大模型提示词工程技术1-《大模型提示词工程技术》创作与前沿章节介绍

大模型提示词工程技术1-《大模型提示词工程技术》创作与前沿章节介绍,《大模型提示词工程技术》的作者:微学AI,这是一本专注于提升人工智能大模型性能的著作,它深入浅出地讲解了如何通过优化输入提示词来引导大模型生成高质量、准确的输出。书中不仅涵盖了提示词工程的基本概念和原则,还提供了丰富的实践案例和技术优化技巧。
在这里插入图片描述

《大模型提示词工程技术》书籍,目录结构:
第一章 提示工程技术概述
1.1 提示工程技术的定义与发展
1.2 提示工程技术在大模型中的重要性
第二章 提示工程技术的基础原理
2.1 预训练语言模型与提示词的关系
2.1.1 提示词的作用机理
2.1.2 原理表达
2.2 大模型对提示词的理解与处理机制
2.2.1 表征能力
2.2.2 注意力机制
第三章 设计有效的提示词
3.1 明确目标与任务
3.1.1 确定任务类型
3.1.2 明确期望输出
3.2 选择合适的语言风格
3.2.1 正式与非正式风格
3.2.2 专业术语与通俗语言
3.3 避免歧义与模糊性
3.3.1 清晰明确的表述
3.3.2 使用具体的例子
3.3.3 避免多义词
第四章 角色与上下文在提示中的应用
4.1 定义大模型的角色
4.1.1 角色设定的重要性
4.1.2 角色设定的步骤
4.2 提供相关背景信息与上下文
4.2.1 背景信息的重要性
4.2.2 上下文信息的重要性
4.2.3 背景信息与上下文的结合
第五章 输入与输出的优化
5.1 清晰明确的输入指令
5.1.1 明确任务描述
5.1.2 避免歧义和模糊性
5.2 规定输出的格式与要求
5.2.1 输出格式的要求
5.2.2 输出内容的要求
第六章 提示词架构设计
6.1 提示词的架构模式介绍
6.1.1 TAG框架
6.1.2 TRACE 框架
6.1.3 ICIO 框架
第七章 提示词的评估与改进
7.1 评估提示词效果的指标
7.2 基于反馈的提示词改进方法
7.2.1 A/B 测试法
7.2.2.迭代优化法
7.2.3 专家评审法
7.2.4 用户反馈法
7.2.5 数据驱动法
7.2.6 多轮迭代法
7.2.7 详细优化过程
第八章 提示工程技术的挑战与未来发展
8.1 面临的技术挑战
8.1.1 提示词泛化能力不足
8.1.2 生成内容的可控性差
8.1.3 长文本生成的连贯性问题
8.1.4 多模态提示词的设计
8.1.5 提示词的可解释性
8.1.6 提示词的鲁棒性
8.1.7 提示词的自动化设计
8.1.8 提示词的跨领域迁移
8.2 未来的发展趋势与展望

前言

在当今这个科技飞速发展的时代,大模型如同璀璨星辰,照亮了我们探索知识和解决问题的道路。自从2022年11月ChatGPT横空出世以来,它迅速在全球范围内引起了广泛关注,仅两个月内活跃用户数便突破了一亿。ChatGPT作为OpenAI研发的聊天机器人,其发展历程体现了大规模预训练模型的强大能力。从GPT-1到GPT-4o,这些模型的参数量和性能不断提升,应用范围也逐渐扩展至对话系统、文本生成、机器翻译等多个领域。特别是ChatGPT4o,在处理多模态、安全性及多语言支持等方面取得了显著进步。对于强大的大模型提示工程技术则是开启大模型无限潜力的关键钥匙。当我们站在信息的洪流之中,大模型以其强大的计算能力和海量的数据储备,为我们提供了前所未有的可能性。然而,若要让这一强大的工具真正贴合我们的需求,发挥出最大的效能,提示工程技术的作用便显得至关重要。

我们可以这样想象,我们如同指挥家,而提示词就是我们手中的指挥棒。通过巧妙地构思和运用提示词,我们能够引导大模型奏出美妙的乐章,为我们解决复杂的难题,创造出令人惊叹的成果。本书旨在深入探索大模型的提示工程技术这一神秘而又充满魅力的领域。我们将一同揭开它的面纱,揭示其中的奥秘,掌握其精髓。

在接下来的篇章中,大家将跟随我们的脚步,逐步深入了解提示工程技术的方方面面。从基础原理到实际应用,从设计技巧到优化策略,我们将为您呈现一个全面而又系统的知识体系。无论您是技术领域的专业人士,还是对大模型充满好奇的探索者,相信这本书都将为您打开一扇通往新的知识天地的大门,让您在大模型的世界中畅游,领略其无尽的魅力和可能性。让我们携手共进,开启这一段充满惊喜与收获的知识之旅!

第一章 提示工程技术概述

1.1 提示工程技术的定义与发展

提示工程技术,作为连接人类智慧与大模型强大计算能力的桥梁,正逐渐成为人工智能领域的关键组成部分。其定义可简要概括为通过精心设计和优化输入给大模型的提示词,以引导模型生成更准确、有用和富有创造性的输出。

从发展的历程来看,早期的大模型应用中,人们对于提示词的运用相对简单和随意。随着对大模型性能的不断挖掘和对其应用场景需求的日益复杂,提示工程技术逐渐从一种模糊的实践经验走向了系统化和科学化。

在发展的初期,研究者们主要关注如何让大模型理解基本的指令和需求。随着技术的进步,重点逐渐转向了如何通过巧妙的提示设计激发大模型的潜在能力,使其能够处理更加复杂和多样化的任务。

如今,提示工程技术不仅在自然语言处理领域发挥着重要作用,还在图像生成、音频处理等多模态任务中崭露头角,展现出了广泛的应用前景和巨大的发展潜力。

1.2 提示工程技术在大模型中的重要性

提示工程技术在大模型中扮演着举足轻重的角色,犹如精确的导航系统对于远航的船只一样不可或缺。

首先,它能够显著提高大模型输出的准确性和相关性。本书将介绍通过精心构造的提示词技巧,设计巧妙的提示词,设计样例型提示词,为大模型提供更明确的任务目标和约束条件,减少模型的猜测和偏差,从而得到更符合期望的结果。

有助于挖掘大模型的潜在能力。大模型本身具备强大的学习和推理能力,但这些能力需要通过恰当的提示来激发和引导。优秀的提示工程能够让大模型在面对新的、复杂的问题时展现出超越常规的表现。

对于优化大模型的资源利用效率至关重要。合理的提示可以避免不必要的计算和重复尝试,使大模型在有限的计算资源下更高效地完成任务。

在跨领域和多任务应用中,提示工程技术能够使大模型快速适应不同的场景和需求,展现出强大的通用性和灵活性。提示工程技术是充分发挥大模型优势、推动其在各个领域广泛应用和深度发展的核心要素。

第二章 提示工程技术的基础原理

2.1 预训练语言模型与提示词的关系

预训练语言模型(Pre-trained Language Models, PLMs)是近年来自然语言处理领域的一项重大突破。这类模型通常在大规模未标注文本数据上进行预训练,从而学习到丰富的语言表示。预训练过程的目标通常是最大化预测给定上下文中下一个单词的概率,即语言建模任务。这一过程中,模型会学习到词汇间的统计关系以及语法和语义知识。

2.1.1 提示词的作用机理

在预训练阶段之后,模型可以通过微调(fine-tuning)来适应特定的任务。然而,微调需要大量的标注数据,这在实际应用中往往难以获取。为了解决这个问题,研究者们提出了另一种利用预训练模型的方法——提示工程(Prompt Engineering)。提示工程的核心思想是在不改变模型参数的情况下,通过设计特定的提示词(prompt),引导模型生成期望的输出。
提示词可以被看作是一种特殊的输入序列,它包含了对模型生成内容的隐式指导。例如,在问答任务中,提示词可能是“问题:… 答案:”,这样的结构帮助模型理解输入的意图,并据此生成相应的答案。

2.1.2 原理表达

假设我们有一个预训练语言模型 P(θ)P(\theta)P(θ),其中 θ\thetaθ 表示模型参数。对于给定的提示词序列 x=(x1,x2,...,xn)x = (x_1, x_2, ..., x_n)x=(x1,x2,...,xn),模型的目标是最大化条件概率 (P(y|x; \theta)),即在给定提示词的情况下生成目标序列 (y = (y_1, y_2, …, y_m)) 的概率。这一过程可以用以下公式表示:
P(y∣x;θ)=∏i=1mP(yi∣y<i,x;θ) P(y|x; \theta) = \prod_{i=1}^{m} P(y_i|y_{<i}, x; \theta)P(yx;θ)=i=1mP(yiy<i,x;θ)
其中,P(yi∣y<i,x;θ)P(y_i|y_{<i}, x; \theta)P(yiy<i,x;θ) 表示在给定前面的所有生成词 y<iy_{<i}y<i和提示词xxx的情况下生成第iii个词的概率。

2.2 大模型对提示词的理解与处理机制

大型预训练模型之所以能有效响应提示词,主要得益于其强大的表征能力和灵活的注意力机制。下面我们将深入探讨这两方面的内容。

2.2.1 表征能力

预训练模型通过多层Transformer架构来提取输入文本的深层特征。每一层都包含自注意力(Self-Attention)模块,使得模型能够在处理当前词时考虑整个输入序列中的所有其他词的信息。这种全局依赖性使得模型能够捕捉到长距离的依赖关系,并对不同位置的提示词作出响应。

2.2.2 注意力机制

注意力机制允许模型根据输入的不同部分动态地调整其权重分配。具体来说,在处理提示词时,模型会计算每个词与其他词之间的相关性得分,并据此调整后续生成过程中的权重分布。这一机制使得模型能够聚焦于提示词中最重要的部分,并据此生成更准确的答案。
例如,在处理提示词“问题:… 答案:”时,模型可能会将更高的注意力分配给“问题:”后面的内容,因为这部分提供了生成答案所需的关键信息。
通过上述机制,预训练语言模型能够有效地理解和处理各种形式的提示词,从而实现无需微调即可完成多种任务的能力。这不仅极大地降低了模型应用的成本,也为自然语言处理领域带来了全新的可能性。

第三章内容敬请关注!!

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 在 Android 开发中,Fragment 是界面的一个模块化组件,可用于在 Activity 中灵活地添加、删除或替换。将 ListView 集成到 Fragment 中,能够实现数据的动态加载列表形式展示,对于构建复杂且交互丰富的界面非常有帮助。本文将详细介绍如何在 Fragment 中使用 ListView。 首先,需要在 Fragment 的布局文件中添加 ListView 的 XML 定义。一个基本的 ListView 元素代码如下: 接着,创建适配器来填充 ListView 的数据。通常会使用 BaseAdapter 的子类,如 ArrayAdapter 或自定义适配器。例如,创建一个简单的 MyListAdapter,继承自 ArrayAdapter,并在构造函数中传入数据集: 在 Fragment 的 onCreateView 或 onActivityCreated 方法中,实例化 ListView 和适配器,并将适配器设置到 ListView 上: 为了提升用户体验,可以为 ListView 设置点击事件监听器: 性能优化也是关键。设置 ListView 的 android:cacheColorHint 属性可提升滚动流畅度。在 getView 方法中复用 convertView,可减少视图创建,提升性能。对于复杂需求,如异步加载数据,可使用 LoaderManager 和 CursorLoader,这能更好地管理数据加载,避免内存泄漏,支持数据变更时自动刷新。 总结来说,Fragment 中的 ListView 使用涉及布局设计、适配器创建定制、数据绑定及事件监听。掌握这些步骤,可构建功能强大的应用。实际开发中,还需优化 ListView 性能,确保应用流畅运
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值