简介
大家都听说过 RAG 系统。随着人工智能的发展,这一领域当然也取得了进展。RAG 系统将基于访问的方法与生成式人工智能模型相结合,与纯粹的 LLM 解决方案相比,它能够提供更高的准确性、更少的幻觉,并增强可审计性。
但有一点我们不应该忽略。假设你已经构建了一个很棒的系统,并希望将其上线。你如何知道你的系统是否接收到了正确的信息?LLM 生成的响应是否与接收到的内容一致?你如何衡量系统的整体性能并随着时间的推移不断改进它?
这时,可观察性就变得至关重要。本文将介绍如何利用 Langfuse 可观察性集成和 RAGAS 评估指标,搭建完整的 RAG 系统。Langfuse 允许我们监控系统的各个阶段,而 RAGAS 指标则允许我们衡量响应的质量。通过结合这两个强大的工具,我们不仅可以创建一个正常运行的 RAG 系统,还可以创建一个可以持续改进和评估的系统。我们将解释每个组件的重要性,然后深入研究将它们整合在一起的代码。
推荐文章
-
《3D系列教程之使用 Python 和 Meshroom 进行 3D 重建教程 快速学习通过照片创建3D模型,并掌握使用Python+Meshroom(摄影测量)生成点云》 权重2,Meshroom类、 Python类、点云类