Pytorch 常用编码格式

本文详细介绍了OpenCV、Pillow和Numpy的图像编码格式,以及它们在PyTorch中的应用,包括OpenCV图像转RGB、数据增强中的ToTensor和Normalize操作。重点展示了转换公式和常用函数,适合深度学习开发者理解不同库间的图像处理流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


概括

np.ndarray 		(H x W x C)  	通道:(B、G、R)
PIL Image 		(H x W x C) 	通道:(R、G、B)
OpenCV shape	(H x W x C)		通道:(B、G、R)

Tensor shape 	(C x H x W)


1、OpenCV 图像编码格式

image.shape 得到的图像维度:(B,H,W,C),且通道数是:(B、G、R)

BGR 与 gray 转换公式: g r a y = 0.299 ⋅ r + 0.587 ⋅ g + 0.114 ⋅ b \bm{\mathrm{gray = 0.299\cdot r \quad+\quad 0.587\cdot g \quad+\quad 0.114 \cdot b}} gray=0.299r+0.587g+0.114b

OpenCV加载的彩色图像处于BGR模式,但是Matplotlib以RGB模式显示;因此,如果使用 OpenCV读取彩色图像,则Matplotlib中将无法正确显示彩色图像
采用 img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 将通道调换

img = cv2.imread(img_dir)

resized_img 	= cv2.resize(img, new_size, interpolation=cv2.INTER_LINEAR)
resized_img_rgb = cv2.COLOR_BGR2RGB(resized_img)
resized_img_rgb = cv2.cvtColor(resized_img, cv2.COLOR_BGR2RGB)

imgout = torch.from_numpy(resized_img_rgb).to("cuda").div(255.0).unsqueeze(0)

OpenCV 和 Pillow格式转换

from PIL import Image
import numpy as np
import cv2


img_cv	= cv2.imread('image.jpg')
img_pil	= Image.fromarray(cv2.cvtColor(img_cv,cv2.COLOR_BGR2RGB)) 		# opencv转为PIL
img_cv2	= cv2.cvtColor(np.asarray(img_pil),cv2.COLOR_RGB2BGR)			# PIL转为OpenCV
img_pil.show()


--------------------------------------------------------------------------------------------


from PIL import Image
import numpy as np
import cv2
img_cv		  = cv2.imread('image.jpg')					# opencv读取图像
img_pil		  = Image.open('image2.jpg')				# PIL读取图像

img_opencv_np = np.array(img_cv)						# opencv转为ndarray数组
img_pil_np	  = np.array(img_pil)						# PIL转为ndarray数组

img_pil.show()
cv2.imshow("cv",img_cv)
cv2.waitKey(0)


2、Pillow 图像编码格式

Pytorch中比较常用

  • 读取图片是PIL Image格式,需要进一步转换为np.ndarray类型
  • image.size得到的是(H,W)

Image.fromarray 将 np.array 转化为 PIL 格式



3、Numpy 图像编码格式

image.shape 得到的图像维度:(H,W,C),且通道数是:(B、G、R)



4、Pytorch 训练编码格式

对于 Pytorch 而言,与图像相关的项目,所有的图像读取都是以 [b、c、h、w]格式进行读取操作



5、torchvision.io.read_image

将JPEG或PNG图像读入三维RGB张量。可选地将图像转换为所需的格式。输出张量的值在0到255之间为uint 8。

torchvision.io.read_image(path: str, mode: torchvision.io.image.ImageReadMode = <ImageReadMode.UNCHANGED: 0>) → torch.Tensor

Parameters

  • path (str) –JPEG or PNG 图像地址
  • mode (ImageReadMode) – 图像转换的读取模式。默认值:ImageReadMode.UNHANGED。有关各种可用模式的更多信息,请参见ImageReadMode类。

Returns

  • output (Tensor[C, H ,W] )


#、torchvison.transforms 数据增强

对数据增强时 图像格式必须是 PIL Image.

transforms.Compose([  transforms.RandomHorizontalFlip(),
                      transforms.RandomVerticalFlip(),
                      transforms.RandomRotation(20),
                      transforms.Resize([self.img_size ,self.img_size]),
                      transforms.ToTensor(),
                      transforms.Normalize(mean=[.5], std=[.5] )   ])
  • ToTensor:
    将 PIL / np.ndarray 转换为tensor ,但不支持 torchscript。
    如果PIL图像属于(L,LA,P,I,F,RGB,YCbCr,RGBA,CMYK,1)模式之一,则将[0,255]范围内的PIL图像或 np.ndarray (np.uint8) (HxWxC)转换为 [0.0,1.0] 范围内的浮点张量 (CxHxW)
    在其他情况下,不按比例返回张量

  • transforms.Normalize(mean, std, inplace=False):
    用均值和标准差对张量图像进行归一化【但不支持PIL图像】,因此此操作放在 ToTensor之后; m e a n : ( m e a n [ 1 ] , . . . , m e a n [ n ] ) mean: (mean[1],...,mean[n]) mean:(mean[1],...,mean[n]) and std: ( s t d [ 1 ] , . . , s t d [ n ] ) (std[1],..,std[n]) (std[1],..,std[n]) for n n n channels, o u t p u t [ c h a n n e l ] = ( i n p u t [ c h a n n e l ] − m e a n [ c h a n n e l ] ) / s t d [ c h a n n e l ] output[channel] = (input[channel] - mean[channel]) / std[channel] output[channel]=(input[channel]mean[channel])/std[channel]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViatorSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值