint8: # 反量化输出 scale, zero_point = self.output_details[0]['quantization'] confidence = scale * (confidence - zero_point) class_name = self.class_labels[class_idx] return class_name, confidence def benchmark(self, image, runs=100): """ 模型性能基准测试 :param image: 测试图像 :param runs: 运行次数 :return: 平均推理时间(ms), 内存占用(MB) """ # 预热运行 self.predict(image) # 计时测试 start_time = tf.timestamp() for _ in range(runs): self.predict(image) end_time = tf.timestamp() avg_time_ms = (end_time - start_time).numpy() * 1000 / runs # 内存占用 if self.interpreter: # 计算输入张量内存占用 input_size = self.input_details[0]['shape'] dtype_size = np.dtype(self.input_details[0]['dtype']).itemsize mem_usage = np.prod(input_size) * dtype_size / (1024 * 1024) else: # 估算Keras模型内存 mem_usage = self.model.count_params() * 4 / (1024 * 1024) # 假设32位浮点数 return avg_time_ms, mem_usage def create_metadata(self, output_path): """ 创建并保存模型元数据文件 :param output_path: 元数据文件输出路径 """ metadata = { "model_type": "tflite" if self.model_path.endswith('.tflite') else "keras", "class_labels": self.class_labels, "input_size": self.input_shape, "input_dtype": str(self.input_details[0]['dtype']) if self.interpreter else "float32", "quantization": None } if self.interpreter and self.input_details[0]['dtype'] == np.uint8: metadata["quantization"] = { "input_scale": float(self.input_details[0]['quantization'][0]), "input_zero_point": int(self.input_details[0]['quantization'][1]), "output_scale": float(self.output_details[0]['quantization'][0]), "output_zero_point": int(self.output_details[0]['quantization'][1]) } with open(output_path, 'w') as f: json.dump(metadata, f, indent=4) return metadata def convert_to_tflite_with_metadata(self, output_path, quantize=False, representative_data_dir=None): """ 将Keras模型转换为TFLite格式并添加元数据 :param output_path: 输出TFLite文件路径 :param quantize: 是否进行量化 :param representative_data_dir: 代表性数据集目录 """ if not self.model_path.endswith(('.keras', '.h5')): raise ValueError("需要Keras模型格式进行转换") # 加载Keras模型 keras_model = tf.keras.models.load_model(self.model_path) # 创建转换器 converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) if quantize: # 量化配置 converter.optimizations = [tf.lite.Optimize.DEFAULT] # 设置代表性数据集生成器 converter.representative_dataset = lambda: self.representative_dataset( representative_data_dir, input_size=self.input_shape ) # 设置输入输出类型 converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.uint8 converter.inference_output_type = tf.uint8 # 转换模型 tflite_model = converter.convert() # 保存模型 with open(output_path, 'wb') as f: f.write(tflite_model) print(f"TFLite模型已保存到: {output_path}") # 添加元数据 self.add_tflite_metadata(output_path) return output_path def representative_dataset(self, data_dir=None, input_size=(224, 224), num_samples=100): """ 生成代表性数据集用于量化 :param data_dir: 真实数据目录 :param input_size: 输入尺寸 (height, width) :param num_samples: 样本数量 """ # 优先使用真实数据 if data_dir and os.path.exists(data_dir): image_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))] # 限制样本数量 image_files = image_files[:min(len(image_files), num_samples)] print(f"使用 {len(image_files)} 张真实图像进行量化校准") for img_path in tqdm(image_files, desc="量化校准"): try: # 读取并预处理图像 img = cv2.imread(img_path) if img is None: continue img = cv2.resize(img, (input_size[1], input_size[0])) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 # 转换为float32并归一化 img = np.expand_dims(img, axis=0) yield [img] except Exception as e: print(f"处理图像 {img_path} 时出错: {str(e)}") else: # 使用随机数据作为备选 print(f"使用随机数据生成 {num_samples} 个样本进行量化校准") for _ in range(num_samples): # 生成随机图像,归一化到[0,1]范围,使用float32类型 data = np.random.rand(1, input_size[0], input_size[1], 3).astype(np.float32) yield [data] def add_tflite_metadata(self, model_path): """为TFLite模型添加元数据""" # 创建标签文件 labels_path = os.path.join(os.path.dirname(model_path), "labels.txt") with open(labels_path, 'w') as f: for label in self.class_labels: f.write(f"{label}\n") # 创建元数据 metadata_path = os.path.join(os.path.dirname(model_path), "metadata.json") self.create_metadata(metadata_path) print(f"元数据已创建: {metadata_path}") print(f"标签文件已创建: {labels_path}") # 使用示例 if __name__ == "__main__": # 类别标签 CLASS_LABELS = ['book', 'cup', 'glasses', 'phone', 'shoe'] # 初始化部署器 deployer = ObjectRecognitionDeployer( model_path='optimized_model.keras', class_labels=CLASS_LABELS ) # 转换为带元数据的TFLite格式 tflite_path = 'model_quantized.tflite' # 使用真实数据目录进行量化校准 REPRESENTATIVE_DATA_DIR = 'path/to/representative_dataset' # 替换为实际路径 deployer.convert_to_tflite_with_metadata( tflite_path, quantize=True, representative_data_dir=REPRESENTATIVE_DATA_DIR ) # 重新加载带元数据的模型 tflite_deployer = ObjectRecognitionDeployer( model_path=tflite_path, class_labels=CLASS_LABELS ) # 测试预测 test_image = 'test_image.jpg' class_name, confidence = tflite_deployer.predict(test_image) print(f"预测结果: {class_name}, 置信度: {confidence:.2f}") # 性能测试 avg_time, mem_usage = tflite_deployer.benchmark(test_image) print(f"平均推理时间: {avg_time:.2f} ms") print(f"内存占用: {mem_usage:.2f} MB") # 创建元数据文件 metadata = deployer.create_metadata('model_metadata.json') print("模型元数据:", json.dumps(metadata, indent=4)) import tensorflow as tf import numpy as np import cv2 import os import json from tqdm import tqdm class ObjectRecognitionDeployer: def __init__(self, model_path, class_labels): """ 初始化部署器 :param model_path: 模型文件路径 (Keras或TFLite) :param class_labels: 类别标签列表 """ self.class_labels = class_labels self.model_path = model_path self.interpreter = None self.input_details = None self.output_details = None # 根据模型类型加载 if model_path.endswith('.tflite'): self.load_tflite_model(model_path) else: self.model = tf.keras.models.load_model(model_path) self.input_shape = self.model.input_shape[1:3] def load_tflite_model(self, model_path): """加载并配置TFLite模型""" # 加载模型 self.interpreter = tf.lite.Interpreter(model_path=model_path) self.interpreter.allocate_tensors() # 获取输入输出详细信息 self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() # 保存输入形状 self.input_shape = tuple(self.input_details[0]['shape'][1:3]) # 安全地打印模型元数据 self.print_model_metadata(model_path) def print_model_metadata(self, model_path): """安全地打印TFLite模型元数据""" try: from tflite_support import metadata displayer = metadata.MetadataDisplayer.with_model_file(model_path) print("--- 模型元数据 ---") print(displayer.get_metadata_json()) print("--- 关联文件 ---") print(displayer.get_packed_associated_file_list()) except (ImportError, ValueError) as e: print(f"警告: 无法获取模型元数据 - {str(e)}") print("使用输入/输出详细信息代替:") print(f"输入: {self.input_details}") print(f"输出: {self.output_details}") def preprocess_image(self, image, input_size, input_dtype=np.float32): """ 预处理图像 :param image: 输入图像 (numpy数组或文件路径) :param input_size: 模型输入尺寸 (height, width) :param input_dtype: 期望的输入数据类型 :return: 预处理后的图像张量 """ if isinstance(image, str): if not os.path.exists(image): raise FileNotFoundError(f"图像文件不存在: {image}") img = cv2.imread(image) if img is None: raise ValueError(f"无法读取图像: {image}") else: img = image # 调整尺寸和颜色空间 img = cv2.resize(img, (input_size[1], input_size[0])) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 根据数据类型进行归一化 if input_dtype == np.uint8: img = img.astype(np.uint8) # 量化模型使用uint8 else: # 浮点模型使用float32 img = img.astype(np.float32) / 255.0 # 添加批次维度 img = np.expand_dims(img, axis=0) return img def predict(self, image): """ 执行预测 :param image: 输入图像 (numpy数组或文件路径) :return: 预测结果 (类别名称, 置信度) """ if self.interpreter is not None: # TFLite模型推理 return self.predict_tflite(image) else: # Keras模型推理 return self.predict_keras(image) def predict_keras(self, image): """使用Keras模型预测""" # 预处理 img = self.preprocess_image(image, self.input_shape, np.float32) # 预测 predictions = self.model.predict(img, verbose=0)[0] class_idx = np.argmax(predictions) confidence = predictions[class_idx] class_name = self.class_labels[class_idx] return class_name, confidence def predict_tflite(self, image): """使用TFLite模型预测""" # 获取输入数据类型 input_dtype = self.input_details[0]['dtype'] # 预处理 img = self.preprocess_image(image, self.input_shape, input_dtype) # 设置输入张量 self.interpreter.set_tensor(self.input_details[0]['index'], img) # 执行推理 self.interpreter.invoke() # 获取输出 output_data = self.interpreter.get_tensor(self.output_details[0]['index']) predictions = output_data[0] # 解析结果 class_idx = np.argmax(predictions) confidence = predictions[class_idx] # 如果输出是量化数据,需要反量化 if self.output_details[0]['dtype'] == np.uint8: # 反量化输出 scale, zero_point = self.output_details[0]['quantization'] confidence = scale * (confidence - zero_point) class_name = self.class_labels[class_idx] return class_name, confidence def benchmark(self, image, runs=100): """ 模型性能基准测试 :param image: 测试图像 :param runs: 运行次数 :return: 平均推理时间(ms), 内存占用(MB) """ # 预热运行 self.predict(image) # 计时测试 start_time = tf.timestamp() for _ in range(runs): self.predict(image) end_time = tf.timestamp() avg_time_ms = (end_time - start_time).numpy() * 1000 / runs # 内存占用 if self.interpreter: # 计算输入张量内存占用 input_size = self.input_details[0]['shape'] dtype_size = np.dtype(self.input_details[0]['dtype']).itemsize mem_usage = np.prod(input_size) * dtype_size / (1024 * 1024) else: # 估算Keras模型内存 mem_usage = self.model.count_params() * 4 / (1024 * 1024) # 假设32位浮点数 return avg_time_ms, mem_usage def create_metadata(self, output_path): """ 创建并保存模型元数据文件 :param output_path: 元数据文件输出路径 """ metadata = { "model_type": "tflite" if self.model_path.endswith('.tflite') else "keras", "class_labels": self.class_labels, "input_size": self.input_shape, "input_dtype": str(self.input_details[0]['dtype']) if self.interpreter else "float32", "quantization": None } if self.interpreter and self.input_details[0]['dtype'] == np.uint8: metadata["quantization"] = { "input_scale": float(self.input_details[0]['quantization'][0]), "input_zero_point": int(self.input_details[0]['quantization'][1]), "output_scale": float(self.output_details[0]['quantization'][0]), "output_zero_point": int(self.output_details[0]['quantization'][1]) } with open(output_path, 'w') as f: json.dump(metadata, f, indent=4) return metadata def convert_to_tflite_with_metadata(self, output_path, quantize=False, representative_data_dir=None): """ 将Keras模型转换为TFLite格式并添加元数据 :param output_path: 输出TFLite文件路径 :param quantize: 是否进行量化 :param representative_data_dir: 代表性数据集目录 """ if not self.model_path.endswith(('.keras', '.h5')): raise ValueError("需要Keras模型格式进行转换") # 加载Keras模型 keras_model = tf.keras.models.load_model(self.model_path) # 创建转换器 converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) if quantize: # 量化配置 converter.optimizations = [tf.lite.Optimize.DEFAULT] # 设置代表性数据集生成器 converter.representative_dataset = lambda: self.representative_dataset( representative_data_dir, input_size=self.input_shape ) # 设置输入输出类型 converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.uint8 converter.inference_output_type = tf.uint8 # 转换模型 tflite_model = converter.convert() # 保存模型 with open(output_path, 'wb') as f: f.write(tflite_model) print(f"TFLite模型已保存到: {output_path}") # 添加元数据 self.add_tflite_metadata(output_path) return output_path def representative_dataset(self, data_dir=None, input_size=(224, 224), num_samples=100): """ 生成代表性数据集用于量化 :param data_dir: 真实数据目录 :param input_size: 输入尺寸 (height, width) :param num_samples: 样本数量 """ # 优先使用真实数据 if data_dir and os.path.exists(data_dir): image_files = [os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))] # 限制样本数量 image_files = image_files[:min(len(image_files), num_samples)] print(f"使用 {len(image_files)} 张真实图像进行量化校准") for img_path in tqdm(image_files, desc="量化校准"): try: # 读取并预处理图像 img = cv2.imread(img_path) if img is None: continue img = cv2.resize(img, (input_size[1], input_size[0])) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) / 255.0 # 转换为float32并归一化 img = np.expand_dims(img, axis=0) yield [img] except Exception as e: print(f"处理图像 {img_path} 时出错: {str(e)}") else: # 使用随机数据作为备选 print(f"使用随机数据生成 {num_samples} 个样本进行量化校准") for _ in range(num_samples): # 生成随机图像,归一化到[0,1]范围,使用float32类型 data = np.random.rand(1, input_size[0], input_size[1], 3).astype(np.float32) yield [data] def add_tflite_metadata(self, model_path): """为TFLite模型添加元数据""" # 创建标签文件 labels_path = os.path.join(os.path.dirname(model_path), "labels.txt") with open(labels_path, 'w') as f: for label in self.class_labels: f.write(f"{label}\n") # 创建元数据 metadata_path = os.path.join(os.path.dirname(model_path), "metadata.json") self.create_metadata(metadata_path) print(f"元数据已创建: {metadata_path}") print(f"标签文件已创建: {labels_path}") # 使用示例 if __name__ == "__main__": # 类别标签 CLASS_LABELS = ['book', 'cup', 'glasses', 'phone', 'shoe'] # 初始化部署器 deployer = ObjectRecognitionDeployer( model_path='optimized_model.keras', class_labels=CLASS_LABELS ) # 转换为带元数据的TFLite格式 tflite_path = 'model_quantized.tflite' # 使用真实数据目录进行量化校准 REPRESENTATIVE_DATA_DIR = 'path/to/representative_dataset' # 替换为实际路径 deployer.convert_to_tflite_with_metadata( tflite_path, quantize=True, representative_data_dir=REPRESENTATIVE_DATA_DIR ) # 重新加载带元数据的模型 tflite_deployer = ObjectRecognitionDeployer( model_path=tflite_path, class_labels=CLASS_LABELS ) # 测试预测 test_image = 'test_image.jpg' class_name, confidence = tflite_deployer.predict(test_image) print(f"预测结果: {class_name}, 置信度: {confidence:.2f}") # 性能测试 avg_time, mem_usage = tflite_deployer.benchmark(test_image) print(f"平均推理时间: {avg_time:.2f} ms") print(f"内存占用: {mem_usage:.2f} MB") # 创建元数据文件 metadata = deployer.create_metadata('model_metadata.json') print("模型元数据:", json.dumps(metadata, indent=4)) 上述代码我已经成功执行,并且我的ObjectRecognitionDeployer类路径导入代码是from 计算机视觉.test2 import ObjectRecognitionDeployer

<think>我们注意到用户已经成功执行了代码,并且ObjectRecognitionDeployer类的导入路径是`from计算机视觉.test2importObjectRecognitionDeployer`。现在,用户希望将之前的TkinterGUI应用转换为PyQt5,并且已经提供了模型部署器的实现。在之前的PyQt5GUI代码中,我们假设用户已经有一个ObjectRecognitionDeployer类。现在用户已经确认了导入路径。因此,我们需要将PyQt5GUI代码中的模型部署器导入路径修改为用户提供的路径,并确保代码能够正确运行。另外,用户还希望模型路径和类别标签的配置能够自动适应当前文件夹。我们已经在前面的回答中提供了动态配置模型路径的方法。现在,我们将整合所有信息,提供一个完整的PyQt5GUI应用代码,该代码使用用户指定的ObjectRecognitionDeployer类,并动态配置模型路径。注意:由于用户已经确认了ObjectRecognitionDeployer的导入路径,我们将在GUI代码中正确导入。以下是完整的PyQt5GUI应用代码,其中:1.导入ObjectRecognitionDeployer的路径为:`from计算机视觉.test2importObjectRecognitionDeployer`2.动态配置模型路径(在当前文件夹中查找模型文件)3.提供详细的错误处理和用户反馈我们假设模型文件名为"model_quantized.tflite",但代码中会尝试自动查找其他常见格式的模型文件。代码将分为两个文件(可选):-主文件:包含GUI应用-模型部署器文件:即用户已经实现的`test2.py`(位于`计算机视觉`包中)但为了方便,我们可以将所有代码放在一个文件中(如果用户愿意),但考虑到用户已经有一个部署器类,我们将主GUI代码单独写。因此,我们提供以下代码:注意:确保你的工作目录下有`计算机视觉`包,且包中有`test2.py`文件,其中定义了`ObjectRecognitionDeployer`类。如果目录结构不同,请调整导入路径。以下是完整的PyQt5GUI代码:</think># 完整的PyQt5物体识别系统集成方案 基于您提供的`ObjectRecognitionDeployer`类,我将实现一个完整的PyQt5物体识别系统,包含动态模型加载、性能监控和用户友好的界面。 ```python import sys import os import cv2 import numpy as np import time import psutil import json from datetime import datetime from PyQt5.QtWidgets import ( QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QPushButton, QFileDialog, QFrame, QProgressBar, QMessageBox, QGroupBox, QComboBox, QTabWidget, QTableWidget, QTableWidgetItem, QHeaderView, QListWidget, QListWidgetItem, QSplitter, QStatusBar ) from PyQt5.QtGui import QPixmap, QImage, QFont, QPalette, QColor, QIcon from PyQt5.QtCore import Qt, QSize, QTimer, QThread, pyqtSignal # 导入您的模型部署器 from 计算机视觉.test2 import ObjectRecognitionDeployer class PerformanceMonitor(QThread): """后台线程监控系统性能""" update_signal = pyqtSignal(float, float, float) # CPU, RAM, GPU def run(self): """持续监控系统性能""" while True: try: # CPU使用率 cpu_percent = psutil.cpu_percent(interval=1) # 内存使用率 mem = psutil.virtual_memory() ram_percent = mem.percent ram_used = mem.used / (1024 ** 3) # GB # GPU监控 (需要额外库如pynvml) gpu_percent = 0.0 try: import pynvml pynvml.nvmlInit() handle = pynvml.nvmlDeviceGetHandleByIndex(0) util = pynvml.nvmlDeviceGetUtilizationRates(handle) gpu_percent = util.gpu pynvml.nvmlShutdown() except ImportError: pass except pynvml.NVMLError: pass # 发送信号 self.update_signal.emit(cpu_percent, ram_percent, gpu_percent) # 睡眠以避免过高频率 time.sleep(1) except Exception as e: print(f"性能监控错误: {str(e)}") time.sleep(5) class ObjectRecognitionGUI(QMainWindow): def __init__(self): """ 初始化物体识别GUI应用 """ super().__init__() # 窗口设置 self.setWindowTitle("智能物体识别系统") self.setGeometry(100, 100, 1400, 900) self.setWindowIcon(QIcon("icon.png")) # 替换为实际图标路径 # 创建状态栏 self.statusBar().setFont(QFont("Arial", 9)) self.statusBar().showMessage("就绪") # 配置模型路径和类别标签 self.configure_model_paths() # 初始化UI self.init_ui() # 初始化模型 self.init_model() # 当前选择的图像 self.current_image = None self.image_path = None # 性能统计 self.inference_times = [] self.performance_history = [] # 更新内存使用定时器 self.memory_timer = QTimer(self) self.memory_timer.timeout.connect(self.update_memory_usage) self.memory_timer.start(1000) # 每秒更新一次 # 启动性能监控线程 self.performance_monitor = PerformanceMonitor() self.performance_monitor.update_signal.connect(self.update_performance_stats) self.performance_monitor.start() def configure_model_paths(self): """ 配置模型路径和类别标签 使用当前文件夹作为基础路径 """ # 获取当前脚本所在目录 base_dir = os.path.dirname(os.path.abspath(__file__)) # 模型路径 - 假设模型文件名为 "model_quantized.tflite" self.model_path = os.path.join(base_dir, "model_quantized.tflite") # 类别标签 - 从文件加载或使用默认值 self.class_labels = self.load_class_labels(base_dir) # 检查模型文件是否存在 self.model_exists = os.path.exists(self.model_path) if not self.model_exists: # 尝试其他可能的模型文件名 possible_names = ["model.tflite", "model.h5", "model.pb", "model.onnx"] for name in possible_names: test_path = os.path.join(base_dir, name) if os.path.exists(test_path): self.model_path = test_path self.model_exists = True break def load_class_labels(self, base_dir): """从文件加载类别标签""" # 尝试从labels.txt加载 labels_path = os.path.join(base_dir, "labels.txt") if os.path.exists(labels_path): try: with open(labels_path, 'r') as f: return [line.strip() for line in f.readlines()] except Exception as e: print(f"加载标签文件失败: {str(e)}") # 尝试从metadata.json加载 metadata_path = os.path.join(base_dir, "metadata.json") if os.path.exists(metadata_path): try: with open(metadata_path, 'r') as f: metadata = json.load(f) return metadata.get("class_labels", []) except Exception as e: print(f"加载元数据失败: {str(e)}") # 默认类别标签 return ['book', 'cup', 'glasses', 'phone', 'shoe'] def init_ui(self): """初始化用户界面""" # 创建中央部件 central_widget = QWidget() self.setCentralWidget(central_widget) # 主布局 main_layout = QHBoxLayout(central_widget) main_layout.setSpacing(15) main_layout.setContentsMargins(15, 15, 15, 15) # 使用分割器 splitter = QSplitter(Qt.Horizontal) # 左侧面板 - 图像显示 left_frame = QFrame() left_frame.setFrameShape(QFrame.StyledPanel) left_layout = QVBoxLayout(left_frame) # 图像标题 image_title = QLabel("图像预览") image_title.setFont(QFont("Arial", 12, QFont.Bold)) left_layout.addWidget(image_title) # 图像显示区域 self.image_label = QLabel() self.image_label.setAlignment(Qt.AlignCenter) self.image_label.setMinimumSize(600, 400) self.image_label.setStyleSheet(""" background-color: #f0f0f0; border: 1px solid #cccccc; border-radius: 5px; """) left_layout.addWidget(self.image_label, 1) # 设置拉伸因子 # 图像路径显示 self.image_path_label = QLabel("未选择图像") self.image_path_label.setStyleSheet("color: #666666; font-style: italic;") left_layout.addWidget(self.image_path_label) splitter.addWidget(left_frame) # 右侧面板 - 控制和结果 right_frame = QFrame() right_layout = QVBoxLayout(right_frame) right_layout.setSpacing(15) # 标签页控件 self.tab_widget = QTabWidget() self.tab_widget.setFont(QFont("Arial", 10)) # 识别标签页 recognition_tab = QWidget() self.init_recognition_tab(recognition_tab) self.tab_widget.addTab(recognition_tab, "物体识别") # 性能标签页 performance_tab = QWidget() self.init_performance_tab(performance_tab) self.tab_widget.addTab(performance_tab, "性能监控") # 模型标签页 model_tab = QWidget() self.init_model_tab(model_tab) self.tab_widget.addTab(model_tab, "模型管理") right_layout.addWidget(self.tab_widget) splitter.addWidget(right_frame) # 设置分割比例 splitter.setSizes([700, 500]) main_layout.addWidget(splitter) # 添加状态栏信息 model_status = "已加载" if self.model_exists else "未找到" self.statusBar().addPermanentWidget(QLabel(f"模型状态: {model_status}")) self.statusBar().addPermanentWidget(QLabel(f"类别数: {len(self.class_labels)}")) # 设置初始标签页 self.tab_widget.setCurrentIndex(0) def init_recognition_tab(self, tab): """初始化识别标签页""" layout = QVBoxLayout(tab) layout.setSpacing(10) # 控制面板 control_group = QGroupBox("控制面板") control_layout = QVBoxLayout(control_group) # 模型选择 model_layout = QHBoxLayout() model_layout.addWidget(QLabel("当前模型:")) self.model_label = QLabel(os.path.basename(self.model_path)) self.model_label.setStyleSheet("color: #3d85c6;") model_layout.addWidget(self.model_label) model_layout.addStretch() # 重新加载模型按钮 self.btn_reload = QPushButton("重新加载模型") self.btn_reload.setFont(QFont("Arial", 9)) self.btn_reload.setStyleSheet("background-color: #e0e0e0; padding: 5px;") self.btn_reload.clicked.connect(self.reload_model) model_layout.addWidget(self.btn_reload) control_layout.addLayout(model_layout) # 按钮行 button_layout = QHBoxLayout() # 选择图像按钮 self.btn_select = QPushButton("选择图像") self.btn_select.setFont(QFont("Arial", 10)) self.btn_select.setStyleSheet(""" QPushButton { background-color: #4a86e8; color: white; border-radius: 5px; padding: 8px; } QPushButton:hover { background-color: #3a76d8; } """) self.btn_select.clicked.connect(self.select_image) button_layout.addWidget(self.btn_select) # 预测按钮 self.btn_predict = QPushButton("运行预测") self.btn_predict.setFont(QFont("Arial", 10)) self.btn_predict.setStyleSheet(""" QPushButton { background-color: #6aa84f; color: white; border-radius: 5px; padding: 8px; } QPushButton:hover { background-color: #5a983f; } """) self.btn_predict.clicked.connect(self.run_prediction) button_layout.addWidget(self.btn_predict) # 性能测试按钮 self.btn_benchmark = QPushButton("性能测试") self.btn_benchmark.setFont(QFont("Arial", 10)) self.btn_benchmark.setStyleSheet(""" QPushButton { background-color: #e69138; color: white; border-radius: 5px; padding: 8px; } QPushButton:hover { background-color: #d68128; } """) self.btn_benchmark.clicked.connect(self.run_benchmark) button_layout.addWidget(self.btn_benchmark) control_layout.addLayout(button_layout) layout.addWidget(control_group) # 结果面板 result_group = QGroupBox("预测结果") result_layout = QVBoxLayout(result_group) # 类别标签 class_layout = QHBoxLayout() class_layout.addWidget(QLabel("识别类别:")) self.class_label = QLabel("") self.class_label.setFont(QFont("Arial", 12, QFont.Bold)) self.class_label.setStyleSheet("color: #3d85c6;") class_layout.addWidget(self.class_label) class_layout.addStretch() result_layout.addLayout(class_layout) # 置信度 conf_layout = QHBoxLayout() conf_layout.addWidget(QLabel("置信度:")) self.confidence_label = QLabel("") self.confidence_label.setStyleSheet("color: #6aa84f;") conf_layout.addWidget(self.confidence_label) conf_layout.addStretch() result_layout.addLayout(conf_layout) # 类别概率分布 prob_group = QGroupBox("类别概率分布") prob_layout = QVBoxLayout(prob_group) # 进度条容器 self.progress_bars = {} for label in self.class_labels: label_layout = QHBoxLayout() # 标签 lbl_widget = QLabel(label) lbl_widget.setFixedWidth(100) label_layout.addWidget(lbl_widget) # 进度条 pb = QProgressBar() pb.setRange(0, 100) pb.setValue(0) pb.setFormat("%p%") pb.setStyleSheet(self.get_progressbar_style(0)) pb.setFixedHeight(25) label_layout.addWidget(pb, 1) # 设置拉伸因子为1 # 百分比标签 percent_label = QLabel("0%") percent_label.setFixedWidth(50) percent_label.setAlignment(Qt.AlignRight | Qt.AlignVCenter) label_layout.addWidget(percent_label) # 存储引用 self.progress_bars[label] = { 'progress': pb, 'percent': percent_label } prob_layout.addLayout(label_layout) result_layout.addWidget(prob_group) layout.addWidget(result_group, 1) # 设置拉伸因子 def init_performance_tab(self, tab): """初始化性能监控标签页""" layout = QVBoxLayout(tab) # 实时性能指标 perf_group = QGroupBox("实时性能") perf_layout = QGridLayout(perf_group) # CPU使用率 cpu_layout = QVBoxLayout() cpu_layout.addWidget(QLabel("CPU使用率")) self.cpu_progress = QProgressBar() self.cpu_progress.setRange(0, 100) self.cpu_progress.setValue(0) self.cpu_progress.setFormat("%p%") self.cpu_progress.setStyleSheet(""" QProgressBar::chunk { background-color: #4caf50; } """) cpu_layout.addWidget(self.cpu_progress) perf_layout.addLayout(cpu_layout, 0, 0) # 内存使用率 ram_layout = QVBoxLayout() ram_layout.addWidget(QLabel("内存使用率")) self.ram_progress = QProgressBar() self.ram_progress.setRange(0, 100) self.ram_progress.setValue(0) self.ram_progress.setFormat("%p%") self.ram_progress.setStyleSheet(""" QProgressBar::chunk { background-color: #2196f3; } """) ram_layout.addWidget(self.ram_progress) perf_layout.addLayout(ram_layout, 0, 1) # GPU使用率 gpu_layout = QVBoxLayout() gpu_layout.addWidget(QLabel("GPU使用率")) self.gpu_progress = QProgressBar() self.gpu_progress.setRange(0, 100) self.gpu_progress.setValue(0) self.gpu_progress.setFormat("%p%") self.gpu_progress.setStyleSheet(""" QProgressBar::chunk { background-color: #ff9800; } """) gpu_layout.addWidget(self.gpu_progress) perf_layout.addLayout(gpu_layout, 0, 2) # 模型性能指标 model_perf_group = QGroupBox("模型性能指标") model_perf_layout = QVBoxLayout(model_perf_group) # 创建表格 self.performance_table = QTableWidget() self.performance_table.setColumnCount(4) self.performance_table.setHorizontalHeaderLabels(["时间", "推理时间(ms)", "内存占用(MB)", "置信度"]) self.performance_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.performance_table.setEditTriggers(QTableWidget.NoEditTriggers) model_perf_layout.addWidget(self.performance_table) # 添加布局 layout.addWidget(perf_group) layout.addWidget(model_perf_group, 1) # 设置拉伸因子 def init_model_tab(self, tab): """初始化模型管理标签页""" layout = QVBoxLayout(tab) # 当前模型信息 model_info_group = QGroupBox("当前模型信息") model_info_layout = QVBoxLayout(model_info_group) # 模型路径 path_layout = QHBoxLayout() path_layout.addWidget(QLabel("模型路径:")) self.model_path_label = QLabel(self.model_path) self.model_path_label.setStyleSheet("color: #666666;") path_layout.addWidget(self.model_path_label) model_info_layout.addLayout(path_layout) # 模型类型 type_layout = QHBoxLayout() type_layout.addWidget(QLabel("模型类型:")) self.model_type_label = QLabel("TFLite" if self.model_path.endswith('.tflite') else "Keras") type_layout.addWidget(self.model_type_label) model_info_layout.addLayout(type_layout) # 输入尺寸 input_layout = QHBoxLayout() input_layout.addWidget(QLabel("输入尺寸:")) self.input_size_label = QLabel("N/A") input_layout.addWidget(self.input_size_label) model_info_layout.addLayout(input_layout) # 类别标签 label_layout = QHBoxLayout() label_layout.addWidget(QLabel("类别标签:")) self.label_list = QListWidget() self.label_list.addItems(self.class_labels) label_layout.addWidget(self.label_list) model_info_layout.addLayout(label_layout) layout.addWidget(model_info_group) # 模型操作 model_ops_group = QGroupBox("模型操作") model_ops_layout = QVBoxLayout(model_ops_group) # 加载新模型按钮 self.btn_load_new = QPushButton("加载新模型") self.btn_load_new.setFont(QFont("Arial", 10)) self.btn_load_new.setStyleSheet("background-color: #4a86e8; color: white; padding: 8px;") self.btn_load_new.clicked.connect(self.load_new_model) model_ops_layout.addWidget(self.btn_load_new) # 转换模型按钮 self.btn_convert = QPushButton("转换为TFLite格式") self.btn_convert.setFont(QFont("Arial", 10)) self.btn_convert.setStyleSheet("background-color: #6aa84f; color: white; padding: 8px;") self.btn_convert.clicked.connect(self.convert_model) model_ops_layout.addWidget(self.btn_convert) # 导出元数据按钮 self.btn_export_meta = QPushButton("导出元数据") self.btn_export_meta.setFont(QFont("Arial", 10)) self.btn_export_meta.setStyleSheet("background-color: #e69138; color: white; padding: 8px;") self.btn_export_meta.clicked.connect(self.export_metadata) model_ops_layout.addWidget(self.btn_export_meta) layout.addWidget(model_ops_group) def init_model(self): """初始化模型""" try: # 检查模型文件是否存在 if not self.model_exists: raise FileNotFoundError(f"模型文件不存在: {self.model_path}") # 加载模型 self.deployer = ObjectRecognitionDeployer(self.model_path, self.class_labels) # 更新UI显示 self.input_size_label.setText(f"{self.deployer.input_shape[0]}×{self.deployer.input_shape[1]}") # 显示状态信息 self.statusBar().showMessage(f"模型加载成功: {os.path.basename(self.model_path)}", 5000) except Exception as e: # 提供更详细的错误信息 error_msg = ( f"无法加载模型: {str(e)}\n\n" f"模型路径: {self.model_path}\n" f"当前目录: {os.path.dirname(os.path.abspath(__file__))}\n\n" "请确保:\n" "1. 模型文件存在于当前目录\n" "2. 模型文件名正确\n" "3. 模型格式兼容" ) QMessageBox.critical(self, "模型加载错误", error_msg) # 创建空部署器以避免崩溃 self.deployer = None def reload_model(self): """重新加载模型""" # 重新配置路径 self.configure_model_paths() # 重新初始化模型 self.init_model() # 更新UI self.model_label.setText(os.path.basename(self.model_path)) self.model_path_label.setText(self.model_path) self.model_type_label.setText("TFLite" if self.model_path.endswith('.tflite') else "Keras") # 更新标签列表 self.label_list.clear() self.label_list.addItems(self.class_labels) # 更新进度条 self.progress_bars = {} # 这里需要重新初始化进度条UI,为简洁起见省略具体实现 # 以下方法保持不变(select_image, display_image, run_prediction, update_probability_bars, # get_progressbar_style, run_benchmark, update_memory_usage)... def update_performance_stats(self, cpu_percent, ram_percent, gpu_percent): """更新性能统计""" self.cpu_progress.setValue(int(cpu_percent)) self.ram_progress.setValue(int(ram_percent)) self.gpu_progress.setValue(int(gpu_percent)) # 记录性能历史 self.performance_history.append({ "time": datetime.now().strftime("%H:%M:%S"), "cpu": cpu_percent, "ram": ram_percent, "gpu": gpu_percent }) # 保留最近100条记录 if len(self.performance_history) > 100: self.performance_history.pop(0) def add_performance_record(self, inference_time, mem_usage, confidence): """添加性能记录到表格""" row_position = self.performance_table.rowCount() self.performance_table.insertRow(row_position) # 添加时间 time_item = QTableWidgetItem(datetime.now().strftime("%H:%M:%S")) self.performance_table.setItem(row_position, 0, time_item) # 添加推理时间 time_item = QTableWidgetItem(f"{inference_time:.2f}") time_item.setTextAlignment(Qt.AlignCenter) self.performance_table.setItem(row_position, 1, time_item) # 添加内存占用 mem_item = QTableWidgetItem(f"{mem_usage:.2f}") mem_item.setTextAlignment(Qt.AlignCenter) self.performance_table.setItem(row_position, 2, mem_item) # 添加置信度 conf_item = QTableWidgetItem(f"{confidence:.2%}") conf_item.setTextAlignment(Qt.AlignCenter) self.performance_table.setItem(row_position, 3, conf_item) # 滚动到最后一行 self.performance_table.scrollToBottom() def load_new_model(self): """加载新模型""" file_path, _ = QFileDialog.getOpenFileName( self, "选择模型文件", "", "模型文件 (*.tflite *.h5 *.keras *.pb *.onnx)" ) if file_path: # 更新模型路径 self.model_path = file_path # 重新加载模型 self.reload_model() def convert_model(self): """将模型转换为TFLite格式""" if not self.deployer: QMessageBox.warning(self, "警告", "请先加载有效的模型") return if not hasattr(self.deployer, 'convert_to_tflite_with_metadata'): QMessageBox.warning(self, "警告", "当前模型不支持转换") return # 选择保存路径 save_path, _ = QFileDialog.getSaveFileName( self, "保存TFLite模型", "", "TFLite模型 (*.tflite)" ) if not save_path: return # 选择代表性数据集目录 data_dir = QFileDialog.getExistingDirectory( self, "选择代表性数据集目录", "" ) # 显示进度对话框 progress_dialog = QMessageBox(self) progress_dialog.setWindowTitle("模型转换中") progress_dialog.setText("正在转换模型,请稍候...") progress_dialog.setStandardButtons(QMessageBox.NoButton) progress_dialog.show() QApplication.processEvents() # 确保UI更新 try: # 执行转换 self.deployer.convert_to_tflite_with_metadata( save_path, quantize=True, representative_data_dir=data_dir if data_dir else None ) # 更新模型路径 self.model_path = save_path self.reload_model() QMessageBox.information(self, "转换成功", f"模型已成功转换为TFLite格式并保存到:\n{save_path}") except Exception as e: QMessageBox.critical(self, "转换失败", f"模型转换失败: {str(e)}") finally: progress_dialog.done(0) def export_metadata(self): """导出模型元数据""" if not self.deployer: QMessageBox.warning(self, "警告", "请先加载有效的模型") return # 选择保存路径 save_path, _ = QFileDialog.getSaveFileName( self, "保存元数据文件", "", "JSON文件 (*.json)" ) if not save_path: return try: # 创建元数据 metadata = self.deployer.create_metadata(save_path) QMessageBox.information(self, "导出成功", f"模型元数据已成功导出到:\n{save_path}") except Exception as e: QMessageBox.critical(self, "导出失败", f"元数据导出失败: {str(e)}") def closeEvent(self, event): """窗口关闭事件处理""" # 停止定时器和线程 self.memory_timer.stop() self.performance_monitor.quit() self.performance_monitor.wait() event.accept() # 主程序入口 if __name__ == "__main__": # 创建应用 app = QApplication(sys.argv) # 设置应用样式 app.setStyle("Fusion") # 创建主窗口 window = ObjectRecognitionGUI() window.show() # 运行主循环 sys.exit(app.exec_()) ``` ## 系统功能详解 ### 1. 多标签页界面设计 - **物体识别标签页**:核心功能,包括图像选择、模型预测和结果展示 - **性能监控标签页**:实时显示系统资源使用情况和模型性能指标 - **模型管理标签页**:提供模型加载、转换和元数据导出功能 ### 2. 动态模型管理 - **自动检测模型**:自动查找当前目录下的模型文件 - **模型重新加载**:支持不重启应用重新加载模型 - **模型转换**:将Keras模型转换为TFLite格式 - **元数据导出**:导出模型的元数据信息 ### 3. 实时性能监控 - **系统资源监控**:实时显示CPU、内存和GPU使用率 - **模型性能记录**:记录每次推理的时间、内存占用和置信度 - **后台线程监控**:使用独立线程监控系统性能 ### 4. 用户友好界面 - **状态栏信息**:显示模型状态和类别数 - **进度条颜色编码**:根据概率值动态改变进度条颜色 - **详细错误处理**:提供清晰的错误信息和解决建议 - **响应式布局**:使用分割器实现灵活的界面布局 ## 使用说明 ### 1. 系统依赖 ```bash pip install pyqt5 opencv-python numpy pillow psutil # 可选:GPU监控支持 pip install pynvml ``` ### 2. 文件结构 ``` 物体识别系统/ ├── main.py # 主程序文件 ├── model_quantized.tflite # 模型文件 ├── labels.txt # 类别标签文件 ├── metadata.json # 模型元数据 ├── icon.png # 应用图标 └── 计算机视觉/ # 模型部署器包 └── test2.py # ObjectRecognitionDeployer实现 ``` ### 3. 启动应用 ```bash python main.py ``` ### 4. 主要操作流程 1. **选择图像**:点击"选择图像"按钮加载测试图像 2. **运行预测**:点击"运行预测"进行物体识别 3. **性能测试**:点击"性能测试"评估模型性能 4. **模型管理**: - 在"模型管理"标签页加载新模型 - 转换模型格式为TFLite - 导出模型元数据 ## 高级功能实现 ### 1. 后台性能监控 使用`QThread`实现后台性能监控,避免阻塞主界面: ```python class PerformanceMonitor(QThread): update_signal = pyqtSignal(float, float, float) # CPU, RAM, GPU def run(self): while True: # 获取系统性能数据 cpu_percent = psutil.cpu_percent() # ...其他指标... self.update_signal.emit(cpu_percent, ram_percent, gpu_percent) time.sleep(1) ``` ### 2. 模型热更新 不重启应用即可加载新模型: ```python def reload_model(self): """重新加载模型""" self.configure_model_paths() # 重新配置路径 self.init_model() # 重新初始化模型 # 更新UI... ``` ### 3. 模型转换功能 集成`ObjectRecognitionDeployer`的转换方法: ```python def convert_model(self): """将模型转换为TFLite格式""" # 获取保存路径和数据目录 save_path = ... data_dir = ... # 执行转换 self.deployer.convert_to_tflite_with_metadata( save_path, quantize=True, representative_data_dir=data_dir ) ``` ## 性能优化建议 1. **异步处理**:对于耗时的模型推理操作,使用`QThread`避免界面冻结 2. **图像缓存**:缓存预处理后的图像,减少重复计算 3. **模型预热**:在应用启动时执行一次推理,提前初始化模型 4. **资源限制**:对于大模型,限制同时进行的推理数量

TypeError: in user code: TypeError: outer_factory.<locals>.inner_factory.<locals>.tf__combine_features() takes 1 positional argument but 2 were given,下面是这个出现这个问题的原代码,你帮我修改一下import os import re import glob import tensorflow as tf import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt import matplotlib as mpl from sklearn.model_selection import train_test_split import imageio import sys from skimage.transform import resize import traceback from tensorflow.keras import layers, models, Input, Model from tensorflow.keras.optimizers import Adam from pathlib import Path from tensorflow.keras.losses import MeanSquaredError from tensorflow.keras.metrics import MeanAbsoluteError from skimage import measure, morphology, filters # =============== 配置参数===================================== BASE_DIR = "F:/2025.7.2wavelengthtiff" # 根目录路径 START_WAVELENGTH = 788.55500 # 起始波长 END_WAVELENGTH = 788.55600 # 结束波长 STEP = 0.00005 # 波长步长 BATCH_SIZE = 8 # 批处理大小 IMAGE_SIZE = (256, 256) # 图像尺寸 TARGET_CHANNELS = 1 # 目标通道数 - 使用灰度图像 TEST_SIZE = 0.2 # 测试集比例 RANDOM_SEED = 42 # 随机种子 MODEL_SAVE_PATH = Path.home() / "Documents" / "wavelength_model.keras" # 修改为.keras格式 # ================================================================ # 设置中文字体支持 try: mpl.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体 mpl.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 print("已设置中文字体支持") except: print("警告:无法设置中文字体,图表可能无法正确显示中文") def generate_folder_names(start, end, step): """生成波长文件夹名称列表""" num_folders = int((end - start) / step) + 1 folder_names = [] for i in range(num_folders): wavelength = start + i * step folder_name = f"{wavelength:.5f}" folder_names.append(folder_name) return folder_names def find_best_match_file(folder_path, target_wavelength): """在文件夹中找到波长最接近目标值的TIFF文件""" tiff_files = glob.glob(os.path.join(folder_path, "*.tiff")) + glob.glob(os.path.join(folder_path, "*.tif")) if not tiff_files: return None best_match = None min_diff = float('inf') for file_path in tiff_files: filename = os.path.basename(file_path) match = re.search(r'\s*([\d.]+)_', filename) if not match: continue try: file_wavelength = float(match.group(1)) diff = abs(file_wavelength - target_wavelength) if diff < min_diff: min_diff = diff best_match = file_path except ValueError: continue return best_match def extract_shape_features(binary_image): """从二值化图像中提取形状和边界特征""" features = np.zeros(6, dtype=np.float32) # 初始化特征向量 try: contours = measure.find_contours(binary_image, 0.5) if not contours: return features main_contour = max(contours, key=len) contour_length = len(main_contour) label_image = morphology.label(binary_image) region = measure.regionprops(label_image)[0] contour_area = region.area hull = morphology.convex_hull_image(label_image) hull_area = np.sum(hull) solidity = region.solidity eccentricity = region.eccentricity orientation = region.orientation features[0] = contour_length / 1000 # 归一化 features[1] = contour_area / 1000 # 归一化 features[2] = solidity features[3] = eccentricity features[4] = orientation features[5] = hull_area / 1000 # 凸包面积 except Exception as e: print(f"形状特征提取错误: {e}") traceback.print_exc() return features def load_and_preprocess_image(file_path): """加载并预处理TIFF图像""" try: image = imageio.imread(file_path) if image.dtype == np.uint16: image = image.astype(np.float32) / 65535.0 elif image.dtype == np.uint8: image = image.astype(np.float32) / 255.0 else: image = image.astype(np.float32) if np.max(image) > 1.0: image = image / np.max(image) if len(image.shape) == 3 and image.shape[2] > 1: image = 0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2] image = np.expand_dims(image, axis=-1) image = resize(image, (IMAGE_SIZE[0], IMAGE_SIZE[1]), anti_aliasing=True) blurred = filters.gaussian(image[..., 0], sigma=1.0) thresh = filters.threshold_otsu(blurred) binary = blurred > thresh * 0.8 return image, binary except Exception as e: print(f"图像加载失败: {e}, 使用空白图像代替") return np.zeros((IMAGE_SIZE[0], IMAGE_SIZE[1], 1), dtype=np.float32), np.zeros((IMAGE_SIZE[0], IMAGE_SIZE[1]), dtype=np.bool) def create_tiff_dataset(file_paths): """从文件路径列表创建TensorFlow数据集""" dataset = tf.data.Dataset.from_tensor_slices(file_paths) def load_wrapper(file_path): file_path_str = file_path.numpy().decode('utf-8') image, binary = load_and_preprocess_image(file_path_str) features = extract_shape_features(binary) return image, features def tf_load_wrapper(file_path): result = tf.py_function( func=load_wrapper, inp=[file_path], Tout=(tf.float32, tf.float32) ) image = result[0] features = result[1] image.set_shape((IMAGE_SIZE[0], IMAGE_SIZE[1], 1)) # 单通道 features.set_shape((6,)) # 6个形状特征 return image, features dataset = dataset.map(tf_load_wrapper, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE) return dataset def load_and_prepare_data(): """加载所有数据并准备训练/测试集""" folder_names = generate_folder_names(START_WAVELENGTH, END_WAVELENGTH, STEP) print(f"\n生成的文件夹数量: {len(folder_names)}") print(f"起始文件夹: {folder_names[0]}") print(f"结束文件夹: {folder_names[-1]}") valid_files = [] wavelengths = [] print("\n扫描文件夹并匹配文件...") for folder_name in tqdm(folder_names, desc="处理文件夹"): folder_path = os.path.join(BASE_DIR, folder_name) if not os.path.isdir(folder_path): continue try: target_wavelength = float(folder_name) file_path = find_best_match_file(folder_path, target_wavelength) if file_path: valid_files.append(file_path) wavelengths.append(target_wavelength) except ValueError: continue print(f"\n找到的有效文件: {len(valid_files)}/{len(folder_names)}") if not valid_files: raise ValueError("未找到任何有效文件,请检查路径和文件夹名称") wavelengths = np.array(wavelengths) min_wavelength = np.min(wavelengths) max_wavelength = np.max(wavelengths) wavelength_range = max_wavelength - min_wavelength wavelengths_normalized = (wavelengths - min_wavelength) / wavelength_range print(f"波长范围: {min_wavelength:.6f} 到 {max_wavelength:.6f}, 范围大小: {wavelength_range:.6f}") train_files, test_files, train_wavelengths, test_wavelengths = train_test_split( valid_files, wavelengths_normalized, test_size=TEST_SIZE, random_state=RANDOM_SEED ) print(f"训练集大小: {len(train_files)}") print(f"测试集大小: {len(test_files)}") train_dataset = create_tiff_dataset(train_files) test_dataset = create_tiff_dataset(test_files) train_labels = tf.data.Dataset.from_tensor_slices(train_wavelengths) test_labels = tf.data.Dataset.from_tensor_slices(test_wavelengths) # 修复后的 combine_features 函数 def combine_features(data): """将图像特征和标签组合成模型需要的格式""" image_features, label = data image, shape_features = image_features return (image, shape_features), label train_dataset_unet = tf.data.Dataset.zip((train_dataset, train_labels)).map( combine_features, num_parallel_calls=tf.data.experimental.AUTOTUNE ) test_dataset_unet = tf.data.Dataset.zip((test_dataset, test_labels)).map( combine_features, num_parallel_calls=tf.data.experimental.AUTOTUNE ) train_dataset_cnn_dense = tf.data.Dataset.zip((train_dataset.map(lambda x: x[0]), train_labels)) test_dataset_cnn_dense = tf.data.Dataset.zip((test_dataset.map(lambda x: x[0]), test_labels)) return train_dataset_unet, test_dataset_unet, train_dataset_cnn_dense, test_dataset_cnn_dense, valid_files, min_wavelength, wavelength_range def build_unet_model(input_shape, shape_feature_size): """构建 U-Net 模型,同时接受图像输入和形状特征输入""" # 图像输入 image_input = Input(shape=input_shape, name='image_input') # Encoder conv1 = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(image_input) conv1 = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(conv1) pool1 = layers.MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(pool1) conv2 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(conv2) pool2 = layers.MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(pool2) conv3 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(conv3) pool3 = layers.MaxPooling2D(pool_size=(2, 2))(conv3) # Bottleneck conv4 = layers.Conv2D(256, (3, 3), activation='relu', padding='same')(pool3) conv4 = layers.Conv2D(256, (3, 3), activation='relu', padding='same')(conv4) drop4 = layers.Dropout(0.5)(conv4) # Decoder up5 = layers.Conv2D(128, (2, 2), activation='relu', padding='same')(layers.UpSampling2D(size=(2, 2))(drop4)) merge5 = layers.Concatenate()([conv3, up5]) conv5 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(merge5) conv5 = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(conv5) up6 = layers.Conv2D(64, (2, 2), activation='relu', padding='same')(layers.UpSampling2D(size=(2, 2))(conv5)) merge6 = layers.Concatenate()([conv2, up6]) conv6 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(merge6) conv6 = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(conv6) up7 = layers.Conv2D(32, (2, 2), activation='relu', padding='same')(layers.UpSampling2D(size=(2, 2))(conv6)) merge7 = layers.Concatenate()([conv1, up7]) conv7 = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(merge7) conv7 = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(conv7) # 形状特征输入 shape_input = Input(shape=(shape_feature_size,), name='shape_input') shape_dense = layers.Dense(128, activation='relu')(shape_input) shape_dense = layers.Dense(64, activation='relu')(shape_dense) # 合并图像特征和形状特征 flat = layers.GlobalAveragePooling2D()(conv7) combined = layers.Concatenate()([flat, shape_dense]) # 输出层 outputs = layers.Dense(1, activation='linear')(combined) model = Model(inputs=[image_input, shape_input], outputs=outputs) model.compile(optimizer=Adam(learning_rate=1e-4), loss='mean_squared_error', metrics=['mae']) return model def build_dense_model(input_shape): """构建简单的全连接网络""" inputs = Input(shape=input_shape) x = layers.Flatten()(inputs) x = layers.Dense(128, activation='relu')(x) x = layers.Dense(64, activation='relu')(x) outputs = layers.Dense(1, activation='linear')(x) model = Model(inputs=[inputs], outputs=[outputs]) model.compile(optimizer=Adam(learning_rate=1e-4), loss='mean_squared_error', metrics=['mae']) return model def build_cnn_model(input_shape): """构建传统的 CNN 模型""" inputs = Input(shape=input_shape) x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(inputs) x = layers.MaxPooling2D((2, 2))(x) x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x) x = layers.MaxPooling2D((2, 2))(x) x = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x) x = layers.MaxPooling2D((2, 2))(x) x = layers.Conv2D(256, (3, 3), activation='relu', padding='same')(x) x = layers.GlobalAveragePooling2D()(x) x = layers.Dense(256, activation='relu')(x) outputs = layers.Dense(1, activation='linear')(x) model = Model(inputs=[inputs], outputs=[outputs]) model.compile(optimizer=Adam(learning_rate=1e-4), loss='mean_squared_error', metrics=['mae']) return model def train_models(train_dataset_unet, test_dataset_unet, train_dataset_cnn_dense, test_dataset_cnn_dense, input_shape, shape_feature_size, wavelength_range): """训练多个模型""" unet_model = build_unet_model(input_shape, shape_feature_size) dense_model = build_dense_model(input_shape) cnn_model = build_cnn_model(input_shape) unet_model.summary() dense_model.summary() cnn_model.summary() callbacks = [ tf.keras.callbacks.EarlyStopping(patience=30, restore_best_weights=True, monitor='val_loss', min_delta=1e-6), tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, min_lr=1e-7) ] unet_history = unet_model.fit(train_dataset_unet, epochs=300, validation_data=test_dataset_unet, callbacks=callbacks, verbose=2) dense_history = dense_model.fit(train_dataset_cnn_dense, epochs=300, validation_data=test_dataset_cnn_dense, callbacks=callbacks, verbose=2) cnn_history = cnn_model.fit(train_dataset_cnn_dense, epochs=300, validation_data=test_dataset_cnn_dense, callbacks=callbacks, verbose=2) return unet_model, dense_model, cnn_model def predict_with_voting(models, test_image_path, min_wavelength, wavelength_range): """使用多个模型进行预测,并通过投票机制决定最终结果""" image, binary = load_and_preprocess_image(test_image_path) image = np.expand_dims(image, axis=0) shape_features = extract_shape_features(binary) shape_features = np.expand_dims(shape_features, axis=0) predictions = [] for model in models: if model.name == 'unet_model': predicted_normalized = model.predict([image, shape_features], verbose=0)[0][0] else: predicted_normalized = model.predict(image, verbose=0)[0][0] predicted_wavelength = predicted_normalized * wavelength_range + min_wavelength predictions.append(predicted_wavelength) # 使用投票机制(例如取平均值) final_prediction = np.mean(predictions) print(f"最终预测波长: {final_prediction:.8f} 纳米") return final_prediction def main(): """主函数""" print(f"TensorFlow 版本: {tf.__version__}") try: train_dataset_unet, test_dataset_unet, train_dataset_cnn_dense, test_dataset_cnn_dense, all_files, min_wavelength, wavelength_range = load_and_prepare_data() print(f"最小波长: {min_wavelength:.6f}, 波长范围: {wavelength_range:.6f}") except Exception as e: print(f"数据加载失败: {str(e)}") traceback.print_exc() return print("\n开始训练模型...") try: unet_model, dense_model, cnn_model = train_models(train_dataset_unet, test_dataset_unet, train_dataset_cnn_dense, test_dataset_cnn_dense, (IMAGE_SIZE[0], IMAGE_SIZE[1], 1), 6, wavelength_range) except Exception as e: print(f"模型训练失败: {str(e)}") traceback.print_exc() return print("\n从测试集中随机选择一张图片进行预测...") try: for (images, features), labels in test_dataset_unet.take(1): if images.shape[0] > 0: test_image = images[0].numpy() test_features = features[0].numpy() labels_np = labels.numpy() if labels_np.ndim == 0: true_wavelength_normalized = labels_np.item() else: true_wavelength_normalized = labels_np[0] true_wavelength = true_wavelength_normalized * wavelength_range + min_wavelength test_image_path = "f:/phD/代码/test_image.tiff" imageio.imwrite(test_image_path, (test_image[..., 0] * 255).astype(np.uint8)) predicted_wavelength = predict_with_voting([unet_model, dense_model, cnn_model], test_image_path, min_wavelength, wavelength_range) print(f"真实波长: {true_wavelength:.6f} 纳米") print(f"预测波长: {predicted_wavelength:.6f} 纳米") print(f"绝对误差: {abs(predicted_wavelength - true_wavelength):.8f} 纳米") print(f"相对误差: {abs(predicted_wavelength - true_wavelength) / wavelength_range * 100:.4f}%") else: print("错误:测试批次中没有样本") except Exception as e: print(f"测试失败: {str(e)}") traceback.print_exc() print("\n您可以使用自己的图片进行测试:") model = tf.keras.models.load_model(MODEL_SAVE_PATH) image_path = input("请输入您要测试的图片路径(例如:'test_image.tiff'): ") predicted = predict_with_voting([unet_model, dense_model, cnn_model], image_path, min_wavelength, wavelength_range) print(f"预测波长: {predicted:.6f} 纳米") print("\n程序执行完成。") if __name__ == "__main__": os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' try: from skimage import filters, measure, morphology except ImportError: print("安装必要的库...") import subprocess subprocess.run([sys.executable, "-m", "pip", "install", "scikit-image", "imageio"]) from skimage import filters, measure, morphology main()

<think>我们正在处理一个TensorFlow中的TypeError,错误信息指出:`outer_factory.<locals>.inner_factory.<locals>.tf__combine_features() takes 1 positional argument but 2 were given`。这意味着我们在调用函数`combine_features`时传递了两个位置参数,但该函数只接受一个位置参数。 在TensorFlow中,尤其是在使用`tf.function`时,函数参数的处理可能会有些特殊。通常,当我们使用`tf.function`装饰一个函数时,该函数的参数应该被设计为接受一个或多个张量作为输入,并且我们需要确保在调用时传递的参数数量与定义一致。 错误信息中提到的`outer_factory`和`inner_factory`表明这可能是一个嵌套的函数装饰(可能是由`tf.function`或其他装饰器引起的)。具体来说,错误发生在`tf__combine_features`函数上,这是由`tf.function`装饰器生成的。 可能的原因和解决方案: 1. **函数定义与调用参数不匹配**:检查`combine_features`函数的定义,看它是否只定义了一个参数,但在调用时却传递了两个参数。例如: 错误定义: ```python @tf.function def combine_features(x): ... ``` 错误调用: ```python combine_features(feature1, feature2) # 传递了两个参数 ``` 修正方法:修改函数定义以接受两个参数,或者修改调用方式以传递一个包含两个元素的元组或列表。 2. **使用`tf.function`时参数传递方式问题**:如果函数定义时使用了多个参数,但在`tf.function`中调用时,由于TensorFlow的图执行特性,可能会要求我们以更结构化的方式传递参数。确保在调用被`tf.function`装饰的函数时,传递的参数与函数签名一致。 3. **嵌套装饰器问题**:如果函数被多个装饰器装饰,可能会改变函数的签名。检查装饰器的顺序以及它们如何影响函数。 4. **使用`tf.function`的`input_signature`参数**:如果希望函数接受多个输入,可以使用`input_signature`来明确指定函数的输入签名,这样TensorFlow可以正确地构建计算图。 示例: 假设我们有一个函数`combine_features`,它原本设计为接受两个张量: ```python def combine_features(a, b): return a + b ``` 当我们用`@tf.function`装饰它时,调用这个函数需要两个参数。但是,如果我们错误地传递了一个参数(比如一个元组)或者两个单独的参数,可能会出现问题。然而,错误信息是“takes 1 positional argument but 2 were given”,这表明函数被设计为只接受一个位置参数,但我们却传递了两个。 因此,更可能的情况是函数被定义为只接受一个参数,但我们却传递了两个。例如: ```python @tf.function def combine_features(inputs): a, b = inputs return a + b ``` 然后这样调用:`combine_features(a, b)`,这会导致错误,因为函数只接受一个参数(一个包含两个元素的元组或列表),而我们传递了两个单独的参数。 修正方法1:修改调用方式,将两个参数打包成一个元组: ```python combine_features((a, b)) ``` 修正方法2:修改函数定义,使其接受两个参数: ```python @tf.function def combine_features(a, b): return a + b ``` 然后直接调用:`combine_features(a, b)` 5. **类方法中的self参数**:如果`combine_features`是一个类的方法,那么第一个参数是`self`,调用时它会自动传递。因此,当我们调用`instance.combine_features(x)`时,实际上传递了两个参数:`self`和`x`。但是,如果我们在定义时没有正确使用`self`,或者错误地使用了`tf.function`装饰器,可能会导致问题。 在类的方法中使用`tf.function`时,通常建议将方法装饰为`@tf.function`,并且确保第一个参数是`self`,第二个参数开始是输入。例如: ```python class MyModel(tf.keras.Model): @tf.function def call(self, inputs): ... ``` 但是,如果我们在类中定义了一个方法,它除了`self`外只接受一个参数,但我们调用时传递了两个参数(不包括自动传递的`self`),那么就会出错。 例如,定义: ```python class MyClass: @tf.function def combine_features(self, inputs): ... ``` 调用:`obj.combine_features(a, b)` # 这里a和b会被视为两个参数,加上自动传递的self,函数总共收到三个参数,但定义只接受两个(self和inputs)。所以这会导致错误。 因此,请检查函数定义和调用方式,确保参数数量匹配。 总结步骤: 1. 检查`combine_features`函数的定义,确认它有几个位置参数(注意:类方法中第一个参数是`self`,不计入用户传递的参数)。 2. 检查调用该函数的地方,确认传递了多少个位置参数。 3. 调整函数定义或调用,使参数数量一致。 由于没有提供具体的代码,以上是常见的可能原因和解决方案。请根据实际情况调整。 如果问题仍然存在,请提供相关代码片段,以便更准确地定位问题。</think>### 解决 TensorFlow 中的 TypeError:参数数量不匹配错误 #### 错误分析 错误信息 `TypeError: tf__combine_features() takes 1 positional argument but 2 were given` 表明: 1. 您的 `combine_features()` 函数被定义为 **只接受 1 个位置参数** 2. 但在调用时传递了 **2 个位置参数** 3. 常见于以下场景: - 函数被 `@tf.function` 装饰后签名发生变化 - 类方法中未正确处理 `self` 参数 - 参数传递方式不匹配(位置参数 vs 关键字参数) --- #### 解决方案(逐步操作) ##### 1. 检查函数定义与调用 ```python # 错误示例:定义只接受 1 个参数 @tf.function def combine_features(inputs): # 仅 1 个参数 return tf.concat(inputs, axis=-1) # 错误调用:传递了 2 个位置参数 output = combine_features(feature1, feature2) # 触发 TypeError ``` **修正方案**: ```python # 方案 A:修改函数定义接受多个参数 @tf.function def combine_features(*inputs): # 动态参数 return tf.concat(inputs, axis=-1) # 方案 B:调用时打包参数 output = combine_features([feature1, feature2]) # 传递单参数列表 ``` ##### 2. 处理类方法中的 `self` 参数 ```python class FeatureModel(tf.keras.Model): @tf.function # 装饰器会改变参数处理 def combine_features(self, inputs): # self 是隐式第一个参数 ... # 调用时实际传递了 (self, inputs) 两个参数 model = FeatureModel() model.combine_features([feat1, feat2]) # 正确:单位置参数 ``` ##### 3. 显式定义输入签名(推荐) ```python @tf.function( input_signature=[tf.TensorSpec(shape=(None, 128), dtype=tf.float32)] * 2 ) # 明确接受 2 个张量 def combine_features(feat1, feat2): # 正确定义两个参数 return tf.concat([feat1, feat2], axis=-1) ``` ##### 4. 检查装饰器堆叠顺序 ```python # 错误:tf.function 应在最外层 @some_decorator @tf.function # 应放在装饰器栈顶部 def combine_features(...): ... # 正确顺序 @tf.function # 顶层装饰器 @some_decorator def combine_features(...): ... ``` --- #### 关键预防措施 1. **统一参数传递方式**: ```python # 推荐关键字参数调用 combine_features(inputs=[tensor1, tensor2]) ``` 2. **使用 `tf.nest` 处理嵌套结构**: ```python @tf.function def combine_features(inputs): flat_inputs = tf.nest.flatten(inputs) # 解包嵌套参数 return tf.concat(flat_inputs, axis=-1) ``` 3. **测试未装饰的原函数**: ```python # 暂时移除 @tf.function 测试原始函数 def combine_features(...): ... # 确保基础逻辑正确 ``` > **调试提示**:使用 `tf.get_concrete_function().pretty_printed_signature()` 查看图函数的实际签名[^1]。 ---
阅读全文

相关推荐

这个是我现在的代码,我应该怎么修改?我传入的本来就是灰度图,以.tiff结尾import os import re import glob import tensorflow as tf import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt import matplotlib as mpl from sklearn.model_selection import train_test_split import imageio import sys from skimage.transform import resize from skimage.filters import gaussian, threshold_otsu from skimage.feature import canny from skimage.measure import regionprops, label import traceback from tensorflow.keras import layers, models from tensorflow.keras.optimizers import Adam from pathlib import Path from tensorflow.keras.losses import MeanSquaredError from tensorflow.keras.metrics import MeanAbsoluteError # =============== 配置参数===================================== BASE_DIR = "F:/2025.7.2wavelengthtiff" # 根目录路径 START_WAVELENGTH = 788.55500 # 起始波长 END_WAVELENGTH = 788.55600 # 结束波长 STEP = 0.00005 # 波长步长 BATCH_SIZE = 8 # 批处理大小 IMAGE_SIZE = (256, 256) # 图像尺寸 TEST_SIZE = 0.2 # 测试集比例 RANDOM_SEED = 42 # 随机种子 MODEL_SAVE_PATH = Path.home() / "Documents" / "wavelength_model.h5" # 修改为.h5格式以提高兼容性 # ================================================================ # 设置中文字体支持 try: mpl.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体 mpl.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 print("已设置中文字体支持") except: print("警告:无法设置中文字体,图表可能无法正确显示中文") def generate_folder_names(start, end, step): """生成波长文件夹名称列表""" num_folders = int(((end - start) / step)) + 1 folder_names = [] for i in range(num_folders): wavelength = start + i * step folder_name = f"{wavelength:.5f}" folder_names.append(folder_name) return folder_names def find_best_match_file(folder_path, target_wavelength): """在文件夹中找到波长最接近目标值的TIFF文件""" tiff_files = glob.glob(os.path.join(folder_path, "*.tiff")) + glob.glob(os.path.join(folder_path, "*.tif")) if not tiff_files: return None best_match = None min_diff = float('inf') for file_path in tiff_files: filename = os.path.basename(file_path) match = re.search(r'\s*([\d.]+)_', filename) if not match: continue try: file_wavelength = float(match.group(1)) diff = abs(file_wavelength - target_wavelength) if diff < min_diff: min_diff = diff best_match = file_path except ValueError: continue return best_match def extract_shape_features(binary_image): """提取形状特征:面积、周长、圆度""" labeled = label(binary_image) regions = regionprops(labeled) if not regions: # 如果无轮廓,返回零特征 return np.zeros(3) features = [] for region in regions: features.append([ region.area, # 面积 region.perimeter, # 周长 4 * np.pi * (region.area / (region.perimeter ** 2)) if region.perimeter > 0 else 0 # 圆度 ]) features = np.array(features).mean(axis=0) # 取平均值 return features def load_and_preprocess_image(file_path): """加载并预处理TIFF图像 - 针对光场强度分布图优化""" try: # 使用imageio读取图像 image = imageio.imread(file_path, as_gray=True) # 转换为浮点数并归一化 image = image.astype(np.float32) / 255.0 # 图像尺寸调整 image = resize(image, (IMAGE_SIZE[0], IMAGE_SIZE[1]), anti_aliasing=True) # 增强光点特征 - 应用高斯模糊和阈值处理 blurred = gaussian(image, sigma=1) thresh = threshold_otsu(blurred) binary = blurred > thresh * 0.8 # 降低阈值以保留更多光点信息 # 边缘检测 edges = canny(blurred, sigma=1) # 形状特征提取 shape_features = extract_shape_features(binary) # 组合原始图像、增强图像和边缘图像 processed = np.stack([image, binary, edges], axis=-1) return processed, shape_features except Exception as e: print(f"图像加载失败: {e}, 使用空白图像代替") return np.zeros((IMAGE_SIZE[0], IMAGE_SIZE[1], 3), dtype=np.float32), np.zeros(3, dtype=np.float32) def create_tiff_dataset(file_paths): """从文件路径列表创建TensorFlow数据集""" # 创建数据集 dataset = tf.data.Dataset.from_tensor_slices(file_paths) # 使用tf.py_function包装图像加载函数 def load_wrapper(file_path): file_path_str = file_path.numpy().decode('utf-8') image, features = load_and_preprocess_image(file_path_str) return image, features # 定义TensorFlow兼容的映射函数 def tf_load_wrapper(file_path): image, features = tf.py_function( func=load_wrapper, inp=[file_path], Tout=[tf.float32, tf.float32] ) # 明确设置输出形状 image.set_shape((IMAGE_SIZE[0], IMAGE_SIZE[1], 3)) # 三个通道 features.set_shape((3,)) # 形状特征 return image, features dataset = dataset.map( tf_load_wrapper, num_parallel_calls=tf.data.AUTOTUNE ) dataset = dataset.batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE) return dataset def load_and_prepare_data(): """加载所有数据并准备训练/测试集""" # 生成所有文件夹名称 folder_names = generate_folder_names(START_WAVELENGTH, END_WAVELENGTH, STEP) print(f"\n生成的文件夹数量: {len(folder_names)}") print(f"起始文件夹: {folder_names[0]}") print(f"结束文件夹: {folder_names[-1]}") # 收集所有有效文件路径 valid_files = [] wavelengths = [] print("\n扫描文件夹并匹配文件...") for folder_name in tqdm(folder_names, desc="处理文件夹"): folder_path = os.path.join(BASE_DIR, folder_name) if not os.path.isdir(folder_path): continue try: target_wavelength = float(folder_name) file_path = find_best_match_file(folder_path, target_wavelength) if file_path: valid_files.append(file_path) wavelengths.append(target_wavelength) except ValueError: continue print(f"\n找到的有效文件: {len(valid_files)}/{len(folder_names)}") if not valid_files: raise ValueError("未找到任何有效文件,请检查路径和文件夹名称") # 转换为NumPy数组 wavelengths = np.array(wavelengths) # 归一化波长标签 min_wavelength = np.min(wavelengths) max_wavelength = np.max(wavelengths) wavelength_range = max_wavelength - min_wavelength wavelengths_normalized = (wavelengths - min_wavelength) / wavelength_range print(f"波长范围: {min_wavelength:.6f} 到 {max_wavelength:.6f}, 范围大小: {wavelength_range:.6f}") # 分割训练集和测试集 train_files, test_files, train_wavelengths, test_wavelengths = train_test_split( valid_files, wavelengths_normalized, test_size=TEST_SIZE, random_state=RANDOM_SEED ) print(f"训练集大小: {len(train_files)}") print(f"测试集大小: {len(test_files)}") # 创建数据集 train_dataset = create_tiff_dataset(train_files) test_dataset = create_tiff_dataset(test_files) # 创建波长标签数据集 train_labels = tf.data.Dataset.from_tensor_slices(train_wavelengths) test_labels = tf.data.Dataset.from_tensor_slices(test_wavelengths) # 合并图像和标签 train_dataset = tf.data.Dataset.zip((train_dataset, train_labels)) test_dataset = tf.data.Dataset.zip((test_dataset, test_labels)) return train_dataset, test_dataset, valid_files, min_wavelength, wavelength_range def build_spot_detection_model(input_shape, feature_shape): """构建针对光点图像的专用模型""" inputs = tf.keras.Input(shape=input_shape, name='input_image') features_input = tf.keras.Input(shape=feature_shape, name='input_features') # 使用Lambda层替代切片操作 channel1 = layers.Lambda(lambda x: x[..., 0:1])(inputs) channel2 = layers.Lambda(lambda x: x[..., 1:2])(inputs) channel3 = layers.Lambda(lambda x: x[..., 2:3])(inputs) # 通道1: 原始图像处理 x1 = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(channel1) x1 = layers.BatchNormalization()(x1) x1 = layers.MaxPooling2D((2, 2))(x1) # 通道2: 二值化图像处理 x2 = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(channel2) x2 = layers.BatchNormalization()(x2) x2 = layers.MaxPooling2D((2, 2))(x2) # 通道3: 边缘图像处理 x3 = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(channel3) x3 = layers.BatchNormalization()(x3) x3 = layers.MaxPooling2D((2, 2))(x3) # 合并三个通道 x = layers.concatenate([x1, x2, x3]) # 特征提取 x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x) x = layers.BatchNormalization()(x) x = layers.MaxPooling2D((2, 2))(x) x = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x) x = layers.BatchNormalization()(x) x = layers.MaxPooling2D((2, 2))(x) x = layers.Conv2D(256, (3, 3), activation='relu', padding='same')(x) x = layers.BatchNormalization()(x) x = layers.GlobalAveragePooling2D()(x) # 形状特征处理 features_x = layers.Dense(64, activation='relu')(features_input) features_x = layers.Dropout(0.5)(features_x) # 合并图像特征和形状特征 x = layers.Concatenate()([x, features_x]) # 回归头 x = layers.Dense(512, activation='relu')(x) x = layers.Dropout(0.5)(x) x = layers.Dense(256, activation='relu')(x) x = layers.Dropout(0.3)(x) outputs = layers.Dense(1, activation='sigmoid')(x) model = tf.keras.Model(inputs=[inputs, features_input], outputs=outputs) optimizer = Adam(learning_rate=0.0001) model.compile( optimizer=optimizer, loss='mean_squared_error', # 使用字符串 metrics=['mae'] # 使用字符串 ) return model def train_and_evaluate_model(train_dataset, test_dataset, input_shape, feature_shape, wavelength_range): """训练和评估模型""" model = build_spot_detection_model(input_shape, feature_shape) model.summary() # 回调函数 callbacks = [ tf.keras.callbacks.EarlyStopping( patience=20, restore_best_weights=True, monitor='val_loss', min_delta=1e-6 ), tf.keras.callbacks.ModelCheckpoint( str(MODEL_SAVE_PATH), # 注意确保是 str 类型 save_best_only=True, monitor='val_loss' ), tf.keras.callbacks.ReduceLROnPlateau( monitor='val_loss', factor=0.5, patience=5, min_lr=1e-7 ) ] # 训练模型 history = model.fit( train_dataset, epochs=200, # 增加训练轮数 validation_data=test_dataset, callbacks=callbacks, verbose=2 ) # 评估模型 print("\n评估测试集性能...") test_loss, test_mae_normalized = model.evaluate(test_dataset, verbose=0) # 将MAE转换回原始波长单位 test_mae = test_mae_normalized * wavelength_range print(f"测试集MAE (归一化值): {test_mae_normalized:.6f}") print(f"测试集MAE (原始波长单位): {test_mae:.8f} 纳米") # 绘制训练历史 plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.plot(history.history['loss'], label='训练损失') plt.plot(history.history['val_loss'], label='验证损失') plt.title('损失变化') plt.xlabel('Epoch') plt.ylabel('损失') plt.legend() plt.subplot(1, 2, 2) # 修改这里:使用正确的键名 plt.plot(history.history['mae'], label='训练MAE') plt.plot(history.history['val_mae'], label='验证MAE') plt.title('MAE变化') plt.xlabel('Epoch') plt.ylabel('MAE') plt.legend() plt.tight_layout() plt.savefig('f:/phD/代码/training_history.png') print("训练历史图已保存为 'training_history.png'") # 显式保存最终模型(已移除 save_format 参数) model.save(MODEL_SAVE_PATH) return model def predict_test_image(model, test_image_path, min_wavelength, wavelength_range): """预测单个测试图片的波长""" # 加载并预处理图像 image, features = load_and_preprocess_image(test_image_path) # 添加批次维度 image = np.expand_dims(image, axis=0) features = np.expand_dims(features, axis=0) # 预测 predicted_normalized = model.predict([image, features], verbose=0)[0][0] # 反归一化 predicted_wavelength = predicted_normalized * wavelength_range + min_wavelength # 显示结果 plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.imshow(image[0, :, :, 0], cmap='gray') # 原始图像通道 plt.title(f"原始光场强度分布") plt.axis('off') plt.subplot(1, 2, 2) plt.imshow(image[0, :, :, 1], cmap='gray') # 增强图像通道 plt.title(f"增强光点特征") plt.axis('off') plt.suptitle(f"预测波长: {predicted_wavelength:.6f} 纳米", fontsize=16) # 保存结果 result_path = "f:/phD/代码/prediction_result.png" plt.savefig(result_path) print(f"\n预测结果已保存为 '{result_path}'") return predicted_wavelength def validate_data_loading(file_paths, num_samples=3): """验证数据加载是否正确 - 针对光点图像优化""" print("\n验证数据加载...") plt.figure(figsize=(15, 10)) for i in range(min(num_samples, len(file_paths))): file_path = file_paths[i] image, features = load_and_preprocess_image(file_path) # 原始图像 plt.subplot(num_samples, 3, i*3+1) plt.imshow(image[..., 0], cmap='gray') plt.title(f"原始图像 {i+1}") plt.axis('off') # 增强图像 plt.subplot(num_samples, 3, i*3+2) plt.imshow(image[..., 1], cmap='gray') plt.title(f"增强光点特征 {i+1}") plt.axis('off') # 边缘图像 plt.subplot(num_samples, 3, i*3+3) plt.imshow(image[..., 2], cmap='gray') plt.title(f"边缘检测 {i+1}") plt.axis('off') print(f"图像 {i+1}: {file_path}") print(f"形状: {image.shape}, 原始值范围: {np.min(image[...,0]):.2f}-{np.max(image[...,0]):.2f}") print(f"增强值范围: {np.min(image[...,1]):.2f}-{np.max(image[...,1]):.2f}") plt.tight_layout() plt.savefig('f:/phD/代码/data_validation.png') print("数据验证图已保存为 'data_validation.png'") def main(): """主函数""" print(f"TensorFlow 版本: {tf.__version__}") # 1. 加载数据 try: train_dataset, test_dataset, all_files, min_wavelength, wavelength_range = load_and_prepare_data() print(f"最小波长: {min_wavelength:.6f}, 波长范围: {wavelength_range:.6f}") except Exception as e: print(f"数据加载失败: {str(e)}") return # 验证数据加载 validate_data_loading(all_files[:3]) # 获取输入形状和特征形状 try: for images, features in train_dataset.take(1): input_shape = images.shape[1:] feature_shape = features.shape[1:] print(f"输入形状: {input_shape}") print(f"特征形状: {feature_shape}") except Exception as e: print(f"获取输入形状失败: {str(e)}") input_shape = (IMAGE_SIZE[0], IMAGE_SIZE[1], 3) # 三个通道 feature_shape = (3,) # 形状特征 print(f"使用默认形状: {input_shape}, {feature_shape}") # 2. 训练模型 print("\n开始训练模型...") try: model = train_and_evaluate_model(train_dataset, test_dataset, input_shape, feature_shape, wavelength_range) except Exception as e: print(f"模型训练失败: {str(e)}") traceback.print_exc() return # 3. 测试模型 - 从测试集中随机选择一张图片 print("\n从测试集中随机选择一张图片进行预测...") try: # 获取整个测试集的一个批次 for test_images, test_features, test_labels in test_dataset.take(1): # 确保有样本可用 if test_images.shape[0] > 0: # 选择第一个样本 test_image = test_images[0].numpy() test_feature = test_features[0].numpy() # 安全提取第一个标签值 labels_np = test_labels.numpy() if labels_np.ndim == 0: # 标量情况 true_wavelength_normalized = labels_np.item() else: # 数组情况 true_wavelength_normalized = labels_np[0] # 反归一化真实值 true_wavelength = true_wavelength_normalized * wavelength_range + min_wavelength # 保存测试图片 test_image_path = "f:/phD/代码/test_image.tiff" imageio.imwrite(test_image_path, (test_image[..., 0] * 255).astype(np.uint8)) # 预测 predicted_wavelength = predict_test_image(model, test_image_path, min_wavelength, wavelength_range) print(f"真实波长: {true_wavelength:.6f} 纳米") print(f"预测波长: {predicted_wavelength:.6f} 纳米") print(f"绝对误差: {abs(predicted_wavelength-true_wavelength):.8f} 纳米") print(f"相对误差: {abs(predicted_wavelength-true_wavelength)/wavelength_range*100:.4f}%") else: print("错误:测试批次中没有样本") except Exception as e: print(f"测试失败: {str(e)}") traceback.print_exc() # 4. 用户自定义测试图片 print("\n您可以使用自己的图片进行测试:") # 加载模型 model = tf.keras.models.load_model(MODEL_SAVE_PATH) # 从之前的输出中获取这些值 #wavelength_range = ... # 请替换为实际值 # 提示用户输入图片路径 image_path = input("请输入您要测试的图片路径(例如:'test_image.tiff'):") # 进行预测 #predicted = predict_test_image(model, image_path, min_wavelength, wavelength_range) predicted = predict_test_image(model, image_path) print(f"预测波长: {predicted:.6f} 纳米") print("\n程序执行完成。") if __name__ == "__main__": # 设置TensorFlow日志级别 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 确保必要的库已安装 try: import imageio from skimage.transform import resize from skimage.filters import gaussian, threshold_otsu from skimage.feature import canny from skimage.measure import regionprops, label except ImportError: print("安装必要的库...") import subprocess subprocess.run([sys.executable, "-m", "pip", "install", "imageio", "scikit-image"]) import imageio from skimage.transform import resize from skimage.filters import gaussian, threshold_otsu from skimage.feature import canny from skimage.measure import regionprops, label # 执行主函数 main()

import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # 完全禁用TensorFlow日志(0-3) os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # 禁用oneDNN优化 os.environ['KERAS_FACENET_PATH'] = './facenet_cache' # 提前设置FaceNet缓存路径 import cv2 import numpy as np import time from sklearn.svm import SVC from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from mtcnn import MTCNN from keras_facenet import FaceNet import joblib import urllib.request import tensorflow as tf # 禁用TensorFlow的进度条和冗余日志 tf.get_logger().setLevel('ERROR') tf.autograph.set_verbosity(0) def load_facenet_manually(cache_dir='.facenet_cache', max_retries=5, retry_delay=10): """ 增强版:带重试机制的模型下载和加载(兼容所有Python环境) """ # 创建缓存目录 os.makedirs(cache_dir, exist_ok=True) # 本地路径 model_path = os.path.join(cache_dir, "facenet_weights.h5") # 设置环境变量告诉 FaceNet 模型位置 os.environ['KERAS_FACENET_PATH'] = cache_dir print("正在加载FaceNet模型...") try: # 创建 FaceNet 实例 return FaceNet() except Exception as e: print(f"模型加载失败: {e}") return None class DormFaceRecognizer: def __init__(self, threshold=0.7, facenet_cache_dir='./facenet_cache'): """ 初始化人脸识别系统 """ # 加载人脸检测器(MTCNN) self.detector = MTCNN() # 加载人脸特征提取器(FaceNet) print("正在初始化FaceNet...") self.embedder = load_facenet_manually(cache_dir=facenet_cache_dir) if self.embedder is None: raise RuntimeError("无法加载FaceNet模型") # 初始化其他组件... self.classifier = None self.encoder = LabelEncoder() self.threshold = threshold self.dorm_members = [] def create_dataset(self, data_dir, min_samples=10): """ 从文件夹创建数据集 文件夹结构: data_dir/ ├── member1/ │ ├── img1.jpg │ ├── img2.jpg │ └── ... ├── member2/ │ ├── img1.jpg │ └── ... └── ... """ faces = [] labels = [] self.dorm_members = [] # 遍历每个成员文件夹 for member_dir in os.listdir(data_dir): member_path = os.path.join(data_dir, member_dir) if not os.path.isdir(member_path): continue # 记录寝室成员 self.dorm_members.append(member_dir) # 遍历成员的所有照片 member_faces = [] for img_file in os.listdir(member_path): img_path = os.path.join(member_path, img_file) img = cv2.imread(img_path) # 转换为RGB (MTCNN需要RGB格式) img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 检测人脸 results = self.detector.detect_faces(img_rgb) if len(results) > 0: # 获取最大的人脸(假设每张照片只有一个人) face = max(results, key=lambda x: x['box'][2] * x['box'][3]) # 提取人脸区域 x, y, w, h = face['box'] face_img = img_rgb[y:y + h, x:x + w] # 调整大小为FaceNet所需尺寸(160x160) face_img = cv2.resize(face_img, (160, 160)) member_faces.append(face_img) # 确保每个成员有足够样本 if len(member_faces) < min_samples: print(f"警告: {member_dir}只有{len(member_faces)}个有效样本,至少需要{min_samples}个") continue # 添加成员数据 faces.extend(member_faces) labels.extend([member_dir] * len(member_faces)) # 添加陌生人样本 stranger_faces = self._generate_stranger_samples(len(faces) // 4) faces.extend(stranger_faces) labels.extend(['stranger'] * len(stranger_faces)) # 转换为numpy数组 faces = np.array(faces) labels = np.array(labels) return faces, labels def _generate_stranger_samples(self, num_samples): """生成陌生人样本""" stranger_faces = [] # 这里可以使用公开数据集的人脸作为陌生人 # 实际项目中应使用真实的陌生人照片 # 此处使用随机噪声模拟 for _ in range(num_samples): # 生成随机人脸(实际应使用真实陌生人照片) random_face = np.random.randint(0, 255, (160, 160, 3), dtype=np.uint8) stranger_faces.append(random_face) return stranger_faces def extract_features(self, faces): """提取人脸特征向量""" # 转换为浮点数并归一化 faces = faces.astype('float32') / 255.0 # 提取特征向量 (128维) embeddings = self.embedder.embeddings(faces) return embeddings def train_classifier(self, embeddings, labels): """训练SVM分类器""" # 编码标签 encoded_labels = self.encoder.fit_transform(labels) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split( embeddings, encoded_labels, test_size=0.2, random_state=42 ) # 创建并训练SVM分类器 self.classifier = SVC(kernel='linear', probability=True) self.classifier.fit(X_train, y_train) # 评估模型 y_pred = self.classifier.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print(f"模型准确率: {accuracy:.2f}") return accuracy def recognize_face(self, image): """ 识别单张图像中的人脸 返回: (姓名, 置信度) 或 ("陌生人", 距离) """ # 转换为RGB img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 检测人脸 results = self.detector.detect_faces(img_rgb) if len(results) == 0: return "未检测到人脸", 0.0 # 识别每个人脸 recognitions = [] for face in results: # 提取人脸区域 x, y, w, h = face['box'] face_img = img_rgb[y:y + h, x:x + w] # 调整大小 face_img = cv2.resize(face_img, (160, 160)) # 提取特征向量 face_img = face_img.astype('float32') / 255.0 embedding = self.embedder.embeddings([face_img])[0] # 预测 probabilities = self.classifier.predict_proba([embedding])[0] max_prob = np.max(probabilities) pred_class = self.classifier.predict([embedding])[0] pred_label = self.encoder.inverse_transform([pred_class])[0] # 判断是否为陌生人 if max_prob < self.threshold or pred_label == 'stranger': recognitions.append(("陌生人", max_prob, (x, y, w, h))) else: recognitions.append((pred_label, max_prob, (x, y, w, h))) return recognitions def save_model(self, file_path): """保存模型""" joblib.dump({ 'classifier': self.classifier, 'encoder': self.encoder, 'threshold': self.threshold, 'dorm_members': self.dorm_members }, file_path) print(f"模型已保存至: {file_path}") def load_model(self, file_path): """加载模型""" data = joblib.load(file_path) self.classifier = data['classifier'] self.encoder = data['encoder'] self.threshold = data['threshold'] self.dorm_members = data['dorm_members'] print(f"模型已加载,寝室成员: {', '.join(self.dorm_members)}") # 主函数 - 训练和使用模型 def main(): print(f"[{time.strftime('%H:%M:%S')}] 程序启动") # 初始化识别器 - 指定FaceNet缓存目录 recognizer = DormFaceRecognizer( threshold=0.6, facenet_cache_dir='./facenet_cache' # 自定义缓存目录 ) # 数据集路径 (包含每个成员的文件夹) data_dir = "dorm_faces" # 步骤1: 创建数据集 print("正在创建数据集...") faces, labels = recognizer.create_dataset(data_dir, min_samples=10) # 步骤2: 提取特征 print("正在提取特征...") embeddings = recognizer.extract_features(faces) # 步骤3: 训练分类器 print("正在训练分类器...") accuracy = recognizer.train_classifier(embeddings, labels) # 保存模型 recognizer.save_model("dorm_face_model.pkl") # 测试识别 test_image = cv2.imread("test_photo.jpg") recognitions = recognizer.recognize_face(test_image) # 在图像上绘制结果 result_image = test_image.copy() for name, confidence, (x, y, w, h) in recognitions: label = f"{name} ({confidence:.2f})" color = (0, 255, 0) if name != "陌生人" else (0, 0, 255) # 绘制矩形框 cv2.rectangle(result_image, (x, y), (x + w, y + h), color, 2) # 绘制标签 cv2.putText(result_image, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) # 显示结果 cv2.imshow("人脸识别结果", result_image) cv2.waitKey(0) cv2.destroyAllWindows() # 保存结果图像 cv2.imwrite("recognition_result.jpg", result_image) if __name__ == "__main__": main() 运行后出现:[16:42:39] 程序启动 正在初始化FaceNet... 正在加载FaceNet模型... 并且程序还没有结束

训练# 网络训练模块 import torch from tqdm import tqdm def train_model(model, train_loader, val_loader, optimizer, criterion_segmentation, criterion_semantic, device, epochs=10): best_val_loss = float('inf') history = { 'train_loss': [], 'val_loss': [], 'train_seg_acc': [], 'val_seg_acc': [], 'train_sem_acc': [], 'val_sem_acc': [] } for epoch in range(epochs): # 训练模式 model.train() total_train_loss = 0 total_seg_correct = 0 total_sem_correct = 0 total_seg_samples = 0 total_sem_samples = 0 for batch in tqdm(train_loader, desc=f'Epoch {epoch+1}/{epochs} [Train]'): input_ids = batch['input_ids'].to(device) segmentation_labels = batch['segmentation_labels'].to(device) semantic_labels = batch['semantic_labels'].to(device) optimizer.zero_grad() outputs = model(input_ids) segmentation_logits = outputs['segmentation_logits'] semantic_logits = outputs['semantic_logits'] # 计算断句损失 seg_loss = criterion_segmentation( segmentation_logits.view(-1, 2), segmentation_labels.view(-1) ) # 计算语义损失 (忽略填充位置) mask = semantic_labels != 0 sem_loss = criterion_semantic( semantic_logits.view(-1, semantic_logits.size(-1))[mask.view(-1)], semantic_labels.view(-1)[mask.view(-1)] ) # 总损失 (加权) loss = seg_loss + sem_loss # 反向传播 loss.backward() optimizer.step() # 计算断句准确率 _, seg_predicted = torch.max(segmentation_logits, 2) total_seg_correct += (seg_predicted == segmentation_labels).sum().item() total_seg_samples += segmentation_labels.numel() # 计算语义准确率 _, sem_predicted = torch.max(semantic_logits, 2) total_sem_correct += ((sem_predicted == semantic_labels) & mask).sum().item() total_sem_samples += mask.sum().item() total_train_loss += loss.item() # 计算平均损失和准确率 avg_train_loss = total_train_loss / len(train_loader) avg_train_seg_acc = total_seg_correct / total_seg_samples avg_train_sem_acc = total_sem_correct / total_sem_samples history['train_loss'].append(avg_train_loss) history['train_seg_acc'].append(avg_train_seg_acc) history['train_sem_acc'].append(avg_train_sem_acc) # 验证模式 model.eval() total_val_loss = 0 total_val_seg_correct = 0 total_val_sem_correct = 0 total_val_seg_samples = 0 total_val_sem_samples = 0 with torch.no_grad(): for batch in tqdm(val_loader, desc=f'Epoch {epoch+1}/{epochs} [Val]'): input_ids = batch['input_ids'].to(device) segmentation_labels = batch['segmentation_labels'].to(device) semantic_labels = batch['semantic_labels'].to(device) outputs = model(input_ids) segmentation_logits = outputs['segmentation_logits'] semantic_logits = outputs['semantic_logits'] # 计算断句损失 seg_loss = criterion_segmentation( segmentation_logits.view(-1, 2), segmentation_labels.view(-1) ) # 计算语义损失 mask = semantic_labels != 0 sem_loss = criterion_semantic( semantic_logits.view(-1, semantic_logits.size(-1))[mask.view(-1)], semantic_labels.view(-1)[mask.view(-1)] ) # 总损失 loss = seg_loss + sem_loss # 计算断句准确率 _, seg_predicted = torch.max(segmentation_logits, 2) total_val_seg_correct += (seg_predicted == segmentation_labels).sum().item() total_val_seg_samples += segmentation_labels.numel() # 计算语义准确率 _, sem_predicted = torch.max(semantic_logits, 2) total_val_sem_correct += ((sem_predicted == semantic_labels) & mask).sum().item() total_val_sem_samples += mask.sum().item() total_val_loss += loss.item() # 计算平均损失和准确率 avg_val_loss = total_val_loss / len(val_loader) avg_val_seg_acc = total_val_seg_correct / total_val_seg_samples avg_val_sem_acc = total_val_sem_correct / total_val_sem_samples history['val_loss'].append(avg_val_loss) history['val_seg_acc'].append(avg_val_seg_acc) history['val_sem_acc'].append(avg_val_sem_acc) print(f'Epoch {epoch+1}/{epochs}') print(f'Train Loss: {avg_train_loss:.4f} | Train Seg Acc: {avg_train_seg_acc:.4f} | Train Sem Acc: {avg_train_sem_acc:.4f}') print(f'Val Loss: {avg_val_loss:.4f} | Val Seg Acc: {avg_val_seg_acc:.4f} | Val Sem Acc: {avg_val_sem_acc:.4f}') # 保存最佳模型 if avg_val_loss < best_val_loss: best_val_loss = avg_val_loss torch.save(model.state_dict(), 'best_poetry_model.pth') print(f'Best model saved with val loss: {avg_val_loss:.4f}') return history # 训练模型 history = train_model(model, train_loader, val_loader, optimizer, criterion_segmentation, criterion_semantic, device, epochs=10) # 添加模型加载函数,解决FutureWarning问题 def load_best_model(model, path='best_poetry_model.pth'): """加载保存的最佳模型,显式设置weights_only=True""" try: state_dict = torch.load(path) model.load_state_dict(state_dict) print(f"成功加载模型: {path}") return model except Exception as e: print(f"加载模型失败: {e}") return model根据这个撰写训练网络,用jupyter

Windows PowerShell 版权所有(C) Microsoft Corporation。保留所有权利。 安装最新的 PowerShell,了解新功能和改进!https://aka.ms/PSWindows PS D:\ultralytics-8.3.20> python start_server.py WARNING:tensorflow:From C:\Users\Lenovo\AppData\Local\Programs\Python\Python310\lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead. Traceback (most recent call last): File "D:\ultralytics-8.3.20\start_server.py", line 7, in <module> from main_server import main File "D:\ultralytics-8.3.20\main_server.py", line 14, in <module> from routes import register_routes File "D:\ultralytics-8.3.20\routes.py", line 29, in <module> from openai import OpenAI ModuleNotFoundError: No module named 'openai' PS D:\ultralytics-8.3.20> # 1. 安装OpenAI Python库 PS D:\ultralytics-8.3.20> pip install openai --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting openai Downloading https://pypi.tuna.tsinghua.edu.cn/packages/02/1d/0432ea635097f4dbb34641a3650803d8a4aa29d06bafc66583bf1adcceb4/openai-1.95.1-py3-none-any.whl (755 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 755.6/755.6 kB 4.8 MB/s eta 0:00:00 Requirement already satisfied: tqdm>4 in c:\users\lenovo\appdata\local\programs\python\python310\lib\site-packages (from openai) (4.67.1) Collecting jiter<1,>=0.4.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/37/7a/8021bd615ef7788b98fc76ff533eaac846322c170e93cbffa01979197a45/jiter-0.10.0-cp310-cp310-win_amd64.whl (207 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 207.5/207.5 kB 12.3 MB/s eta 0:00:00 Requirement already satisfied: typing-extensions<5,>=4.11 in c:\users\lenovo\appdata\local\programs\python\python310\lib\site-packages (from openai) (4.14.1) Collecting httpx<1,>=0.23.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl (73 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 73.5/73.5 kB ? eta 0:00:00 Collecting pydantic<3,>=1.9.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/6a/c0/ec2b1c8712ca690e5d61979dee872603e92b8a32f94cc1b72d53beab008a/pydantic-2.11.7-py3-none-any.whl (444 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 444.8/444.8 kB 27.2 MB/s eta 0:00:00 Collecting anyio<5,>=3.5.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a1/ee/48ca1a7c89ffec8b6a0c5d02b89c305671d5ffd8d3c94acf8b8c408575bb/anyio-4.9.0-py3-none-any.whl (100 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.9/100.9 kB ? eta 0:00:00 Collecting sniffio Downloading https://pypi.tuna.tsinghua.edu.cn/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl (10 kB) Collecting distro<2,>=1.7.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/12/b3/231ffd4ab1fc9d679809f356cebee130ac7daa00d6d6f3206dd4fd137e9e/distro-1.9.0-py3-none-any.whl (20 kB) Requirement already satisfied: idna>=2.8 in c:\users\lenovo\appdata\local\programs\python\python310\lib\site-packages (from anyio<5,>=3.5.0->openai) (3.10) Collecting exceptiongroup>=1.0.2 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/36/f4/c6e662dade71f56cd2f3735141b265c3c79293c109549c1e6933b0651ffc/exceptiongroup-1.3.0-py3-none-any.whl (16 kB) Collecting httpcore==1.* Downloading https://pypi.tuna.tsinghua.edu.cn/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl (78 kB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 78.8/78.8 kB ? eta 0:00:00 Requirement already satisfied: certifi in c:\users\lenovo\appdata\local\programs\python\python310\lib\site-packages (from httpx<1,>=0.23.0->openai) (2025.7.9) Collecting h11>=0.16 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl (37 kB) Collecting typing-inspection>=0.4.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/17/69/cd203477f944c353c31bade965f880aa1061fd6bf05ded0726ca845b6ff7/typing_inspection-0.4.1-py3-none-any.whl (14 kB) Collecting annotated-types>=0.6.0 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl (13 kB) Collecting pydantic-core==2.33.2 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/66/ff/172ba8f12a42d4b552917aa65d1f2328990d3ccfc01d5b7c943ec084299f/pydantic_core-2.33.2-cp310-cp310-win_amd64.whl (2.0 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 24.9 MB/s eta 0:00:00 Requirement already satisfied: colorama in c:\users\lenovo\appdata\local\programs\python\python310\lib\site-packages (from tqdm>4->openai) (0.4.6) Installing collected packages: typing-inspection, sniffio, pydantic-core, jiter, h11, exceptiongroup, distro, annotated-types, pydantic, httpcore, anyio, httpx, openai Successfully installed annotated-types-0.7.0 anyio-4.9.0 distro-1.9.0 exceptiongroup-1.3.0 h11-0.16.0 httpcore-1.0.9 httpx-0.28.1 jiter-0.10.0 openai-1.95.1 pydantic-2.11.7 pydantic-core-2.33.2 sniffio-1.3.1 typing-inspection-0.4.1 [notice] A new release of pip available: 22.3.1 -> 25.1.1 [notice] To update, run: python.exe -m pip install --upgrade pip PS D:\ultralytics-8.3.20> PS D:\ultralytics-8.3.20> # 2. 验证安装 PS D:\ultralytics-8.3.20> python -c "from openai import OpenAI; print('OpenAI库版本:', OpenAI.__version__)" Traceback (most recent call last): File "<string>", line 1, in <module> AttributeError: type object 'OpenAI' has no attribute '__version__' PS D:\ultralytics-8.3.20>

pip list Package Version ----------------------------- -------------------- absl-py 2.3.0 alabaster 0.7.12 anaconda-client 1.11.0 anaconda-navigator 2.3.1 anaconda-project 0.11.1 anyio 3.5.0 appdirs 1.4.4 argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 arrow 1.2.2 astroid 2.11.7 astropy 5.1 astunparse 1.6.3 atomicwrites 1.4.0 attrs 21.4.0 Automat 20.2.0 autopep8 1.6.0 Babel 2.9.1 backcall 0.2.0 backports.functools-lru-cache 1.6.4 backports.tempfile 1.0 backports.weakref 1.0.post1 bcrypt 3.2.0 beautifulsoup4 4.11.1 binaryornot 0.4.4 bitarray 2.5.1 bkcharts 0.2 black 22.6.0 bleach 4.1.0 bokeh 2.4.3 boto3 1.24.28 botocore 1.27.28 Bottleneck 1.3.5 brotlipy 0.7.0 certifi 2022.9.14 cffi 1.15.1 chardet 4.0.0 charset-normalizer 2.0.4 click 8.0.4 cloudpickle 2.0.0 clyent 1.2.2 colorama 0.4.5 colorcet 3.0.0 comtypes 1.1.10 conda 22.9.0 conda-build 3.22.0 conda-content-trust 0.1.3 conda-pack 0.6.0 conda-package-handling 1.9.0 conda-repo-cli 1.0.20 conda-token 0.4.0 conda-verify 3.4.2 constantly 15.1.0 cookiecutter 1.7.3 cryptography 37.0.1 cssselect 1.1.0 cycler 0.11.0 Cython 0.29.32 cytoolz 0.11.0 daal4py 2021.6.0 dask 2022.7.0 datashader 0.14.1 datashape 0.5.4 debugpy 1.5.1 decorator 5.1.1 defusedxml 0.7.1 diff-match-patch 20200713 dill 0.3.4 distributed 2022.7.0 docutils 0.18.1 entrypoints 0.4 et-xmlfile 1.1.0 fastjsonschema 2.16.2 filelock 3.6.0 flake8 4.0.1 Flask 1.1.2 flatbuffers 25.2.10 fonttools 4.25.0 fsspec 2022.7.1 future 0.18.2 gast 0.6.0 gensim 4.1.2 glob2 0.7 google-pasta 0.2.0 greenlet 1.1.1 grpcio 1.72.1 h5py 3.13.0 HeapDict 1.0.1 holoviews 1.15.0 hvplot 0.8.0 hyperlink 21.0.0 idna 3.3 imagecodecs 2021.8.26 imageio 2.19.3 imagesize 1.4.1 importlib-metadata 4.11.3 incremental 21.3.0 inflection 0.5.1 iniconfig 1.1.1 intake 0.6.5 intervaltree 3.1.0 ipykernel 6.15.2 ipython 7.31.1 ipython-genutils 0.2.0 ipywidgets 7.6.5 isort 5.9.3 itemadapter 0.3.0 itemloaders 1.0.4 itsdangerous 2.0.1 jdcal 1.4.1 jedi 0.18.1 jellyfish 0.9.0 Jinja2 2.11.3 jinja2-time 0.2.0 jmespath 0.10.0 joblib 1.1.0 json5 0.9.6 jsonschema 4.16.0 jupyter 1.0.0 jupyter_client 7.3.4 jupyter-console 6.4.3 jupyter_core 4.11.1 jupyter-server 1.18.1 jupyterlab 3.4.4 jupyterlab-pygments 0.1.2 jupyterlab-server 2.10.3 jupyterlab-widgets 1.0.0 keras 3.10.0 keyring 23.4.0 kiwisolver 1.4.2 lazy-object-proxy 1.6.0 libarchive-c 2.9 libclang 18.1.1 llvmlite 0.38.0 locket 1.0.0 lxml 4.9.1 lz4 3.1.3 Markdown 3.3.4 markdown-it-py 3.0.0 MarkupSafe 2.0.1 matplotlib 3.5.2 matplotlib-inline 0.1.6 mccabe 0.6.1 mdurl 0.1.2 menuinst 1.4.19 mistune 0.8.4 mkl-fft 1.3.1 mkl-random 1.2.2 mkl-service 2.4.0 ml_dtypes 0.5.1 mock 4.0.3 mpmath 1.2.1 msgpack 1.0.3 multipledispatch 0.6.0 munkres 1.1.4 mypy-extensions 0.4.3 namex 0.1.0 navigator-updater 0.3.0 nbclassic 0.3.5 nbclient 0.5.13 nbconvert 6.4.4 nbformat 5.5.0 nest-asyncio 1.5.5 networkx 2.8.4 nltk 3.7 nose 1.3.7 notebook 6.4.12 numba 0.55.1 numexpr 2.8.3 numpy 2.0.2 numpydoc 1.4.0 olefile 0.46 openpyxl 3.0.10 opt_einsum 3.4.0 optree 0.16.0 packaging 21.3 pandas 1.4.4 pandocfilters 1.5.0 panel 0.13.1 param 1.12.0 paramiko 2.8.1 parsel 1.6.0 parso 0.8.3 partd 1.2.0 pathlib 1.0.1 pathspec 0.9.0 patsy 0.5.2 pep8 1.7.1 pexpect 4.8.0 pickleshare 0.7.5 Pillow 9.2.0 pip 22.2.2 pkginfo 1.8.2 platformdirs 2.5.2 plotly 5.9.0 pluggy 1.0.0 poyo 0.5.0 prometheus-client 0.14.1 prompt-toolkit 3.0.20 Protego 0.1.16 protobuf 5.29.5 psutil 5.9.0 ptyprocess 0.7.0 py 1.11.0 pyasn1 0.4.8 pyasn1-modules 0.2.8 pycodestyle 2.8.0 pycosat 0.6.3 pycparser 2.21 pyct 0.4.8 pycurl 7.45.1 PyDispatcher 2.0.5 pydocstyle 6.1.1 pyerfa 2.0.0 pyflakes 2.4.0 Pygments 2.19.1 PyHamcrest 2.0.2 PyJWT 2.4.0 pylint 2.14.5 pyls-spyder 0.4.0 PyNaCl 1.5.0 pyodbc 4.0.34 pyOpenSSL 22.0.0 pyparsing 3.0.9 pyrsistent 0.18.0 PySocks 1.7.1 pytest 7.1.2 python-dateutil 2.8.2 python-lsp-black 1.0.0 python-lsp-jsonrpc 1.0.0 python-lsp-server 1.3.3 python-slugify 5.0.2 python-snappy 0.6.0 pytz 2022.1 pyviz-comms 2.0.2 PyWavelets 1.3.0 pywin32 302 pywin32-ctypes 0.2.0 pywinpty 2.0.2 PyYAML 6.0 pyzmq 23.2.0 QDarkStyle 3.0.2 qstylizer 0.1.10 QtAwesome 1.0.3 qtconsole 5.2.2 QtPy 2.2.0 queuelib 1.5.0 regex 2022.7.9 requests 2.28.1 requests-file 1.5.1 rich 14.0.0 rope 0.22.0 Rtree 0.9.7 ruamel-yaml-conda 0.15.100 s3transfer 0.6.0 scikit-image 0.19.2 scikit-learn 1.0.2 scikit-learn-intelex 2021.20221004.171935 scipy 1.9.1 Scrapy 2.6.2 seaborn 0.11.2 Send2Trash 1.8.0 service-identity 18.1.0 setuptools 63.4.1 sip 4.19.13 six 1.16.0 smart-open 5.2.1 sniffio 1.2.0 snowballstemmer 2.2.0 sortedcollections 2.1.0 sortedcontainers 2.4.0 soupsieve 2.3.1 Sphinx 5.0.2 sphinxcontrib-applehelp 1.0.2 sphinxcontrib-devhelp 1.0.2 sphinxcontrib-htmlhelp 2.0.0 sphinxcontrib-jsmath 1.0.1 sphinxcontrib-qthelp 1.0.3 sphinxcontrib-serializinghtml 1.1.5 spyder 5.2.2 spyder-kernels 2.2.1 SQLAlchemy 1.4.39 statsmodels 0.13.2 sympy 1.10.1 tables 3.6.1 tabulate 0.8.10 TBB 0.2 tblib 1.7.0 tenacity 8.0.1 tensorboard 2.19.0 tensorboard-data-server 0.7.2 tensorflow 2.19.0 tensorflow-io-gcs-filesystem 0.31.0 termcolor 3.1.0 terminado 0.13.1 testpath 0.6.0 text-unidecode 1.3 textdistance 4.2.1 threadpoolctl 2.2.0 three-merge 0.1.1 tifffile 2021.7.2 tinycss 0.4 tldextract 3.2.0 toml 0.10.2 tomli 2.0.1 tomlkit 0.11.1 toolz 0.11.2 tornado 6.1 tqdm 4.64.1 traitlets 5.1.1 Twisted 22.2.0 twisted-iocpsupport 1.0.2 typing_extensions 4.13.2 ujson 5.4.0 Unidecode 1.2.0 urllib3 1.26.11 w3lib 1.21.0 watchdog 2.1.6 wcwidth 0.2.5 webencodings 0.5.1 websocket-client 0.58.0 Werkzeug 2.0.3 wheel 0.37.1 widgetsnbextension 3.5.2 win-inet-pton 1.1.0 win-unicode-console 0.5 wincertstore 0.2 wrapt 1.14.1 xarray 0.20.1 xlrd 2.0.1 XlsxWriter 3.0.3 xlwings 0.27.15 yapf 0.31.0 zict 2.1.0 zipp 3.8.0 zope.interface 5.4.0哪个版本过高不兼容

D:\anaconda3\envs\yolov11\lib\site-packages\timm\models\layers\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) Loading data from: D:\AOT-GAN-for-Inpainting\data\test Loading mask from: D:\AOT-GAN-for-Inpainting\data\test.mask Loading networks from: D:\MAT\Places_512_FullData.pkl Prcessing: cropped_row56_col11.png Traceback (most recent call last): File "D:\MAT\generate_image.py", line 156, in <module> generate_images() # pylint: disable=no-value-for-parameter File "D:\anaconda3\envs\yolov11\lib\site-packages\click\core.py", line 1161, in __call__ return self.main(*args, **kwargs) File "D:\anaconda3\envs\yolov11\lib\site-packages\click\core.py", line 1082, in main rv = self.invoke(ctx) File "D:\anaconda3\envs\yolov11\lib\site-packages\click\core.py", line 1443, in invoke return ctx.invoke(self.callback, **ctx.params) File "D:\anaconda3\envs\yolov11\lib\site-packages\click\core.py", line 788, in invoke return __callback(*args, **kwargs) File "D:\anaconda3\envs\yolov11\lib\site-packages\click\decorators.py", line 33, in new_func return f(get_current_context(), *args, **kwargs) File "D:\MAT\generate_image.py", line 138, in generate_images image = read_image(ipath) File "D:\MAT\generate_image.py", line 113, in read_image image = pyspng.load(f.read()) File "D:\anaconda3\envs\yolov11\lib\site-packages\pyspng\lib.py", line 48, in load arr = c.spng_decode_image_bytes(data, cfmt) RuntimeError: pyspng: could not decode ihdr: invalid signature

PS C:\jichuang\Project\pythonProject> pip install deepface Collecting deepface Using cached deepface-0.0.93-py3-none-any.whl.metadata (30 kB) Collecting requests>=2.27.1 (from deepface) Using cached requests-2.32.4-py3-none-any.whl.metadata (4.9 kB) Requirement already satisfied: numpy>=1.14.0 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (2.3.1) Requirement already satisfied: pandas>=0.23.4 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (2.3.0) Collecting gdown>=3.10.1 (from deepface) Using cached gdown-5.2.0-py3-none-any.whl.metadata (5.8 kB) Collecting tqdm>=4.30.0 (from deepface) Using cached tqdm-4.67.1-py3-none-any.whl.metadata (57 kB) Requirement already satisfied: Pillow>=5.2.0 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (11.3.0) Requirement already satisfied: opencv-python>=4.5.5.64 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (4.11.0.86) INFO: pip is looking at multiple versions of deepface to determine which version is compatible with other requirements. This could take a while. Collecting deepface Using cached deepface-0.0.92-py3-none-any.whl.metadata (27 kB) Using cached deepface-0.0.91-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.90-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.89-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.88-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.87-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.86-py3-none-any.whl.metadata (24 kB) INFO: pip is still looking at multiple versions of deepface to determine which version is compatible with other requirements. This could take a while. Using cached deepface-0.0.85-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.84-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.83-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.82-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.81-py3-none-any.whl.metadata (24 kB) INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C. Using cached deepface-0.0.80-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.79-py3-none-any.whl.metadata (26 kB) Using cached deepface-0.0.78-py3-none-any.whl.metadata (24 kB) Using cached deepface-0.0.75-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.74-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.73-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.72-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.71-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.70-py3-none-any.whl.metadata (18 kB) Using cached deepface-0.0.69-py3-none-any.whl.metadata (18 kB) Using cached deepface-0.0.68-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.67-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.66-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.65-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.64-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.63-py3-none-any.whl.metadata (19 kB) Using cached deepface-0.0.62-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.61-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.60-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.59-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.58-py3-none-any.whl.metadata (21 kB) Using cached deepface-0.0.57-py3-none-any.whl.metadata (21 kB) Using cached deepface-0.0.56-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.55-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.54-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.53-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.52-py3-none-any.whl.metadata (20 kB) Using cached deepface-0.0.51-py3-none-any.whl.metadata (21 kB) Using cached deepface-0.0.50-py3-none-any.whl.metadata (21 kB) Using cached deepface-0.0.49-py3-none-any.whl.metadata (17 kB) Using cached deepface-0.0.48-py3-none-any.whl.metadata (17 kB) Using cached deepface-0.0.47-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.46-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.45-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.44-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.43-py3-none-any.whl.metadata (16 kB) Using cached deepface-0.0.41-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.40-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.39-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.38-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.37-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.36-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.35-py3-none-any.whl.metadata (14 kB) Using cached deepface-0.0.34-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.33-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.32-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.31-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.30-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.26-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.25-py3-none-any.whl.metadata (15 kB) Using cached deepface-0.0.24-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.23-py3-none-any.whl.metadata (13 kB) Using cached deepface-0.0.22-py3-none-any.whl.metadata (12 kB) Using cached deepface-0.0.21-py3-none-any.whl.metadata (12 kB) Using cached deepface-0.0.20-py3-none-any.whl.metadata (10 kB) Using cached deepface-0.0.19-py3-none-any.whl.metadata (10 kB) Using cached deepface-0.0.18-py3-none-any.whl.metadata (9.6 kB) Using cached deepface-0.0.16-py3-none-any.whl.metadata (9.6 kB) Using cached deepface-0.0.15-py3-none-any.whl.metadata (9.7 kB) Using cached deepface-0.0.14-py3-none-any.whl.metadata (9.7 kB) Requirement already satisfied: matplotlib>=2.2.2 in c:\users\zzysg\appdata\local\programs\python\python313\lib\site-packages (from deepface) (3.10.3) Using cached deepface-0.0.13-py3-none-any.whl.metadata (9.7 kB) Using cached deepface-0.0.12-py3-none-any.whl.metadata (9.2 kB) Using cached deepface-0.0.11-py3-none-any.whl.metadata (9.2 kB) Using cached deepface-0.0.10-py3-none-any.whl.metadata (9.2 kB) Using cached deepface-0.0.9-py3-none-any.whl.metadata (8.6 kB) Using cached deepface-0.0.7-py3-none-any.whl.metadata (8.3 kB) Using cached deepface-0.0.6-py3-none-any.whl.metadata (7.9 kB) Using cached deepface-0.0.5-py3-none-any.whl.metadata (8.3 kB) Using cached deepface-0.0.4-py3-none-any.whl.metadata (8.1 kB) Using cached deepface-0.0.3-py3-none-any.whl.metadata (8.1 kB) Using cached deepface-0.0.2-py3-none-any.whl.metadata (8.0 kB) Using cached deepface-0.0.1-py3-none-any.whl.metadata (4.4 kB) ERROR: Cannot install deepface==0.0.1, deepface==0.0.10, deepface==0.0.11, deepface==0.0.12, deepface==0.0.13, deepface==0.0.14, deepface==0.0.15, d eepface==0.0.16, deepface==0.0.18, deepface==0.0.19, deepface==0.0.2, deepface==0.0.20, deepface==0.0.21, deepface==0.0.22, deepface==0.0.23, deepfa ce==0.0.24, deepface==0.0.25, deepface==0.0.26, deepface==0.0.3, deepface==0.0.30, deepface==0.0.31, deepface==0.0.32, deepface==0.0.33, deepface==0 .0.34, deepface==0.0.35, deepface==0.0.36, deepface==0.0.37, deepface==0.0.38, deepface==0.0.39, deepface==0.0.4, deepface==0.0.40, deepface==0.0.41 , deepface==0.0.43, deepface==0.0.44, deepface==0.0.45, deepface==0.0.46, deepface==0.0.47, deepface==0.0.48, deepface==0.0.49, deepface==0.0.5, dee pface==0.0.50, deepface==0.0.51, deepface==0.0.52, deepface==0.0.53, deepface==0.0.54, deepface==0.0.55, deepface==0.0.56, deepface==0.0.57, deepfac e==0.0.58, deepface==0.0.59, deepface==0.0.6, deepface==0.0.60, deepface==0.0.61, deepface==0.0.62, deepface==0.0.63, deepface==0.0.64, deepface==0. 0.65, deepface==0.0.66, deepface==0.0.67, deepface==0.0.68, deepface==0.0.69, deepface==0.0.7, deepface==0.0.70, deepface==0.0.71, deepface==0.0.72, deepface==0.0.73, deepface==0.0.74, deepface==0.0.75, deepface==0.0.78, deepface==0.0.79, deepface==0.0.80, deepface==0.0.81, deepface==0.0.82, dee pface==0.0.83, deepface==0.0.84, deepface==0.0.85, deepface==0.0.86, deepface==0.0.87, deepface==0.0.88, deepface==0.0.89, deepface==0.0.9, deepface==0.0.90, deepface==0.0.91, deepface==0.0.92 and deepface==0.0.93 because these package versions have conflicting dependencies. The conflict is caused by: deepface 0.0.93 depends on tensorflow>=1.9.0 deepface 0.0.92 depends on tensorflow>=1.9.0 deepface 0.0.91 depends on tensorflow>=1.9.0 deepface 0.0.90 depends on tensorflow>=1.9.0 deepface 0.0.89 depends on tensorflow>=1.9.0 deepface 0.0.88 depends on tensorflow>=1.9.0 deepface 0.0.87 depends on tensorflow>=1.9.0 deepface 0.0.86 depends on tensorflow>=1.9.0 deepface 0.0.85 depends on tensorflow>=1.9.0 deepface 0.0.84 depends on tensorflow>=1.9.0 deepface 0.0.83 depends on tensorflow>=1.9.0 deepface 0.0.82 depends on tensorflow>=1.9.0 deepface 0.0.81 depends on tensorflow>=1.9.0 deepface 0.0.80 depends on tensorflow>=1.9.0 deepface 0.0.79 depends on tensorflow>=1.9.0 deepface 0.0.78 depends on tensorflow>=1.9.0 deepface 0.0.75 depends on tensorflow>=1.9.0 deepface 0.0.74 depends on tensorflow>=1.9.0 deepface 0.0.73 depends on tensorflow>=1.9.0 deepface 0.0.72 depends on tensorflow>=1.9.0 deepface 0.0.71 depends on tensorflow>=1.9.0 deepface 0.0.70 depends on tensorflow>=1.9.0 deepface 0.0.69 depends on tensorflow>=1.9.0 deepface 0.0.68 depends on tensorflow>=1.9.0 deepface 0.0.67 depends on tensorflow>=1.9.0 deepface 0.0.66 depends on tensorflow>=1.9.0 deepface 0.0.65 depends on tensorflow>=1.9.0 deepface 0.0.64 depends on tensorflow>=1.9.0 deepface 0.0.63 depends on tensorflow>=1.9.0 deepface 0.0.62 depends on tensorflow>=1.9.0 deepface 0.0.61 depends on tensorflow>=1.9.0 deepface 0.0.60 depends on tensorflow>=1.9.0 deepface 0.0.59 depends on tensorflow>=1.9.0 deepface 0.0.58 depends on tensorflow>=1.9.0 deepface 0.0.57 depends on tensorflow>=1.9.0 deepface 0.0.56 depends on tensorflow>=1.9.0 deepface 0.0.55 depends on tensorflow>=1.9.0 deepface 0.0.54 depends on tensorflow>=1.9.0 deepface 0.0.53 depends on tensorflow>=1.9.0 deepface 0.0.52 depends on tensorflow>=1.9.0 deepface 0.0.51 depends on tensorflow>=1.9.0 deepface 0.0.50 depends on tensorflow>=1.9.0 deepface 0.0.49 depends on tensorflow>=1.9.0 deepface 0.0.48 depends on tensorflow>=1.9.0 deepface 0.0.47 depends on tensorflow>=1.9.0 deepface 0.0.46 depends on tensorflow>=1.9.0 deepface 0.0.45 depends on tensorflow>=1.9.0 deepface 0.0.44 depends on tensorflow>=1.9.0 deepface 0.0.43 depends on tensorflow>=1.9.0 deepface 0.0.41 depends on tensorflow>=1.9.0 deepface 0.0.40 depends on tensorflow>=1.9.0 deepface 0.0.39 depends on tensorflow>=1.9.0 deepface 0.0.38 depends on tensorflow>=1.9.0 deepface 0.0.37 depends on tensorflow>=1.9.0 deepface 0.0.36 depends on tensorflow>=1.9.0 deepface 0.0.35 depends on tensorflow>=1.9.0 deepface 0.0.34 depends on tensorflow>=1.9.0 deepface 0.0.33 depends on tensorflow>=1.9.0 deepface 0.0.32 depends on tensorflow>=1.9.0 deepface 0.0.31 depends on tensorflow>=1.9.0 deepface 0.0.30 depends on tensorflow>=1.9.0 deepface 0.0.26 depends on tensorflow>=1.9.0 deepface 0.0.25 depends on tensorflow>=1.9.0 deepface 0.0.24 depends on tensorflow>=1.9.0 deepface 0.0.23 depends on tensorflow>=1.9.0 deepface 0.0.22 depends on tensorflow>=1.9.0 deepface 0.0.21 depends on tensorflow>=1.9.0 deepface 0.0.20 depends on tensorflow>=1.9.0 deepface 0.0.19 depends on tensorflow>=1.9.0 deepface 0.0.18 depends on tensorflow>=1.9.0 deepface 0.0.16 depends on tensorflow>=1.9.0 deepface 0.0.15 depends on tensorflow>=1.9.0 deepface 0.0.14 depends on tensorflow>=1.9.0 deepface 0.0.13 depends on tensorflow>=1.9.0 deepface 0.0.12 depends on tensorflow>=1.9.0 deepface 0.0.11 depends on tensorflow>=1.9.0 deepface 0.0.10 depends on tensorflow>=1.9.0 deepface 0.0.9 depends on tensorflow>=1.9.0 deepface 0.0.7 depends on tensorflow>=1.9.0 deepface 0.0.6 depends on tensorflow>=1.9.0 deepface 0.0.5 depends on tensorflow>=1.9.0 deepface 0.0.4 depends on tensorflow>=1.9.0 deepface 0.0.3 depends on tensorflow>=1.9.0 deepface 0.0.2 depends on tensorflow>=1.9.0 deepface 0.0.1 depends on tensorflow>=1.9.0 To fix this you could try to: 1. loosen the range of package versions you've specified 2. remove package versions to allow pip to attempt to solve the dependency conflict ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts 此时我应该怎么在终端输入指令

zip
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
zip
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在 JavaScript 中实现点击展开与隐藏效果是一种非常实用的交互设计,它能够有效提升用户界面的动态性和用户体验。本文将详细阐述如何通过 JavaScript 实现这种功能,并提供一个完整的代码示例。为了实现这一功能,我们需要掌握基础的 HTML 和 CSS 知识,以便构建基本的页面结构和样式。 在这个示例中,我们有一个按钮和一个提示框(prompt)。默认情况下,提示框是隐藏的。当用户点击按钮时,提示框会显示出来;再次点击按钮时,提示框则会隐藏。以下是 HTML 部分的代码: 接下来是 CSS 部分。我们通过设置提示框的 display 属性为 none 来实现默认隐藏的效果: 最后,我们使用 JavaScript 来处理点击事件。我们利用事件监听机制,监听按钮的点击事件,并通过动态改变提示框的 display 属性来实现展开和隐藏的效果。以下是 JavaScript 部分的代码: 为了进一步增强用户体验,我们还添加了一个关闭按钮(closePrompt),用户可以通过点击该按钮来关闭提示框。以下是关闭按钮的 JavaScript 实现: 通过以上代码,我们就完成了点击展开隐藏效果的实现。这个简单的交互可以通过添加 CSS 动画效果(如渐显渐隐等)来进一步提升用户体验。此外,这个基本原理还可以扩展到其他类似的交互场景,例如折叠面板、下拉菜单等。 总结来说,JavaScript 实现点击展开隐藏效果主要涉及 HTML 元素的布局、CSS 的样式控制以及 JavaScript 的事件处理。通过监听点击事件并动态改变元素的样式,可以实现丰富的交互功能。在实际开发中,可以结合现代前端框架(如 React 或 Vue 等),将这些交互封装成组件,从而提高代码的复用性和维护性。

最新推荐

recommend-type

冲床送料机程序中达优控一体机编程实践:成熟可靠,高借鉴价值,含详细注释 · 故障诊断 v2.0

内容概要:本文介绍了在中达优控一体机上编写的冲床送料机程序,该程序已在实际设备上批量应用,证明了其成熟可靠性和高借鉴价值。文章首先概述了冲床送料机程序的重要性和应用场景,接着详细描述了程序的设计思路和技术细节,包括采用模块化设计、PID控制算法和详细的程序注释。最后,文章总结了该程序的实际应用效果及其对现代工业制造的支持作用。 适合人群:从事工业自动化控制领域的工程师和技术人员,尤其是那些需要编写或优化冲床送料机控制程序的专业人士。 使用场景及目标:①理解和掌握冲床送料机程序的编写方法;②学习如何利用中达优控一体机实现高精度的送料控制;③借鉴成熟的编程实践,提高自身编程水平和解决实际问题的能力。 阅读建议:本文不仅提供了具体的编程技术和实践经验,还包含了详细的注释和模块化设计思路,因此读者应在实践中逐步理解和应用这些内容,以便更好地提升自己的技术水平。
recommend-type

A1SHB三极管芯片规格说明书

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
recommend-type

基于Debian Jessie的Kibana Docker容器部署指南

Docker是一种开源的容器化平台,它允许开发者将应用及其依赖打包进一个可移植的容器中。Kibana则是由Elastic公司开发的一款开源数据可视化插件,主要用于对Elasticsearch中的数据进行可视化分析。Kibana与Elasticsearch以及Logstash一起通常被称为“ELK Stack”,广泛应用于日志管理和数据分析领域。 在本篇文档中,我们看到了关于Kibana的Docker容器化部署方案。文档提到的“Docker-kibana:Kibana 作为基于 Debian Jessie 的Docker 容器”实际上涉及了两个版本的Kibana,即Kibana 3和Kibana 4,并且重点介绍了它们如何被部署在Docker容器中。 Kibana 3 Kibana 3是一个基于HTML和JavaScript构建的前端应用,这意味着它不需要复杂的服务器后端支持。在Docker容器中运行Kibana 3时,容器实际上充当了一个nginx服务器的角色,用以服务Kibana 3的静态资源。在文档中提及的配置选项,建议用户将自定义的config.js文件挂载到容器的/kibana/config.js路径。这一步骤使得用户能够将修改后的配置文件应用到容器中,以便根据自己的需求调整Kibana 3的行为。 Kibana 4 Kibana 4相较于Kibana 3,有了一个质的飞跃,它基于Java服务器应用程序。这使得Kibana 4能够处理更复杂的请求和任务。文档中指出,要通过挂载自定义的kibana.yml文件到容器的/kibana/config/kibana.yml路径来配置Kibana 4。kibana.yml是Kibana的主要配置文件,它允许用户配置各种参数,比如Elasticsearch服务器的地址,数据索引名称等等。通过Docker容器部署Kibana 4,用户可以很轻松地利用Docker提供的环境隔离和可复制性特点,使得Kibana应用的部署和运维更为简洁高效。 Docker容器化的优势 使用Docker容器化技术部署Kibana,有几个显著的优势: - **一致性**:Docker容器确保应用在开发、测试和生产环境中的行为保持一致。 - **轻量级**:相比传统虚拟机,Docker容器更加轻量,启动快速,资源占用更少。 - **隔离性**:容器之间的环境隔离,确保应用之间互不干扰。 - **可移植性**:容器可以在任何支持Docker的环境中运行,提高了应用的可移植性。 - **易于维护**:通过Dockerfile可以轻松构建和分发应用镜像,便于维护和升级。 在文档中,我们还看到了文件名“docker-kibana-master”。这个名称很可能是指向了存放Docker相关文件的源代码仓库,其中可能包含Dockerfile、构建和运行脚本以及可能的配置模板文件等。开发者可以从这个仓库中克隆或下载所需的Docker相关文件,并根据这些文件来构建和部署Kibana的Docker容器。 根据以上信息,对于希望利用Docker容器部署和管理Kibana应用的用户,需要掌握Docker的基本使用方法,包括Docker的安装、镜像管理、容器的创建和配置等。同时,还需要了解Kibana的基本原理和配置方法,这样才能充分利用Docker容器化带来的便利,优化Kibana应用的部署和管理流程。
recommend-type

Coze智能体工作流:打造钦天监视频内容的创新与实践

# 1. Coze智能体工作流概述 Coze智能体工作流是业界领先的智能工作流程管理系统,它通过整合最新的智能技术与人工智能算法,旨在为视频内容创造与优化带来革命性的变革。本章将对Coze智能体工作流进行全面的概述,揭示其在IT行业中的应用范围、流程结构以及技术基础。通过了解Coze智能体工作流,读者将能够把握它在当前和未
recommend-type

使用git仓库的利与弊

<think>好的,我需要分析Git仓库的优缺点。首先,根据用户提供的引用,看看有哪些点需要覆盖。引用[1]提到了Git有本地和远程仓库,需要push命令来更新远程,这应该属于优点还是缺点呢?可能优点在于本地操作灵活,缺点是需要额外命令。 引用[2]指出Git的权限管理薄弱,学习曲线陡峭,这显然是缺点。另外,引用[4]提到Git使用SHA-1哈希,内容完整性更好,属于优点。引用[5]比较了Git的分支管理简单,而缺少全局版本号,这可以作为优点和缺点分别说明。 现在需要将这些信息整理成结构化的优缺点,可能分点列出。同时,用户要求回答结构清晰,逐步解决问题,所以可能需要先介绍Git的基本概念,
recommend-type

TextWorld:基于文本游戏的强化学习环境沙箱

在给出的文件信息中,我们可以提取到以下IT知识点: ### 知识点一:TextWorld环境沙箱 **标题**中提到的“TextWorld”是一个专用的学习环境沙箱,专为强化学习(Reinforcement Learning,简称RL)代理的训练和测试而设计。在IT领域中,尤其是在机器学习的子领域中,环境沙箱是指一个受控的计算环境,允许实验者在隔离的条件下进行软件开发和测试。强化学习是一种机器学习方法,其中智能体(agent)通过与环境进行交互来学习如何在某个特定环境中执行任务,以最大化某种累积奖励。 ### 知识点二:基于文本的游戏生成器 **描述**中说明了TextWorld是一个基于文本的游戏生成器。在计算机科学中,基于文本的游戏(通常被称为文字冒险游戏)是一种游戏类型,玩家通过在文本界面输入文字指令来与游戏世界互动。TextWorld生成器能够创建这类游戏环境,为RL代理提供训练和测试的场景。 ### 知识点三:强化学习(RL) 强化学习是**描述**中提及的关键词,这是一种机器学习范式,用于训练智能体通过尝试和错误来学习在给定环境中如何采取行动。在强化学习中,智能体在环境中探索并执行动作,环境对每个动作做出响应并提供一个奖励或惩罚,智能体的目标是学习一个策略,以最大化长期累积奖励。 ### 知识点四:安装与支持的操作系统 **描述**提到TextWorld的安装需要Python 3,并且当前仅支持Linux和macOS系统。对于Windows用户,提供了使用Docker作为解决方案的信息。这里涉及几个IT知识点: - **Python 3**:一种广泛使用的高级编程语言,适用于快速开发,是进行机器学习研究和开发的常用语言。 - **Linux**和**macOS**:两种流行的操作系统,分别基于Unix系统和类Unix系统。 - **Windows**:另一种广泛使用的操作系统,具有不同的软件兼容性。 - **Docker**:一个开源的应用容器引擎,允许开发者打包应用及其依赖环境为一个轻量级、可移植的容器,使得在任何支持Docker的平台上一致地运行。 ### 知识点五:系统库和依赖 **描述**提到在基于Debian/Ubuntu的系统上,可以安装一些系统库来支持TextWorld的本机组件。这里涉及的知识点包括: - **Debian/Ubuntu**:基于Debian的Linux发行版,是目前最流行的Linux发行版之一。 - **系统库**:操作系统中包含的一系列预编译的软件包和库,供应用程序在运行时使用。 - **包管理工具**,如**apt**(Advanced Package Tool),它是一个在Debian及其衍生系统中用于安装、删除和管理软件包的命令行工具。 ### 知识点六:与创建者联系方式 **描述**提供了与TextWorld创建者的联系方式,包括电子邮件地址和一个Gitter频道。这说明了如何与开源项目的维护者进行沟通与反馈: - **电子邮件**是常见的沟通方式,允许用户与开发者直接交流。 - **Gitter**是一个基于GitHub的即时消息工具,通常用于开源项目中的实时协作和交流。 ### 结语 综合以上信息,我们可以了解到TextWorld是一个专为强化学习设计的学习环境沙箱,它通过创建基于文本的游戏环境,让研究者和开发者训练和测试RL代理。它主要针对Linux和macOS系统,不过也有适合Windows用户的替代方案。此外,了解如何安装和配置TextWorld,以及如何与创建者沟通,对于开发者来说是十分重要的基础技能。
recommend-type

Coze智能体工作流全攻略

# 1. Coze智能体工作流概述 在现代企业中,工作流管理不仅是提高效率的关键因素,而且
recommend-type

64位小端转大端c语言函数起名

<think>好的,用户需要找一个C语言函数的名字,用来将64位小端格式转换为大端格式。首先,我得回顾一下C语言中字节序转换函数的命名惯例。通常,像htonl和htons这样的函数用于将主机字节序转换到网络字节序(大端)。其中,htonl处理32位,htons处理16位。不过,对于64位的情况,可能没有标准函数,所以需要自己实现,并且命名也要符合惯例。 接下来,用户提到的是64位的小端转大端。这时候,可能需要类似htonll这样的名字,因为htonl是host to network long(32位),那么htonll可能就是host to network long long(64位)。不过
recommend-type

upReveal.js: 利用鼠标移动揭示图像的创新技术

根据提供的文件信息,我们可以分析并生成以下知识点: ### upReveal.js技术知识点 #### 标题分析 标题 "upReveal.js:upReveal.js 通过鼠标在图像上的移动来显示图像!" 明确告诉我们,该技术是一个JavaScript库,它的核心功能是允许用户通过在图像上移动鼠标来揭示隐藏在图像下面的其他图像或内容。这样的功能特别适合用于创建富有互动性的网页设计。 #### 描述分析 描述中提到的“向上揭示 upReveal 效果”表明upReveal.js使用了一种特定的视觉效果来显示图像。这种效果可以让用户感觉到图像好像是从底层“向上”显现出来的,从而产生一种动态和引人入胜的视觉体验。描述还提到了版权信息,指出upReveal.js拥有版权所有,且该许可证伴随源代码提供。这表明开发者或公司可以使用这个库,但需要注意其许可证条款,以确保合法合规使用。 #### 标签分析 标签“HTML”意味着这个JavaScript库需要与HTML配合使用,具体可能涉及对HTML的img标签或其他元素进行操作,以实现图像揭示的效果。HTML是构建网页内容的基础,而JavaScript则是用来增加交互性和动态效果的脚本语言,upReveal.js正是在这个层面上发挥作用。 #### 压缩包子文件的文件名称列表分析 文件名称列表 "upReveal.js-master" 表明该JavaScript库可以通过一个名为“upReveal.js”的主文件来引入和使用。文件名中的“master”通常意味着这是主版本或主要代码分支,用户可以使用该文件作为起点来集成和应用这个效果。 ### upReveal.js的具体知识点 1. **图像揭示技术:** upReveal.js利用鼠标悬停(hover)事件来实现图像揭示效果。当用户将鼠标移动到指定图像上时,底层图像或内容会被逐渐显示出来。 2. **CSS和JavaScript交互:** 要实现这种效果,upReveal.js可能会结合使用CSS来设计图像覆盖层和动画效果,同时利用JavaScript来监听鼠标事件并控制图像的显示逻辑。 3. **跨浏览器兼容性:** 一个成功的JavaScript库应该能够在不同的浏览器上一致地工作。upReveal.js可能包含跨浏览器兼容性的代码,确保所有用户都能体验到相同的效果。 4. **许可证使用:** 虽然upReveal.js允许用户使用,但开发者需要阅读并理解伴随源代码提供的许可证条款。通常这会涉及对源代码的使用、修改和重新分发的限制。 5. **HTML集成:** 为了使用upReveal.js,开发者需要在HTML文件中通过脚本标签引入JavaScript文件。同时,可能需要准备相应的HTML结构来展示图像。 6. **自定义和配置:** upReveal.js很可能会提供一些配置选项,允许开发者调整效果的动画速度、触发区域大小等,以适应不同的设计需求。 7. **性能和优化:** 在设计交互式图像效果时,性能优化是一个关键考虑因素。upReveal.js可能会通过优化代码和资源使用,减少对页面加载和交互性能的影响。 8. **可访问性考虑:** 虽然描述中未提及,但在开发类似JavaScript库时,考虑可访问性是一个好的实践,确保所有用户,包括那些有视觉障碍的用户,都能够受益于这种技术。 通过上述分析,我们可以看到upReveal.js作为一个JavaScript库,不仅提供了动态的交互效果,还涉及到了前端开发的多个方面,包括但不限于HTML结构设计、CSS样式应用、JavaScript事件处理、跨浏览器兼容性、性能优化以及许可证协议的遵守等。开发者在使用upReveal.js时,应该综合考虑这些知识点,以实现最佳的用户体验。
recommend-type

金融服务中AI Agent的崛起:智能投资顾问与风险管理

# 1. 金融服务中的AI Agent概述 金融服务行业正经历数字化转型,其中AI Agent(人工智能代理)扮演着越来越重要的角色。AI Agent,一种能够通过学习和适应来执行复杂任务的软件代理,已经广泛应用于金融服务的多个领域,如智能投资顾问、风险管理和合规性监控等。 在这一章,