简介
如果您正在使用大型语言模型 (LLM) 进行构建,那么您可能已经与检索增强生成 (RAG) 纠结过。它非常适合将外部数据作为 LLM 的基础,但“R”部分——检索——可能很复杂。
我知道我花了好几个小时思考块大小、重叠策略以及选择哪种嵌入模型。还有管理矢量数据库?这可是整个基础设施方面的挑战。
所以,当我偶然发现 OpenAI 最近在他们的 Cookbook 中提出的一种不同的 RAG 方法(一种承诺绕过传统嵌入的方法)时,我这个开发者的大脑突然灵光一闪。我们真的能在没有向量数据库的情况下获得出色的检索结果吗?这个想法真的让人感觉打破了常规。
秘诀似乎在于利用 GPT-4.1 和 Gemini Flash 等新模型的海量上下文窗口。能够同时处理一百万个 token 的模型能够实现全新的工作流程。但上下文窗口大小是唯一起作用的因素吗?
推荐文章
-
《Pytho机器学习之预测温室气体排放 (教程含源码)》 权重1,机器学习
-
《3D系列教程之使用 Python 和 Meshroom 进行 3D 重建教程 快速学习通过照片创建3D模型,并掌握使用Python+Meshroom(摄影测量)生成点云》 权重2,Meshroom类、 Python类、点云类