使用PyTorch实现验证码识别

这篇博客介绍了如何使用PyTorch进行验证码识别,包括自动生成验证码图片,训练卷积模型,以及识别验证码的完整过程。作者详细讲解了数据集的创建、自定义网络结构、损失函数的定义和模型训练的日志记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,我是阿光。

本专栏整理了《深度学习100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

在这里插入图片描述

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


本文主要实现了两个工作:

  • 1.验证码生成
  • 2.PyTorch识别验证码

一、生成验证码图片

我们利用开源库captcha进行生成验证码

1.1 随机生成验证码文本串

首先自定义一个函数进行随机生成验证码文本串,为了方便,本文只是生成4个数字,如果感兴趣小伙伴可以尝试加一些字母或者符号或者尝试更多位

评论 56
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值