高并发场景下该选择哪个LLM推理框架?Ollama与vLLM实测对比

随着大语言模型(LLM)在生产环境中的广泛应用,模型推理服务的并发处理能力成为了关键的性能指标。本文通过DeepStressModel工具,对比测试了Ollama和vLLM两种主流LLM推理框架在相同模型(Qwen3)下的并发性能表现,旨在为生产环境的技术选型提供数据支持。


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


在这里插入图片描述

测试环境与工具准备

测试框架介绍

DeepStressModel是一个专门用于大语言模型压力测试的开源工具,具有以下特点:

  • 支持多种LLM推理框架的性能测试
  • 提供可视化的测试结果展示
  • 支持自定义并发数和数据集配置
  • 实时监控GPU资源使用状况

工具安装与配置

1. 环
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值