[机器学习]逻辑回归Logistic regression线性多分类逻辑回归

[机器学习]逻辑回归Logistic regression

目的:分类还是回归?经典的二分类算法!

机器学习算法选择:先逻辑回归再用复杂的,能简单还是用简单的

逻辑回归的决策分界:可以是非线性的

Sigmoid函数

公式:g(z)=11+e−zg(z) = \frac{1}{1 + e^{-z}}g(z)=1+ez1

自变量取值为任意实数,值域为[0,1]自变量取值为任意实数,值域为[0,1]自变量取值为任意实数,值域为[0,1]

解释:将任意的输入映射到了[0,1]区间,我们在线性回归中可以得到一个预测值,再将该值映射到Sigmoid函数中,这样就完成了由值到概率的转换,也就是分类任务

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

多分类逻辑回归

eg:
数据集  100×3数据集~~100\times 3数据集  100×3
表示100个样本点,3个特征表示100个样本点,3个特征表示100个样本点,3个特征

θ  3×3\theta ~~3\times 3θ  3×3
表示3个特征,3个分类表示3个特征,3个分类表示3个特征,3个分类

多分类逻辑回归代码实现

# -*- coding: utf-8 -*-
"""
Created on Wed Apr 17 15:59:36 2024

@author: Tom
"""

import numpy as np
from scipy.optimize import minimize
from utils.features import prepare_for_training
from utils.hypothesis import sigmoid



class LogisticRegression:
    def __init__(self,data,labels,polynomial_degree = 0,sinusoid_degree = 0,normalize_data = False):
        """
        1.对数据进行预处理操作
        2.先得到所有的特征个数
        3.初始化参数矩阵
        """
        (data_processed,
         features_mean, 
         features_deviation)  = prepare_for_training(data, polynomial_degree, sinusoid_degree,normalize_data=False)
         
        self.data = data_processed
        self.labels = labels
        # 计算标签数量
        self.unique_labels = np.unique(labels)
        
        self.features_mean = features_mean
        self.features_deviation = features_deviation
        self.polynomial_degree = polynomial_degree
        self.sinusoid_degree = sinusoid_degree
        self.normalize_data = normalize_data
        
        # 计算多少特征
        num_features = self.data.shape[1]
        num_unique_labels = np.unique(labels).shape[0]
        # num_unique_labels 你要做多少类别
        # num_features 特征
        self.theta = np.zeros((num_unique_labels,num_features))
        
    def train(self,max_iterations = 1000):
        # 损失值
        cost_histories = []
        # 特征个数
        num_features = self.data.shape[1]
        # 训练多个二分类模型
        for label_index,unique_label in enumerate(self.unique_labels):
            
            current_initial_theta = np.copy(self.theta[label_index].reshape(num_features,1))
            
            current_labels = (self.labels == unique_label).astype(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值