介绍
大型语言模型不再局限于聊天窗口,它们现在想要有所作为。模型上下文协议 (MCP)标准的出现,为这些代理提供了统一的行动方式。MCP 定义了代理发现和调用外部工具的通用方法,无论该工具是笔记本电脑上的 Shell 命令,还是云端的 SaaS API。
但便利性并非一蹴而就。在你的机器上设置 MCP 服务器,实际上会赋予第三方进程对你公开的每个目录或网络资源的读/写权限。该服务器或驱动它的模型可以覆盖源文件、窃取 SSH 密钥或窃取客户端文档。即使 Docker 的默认runc运行时并非坚不可摧,容器逃逸也会将攻击者暴露在主机内核上。
尽管存在风险,但其采用率仍在激增。Docker 的MCP 目录和工具包于今年春季发布,其中包含 100 多个一键式容器化服务器。它涵盖了从代码重构助手到 PDF 爬虫等各种功能,让开发人员和业余爱好者都能轻松地将“工具模式”添加到本地工作流程中。微软正在将 MCP 支持直接嵌入到 Windows 系统中,这表明代理驱动的自动化即将进入主流桌面领域。
本文将向您展示如何在不(过多)失眠的情况下保持这种速度。我们将探讨为什么在锁定的 Docker 容器中运行 MCP 服务是一个务实的折中方案:快速设置、跨机器可复现,并且(通过一些强化标志)比在裸机上运行 MCP 服务安全得多。到最后,您应该会有一个复制粘贴式的演练,以及一个用于评估您对 AI 工作流的信任程度的心理清单。