大语言模型架构基础与挑战

大语言模型(Large Language Model, LLM)在近几年引领了自然语言处理领域的革命性进展。这类模型通常拥有极其庞大的参数规模(往往达到数十亿乃至数千亿级别),通过对海量文本数据进行自监督训练,展现出卓越的语言理解和生成能力。自2018年前后第一批大语言模型问世以来,基于Transformer架构的模型(如BERT和GPT系列)在各种NLP任务上取得了前所未有的成绩。大语言模型之所以能够取得成功,一方面归功于其底层强大的模型架构设计,另一方面也依赖于大规模数据训练所带来的知识获取。然而,随着模型规模的爆炸式增长,许多新的挑战也随之出现,包括计算资源需求飙升、模型难以处理超长序列、以及训练过程中的工程技术瓶颈等问题。

Transformer基本架构

序列建模的传统方法及局限

在Transformer问世之前,神经网络模型已经在序列建模任务中取得了一定进展,但也存在明显的局限性。早期的方法包括循环神经网络(RNN)及其改进变体长短期记忆网络(LSTM)、门控循环单元(GRU)等。这类循环网络通过隐状态在时间步的递归传递来处理序列信息,能够在一定程度上捕获序列中的上下文依赖。然而,RNN/LSTM存在“长期依赖”问题:随着序列长度增加,它们对早期信息的记忆逐渐衰减,即使LSTM引入门控机制也难以完全克服这一不足。此外,循环网络无法实现并行计算,因为序列数据必须按时间步逐一处理,这使得在利用GPU等并行硬件时效率低下。另一类用于序列建模的尝试是卷积神经网络(CNN),其通过卷积滤波器提取局部片段特征,可以在一定程度上并行处理固定长度窗口内的序列。但是,CNN要捕获长距离依赖需要堆叠多层卷积,感受野随着层数加深才扩大,这在长序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值