使用LLaMA-Factory微调时的问题与解决方案记录

在大语言模型微调的过程中,LLaMA-Factory作为一个强大的工具,为研究人员和开发者提供了便捷的微调体验。然而,在实际操作中,我们常常会遇到各种技术难题。本文将分享我在使用LLaMA-Factory进行模型微调时遇到的常见问题及其解决方案,涉及显卡指定、通信错误处理,到训练参数理解、多卡全量微调实现,以及结果评估等内容。


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


在这里插入图片描述

如何指定微调使用的显卡

启动网页时使用这种执行命令

CUDA_VISIBLE_DEVICES=5,6
### LLaMA-Factory 中关于 DeepSpeed 的支持 LLaMA-Factory 是一个用于轻松微调大型语言模型的工具集,其设计目标是简化微调流程并提高性能。然而,在当前公开的信息中并未明确提到 LLaMA-Factory 默认包含对 DeepSpeed 的内置支持[^1]。 DeepSpeed 是一种高效的分布式训练框架,能够显著提升大规模模型的训练效率和资源利用率。如果希望在 LLaMA-Factory使用 DeepSpeed,可以通过以下方式实现: #### 方法一:手动配置 DeepSpeed 参数 LLaMA-Factory 提供了灵活的超参数设置接口,允许用户自定义训练过程中的各种参数。例如,`get_train_args` 函数位于 `src/llamafactory/hparams/parser.py` 文件中,可以在此处扩展以支持 DeepSpeed 的相关选项[^2]。具体来说,可以在训练脚本中引入 DeepSpeed 并传递相应的 JSON 配置文件作为输入。 以下是基于 Hugging Face Transformers 和 PyTorch 的典型 DeepSpeed 配置模板: ```json { "fp16": { "enabled": true, "loss_scale": 0, "initial_scale_power": 16, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "optimizer": { "type": "AdamW", "params": { "lr": 0.0001, "betas": [0.9, 0.999], "eps": 1e-8, "weight_decay": 3e-7 } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 0.0001, "warmup_num_steps": 500 } }, "zero_optimization": { "stage": 2, "offload_optimizer": { "device": "cpu" } } } ``` 此配置文件应保存为 `.json` 格式,并通过命令行参数传入到训练脚本中。假设您正在运行 SFT(Supervised Fine-Tuning),则可以在启动命令中加入如下内容: ```bash deepspeed --num_gpus=4 src/train_sft.py \ --model_name_or_path meta-llama/Llama-2-7b-hf \ --dataset c4_demo \ --output_dir ./saves/deepspeed-lora-sft \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 8 \ --learning_rate 0.0001 \ --num_train_epochs 3.0 \ --logging_steps 10 \ --save_steps 500 \ --deepspeed ds_config.json ``` #### 方法二:修改源码集成 DeepSpeed 支持 如果您希望通过更深层次的方式将 DeepSpeed 整合到 LLaMA-Factory 中,则需要直接编辑源代码。例如,在 `train_sft.py` 或其他核心模块中初始化 Trainer 类,显式指定 `deepspeed` 参数即可启用该功能。此外,还需要确保所有依赖项均已正确安装并您的硬件环境兼容。 需要注意的是,尽管目前官方文档未提及对 DeepSpeed 的原生支持,但这并不妨碍开发者自行扩展这一特性。事实上,许多类似的开源项目都鼓励社区贡献者为其增添新功能或优化现有逻辑[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值