华为昇腾Ascend系列之06 昇腾NPU模型训练,PyTorch的模型迁移与训练流程,将在GPU上训练CNN模型识别手写数字的脚本代码进行修改(教程含源码Ascend 910、Ascend 910B

本文提供了一个GPU到昇腾NPU的模型迁移实例,详细介绍了如何将用于识别手写数字的CNN模型脚本修改以适配昇腾NPU。内容包括昇腾芯片的基础知识、实验环境配置、驱动安装和模型训练流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实战需求

本文提供了一个简单的模型迁移样例,采用了最简单的自动迁移方法,帮助用户快速体验GPU模型脚本迁移到昇腾NPU上的流程,将在GPU上训练CNN模型识别手写数字的脚本代码进行修改,使其可以迁移到昇腾NPU上进行训练。

基础知识

昇腾(HUAWEI Ascend)310 是一款高能效、灵活可编程的人工智能处理器,在典型配置下,半精度(FP16)算力达到 16 TFLOPS,整数精度(INT8)算力达到 8 TOPS,功耗仅为 8W。采用自研华为达芬奇架构,集成丰富的计算单元,提高 AI 计算完备度和效率,进而扩展该芯片的适用性。全 AI 业务流程加速,大幅提高 AI 全系统的性能,有效降低部署成本。

昇腾(HUAWEI Ascend)910 是业界算力最强的 AI 处理器,基于自研华为达芬奇架构 3D Cube 技术,实现业界最佳 AI 性能与能效,架构灵活伸缩,支持云边端全栈全场景应用。算力方面,昇腾 910 完全达到设计规格,半精度(FP16)算力达到 320TFLOPS,
整数精度(INT8)算力达到 640 TOPS,功耗 310W。

请添加图片描述

关键词

  • 昇腾
  • 昇腾Ascend
  • 昇腾NPU(Neural-Network Processing Unit,神经网络处理器单元)驱动固件
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值