使用 Langfuse 和 RAGAS 构建强大的 RAG 系统:完整的 Python 实施指南 了解如何使用 Langfuse 可观察性和 RAGAS 指标创建、监控和评估您的 RAG 系统

简介

大家都听说过 RAG 系统。随着人工智能的发展,这一领域当然也取得了进展。RAG 系统将基于访问的方法与生成式人工智能模型相结合,与纯粹的 LLM 解决方案相比,它能够提供更高的准确性、更少的幻觉,并增强可审计性。

但有一点我们不应该忽略。假设你已经构建了一个很棒的系统,并希望将其上线。你如何知道你的系统是否接收到了正确的信息?LLM 生成的响应是否与接收到的内容一致?你如何衡量系统的整体性能并随着时间的推移不断改进它?

这时,可观察性就变得至关重要。本文将介绍如何利用 Langfuse 可观察性集成和 RAGAS 评估指标,搭建完整的 RAG 系统。Langfuse 允许我们监控系统的各个阶段,而 RAGAS 指标则允许我们衡量响应的质量。通过结合这两个强大的工具,我们不仅可以创建一个正常运行的 RAG 系统,还可以创建一个可以持续改进和评估的系统。我们将解释每个组件的重要性,然后深入研究将它们整合在一起的代码。

推荐文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值