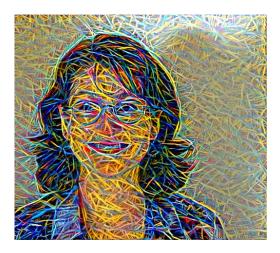
TensorFlow on Cloud ML

January 12, 2017 Al Frontiers

Amy Unruh, Eli Bixby, Yufeng Guo

Your guides



Amy amyu@google.com @amygdala Eli elibixby@google.com @eli_bixby Yufeng yfg@google.com @YufengG

bit.ly/tensorflow-workshop

http://bit.ly/tf-workshop-slides

Welcome and Logistics

Slides: <u>http://bit.ly/tf-workshop-slides</u> Alternate link: <u>https://storage.googleapis.com/amy-jo/talks/tf-workshop.</u> <u>pdf</u>

GitHub: <u>https://github.com/amygdala/tensorflow-workshop</u>

http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop

Agenda

- Intro
 - Setup time, Introduction to Tensorflow and Cloud ML
- Warmup: XOR
- Wide and Deep
 - Use the "tf.learn" API to jointly train a wide linear model and a deep feed-forward neural network.
- Word2vec
 - Custom Estimators, learning and using word embeddings, and the embeddings visualizer
- Transfer learning and online prediction
 - learn your own image classifications by bootstrapping the *Inception v3* model, then use the Cloud ML API for prediction

http://bit.ly/tf-workshop-slides

5

TensorFlow on Cloud ML Workshop Setup

• For a cloud-based setup, follow these instructions: http://bit.ly/aifrontiers-cloudml-install

Or to set up on your laptop:

- Clone or download this repo: <u>https://github.com/amygdala/tensorflow-workshop</u>
- Follow the <u>installation instructions in INSTALL.md</u>.
 You can run the workshop exercises in a **Docker** container, or alternately install and use a **virtual environment**.

http://bit.ly/tf-workshop-slides

If you're done, visit playground.tensorflow.org

6

Workshop Setup addendum

- If you set up a docker container yesterday, then **in the container**, do:
 - \circ cd
 - o python download_git_repo.py

http://bit.ly/tf-workshop-slides

What's TensorFlow?

(and why is it so great for ML?)

- Open source Machine Learning library
- Especially useful for **Deep** Learning
- For research and production
- Apache 2.0 license
- tensorflow.org

Open Source Models github.com/tensorflow/models

Inception

An Alaskan Malamute (left) and a Siberian Husky (right). Images from Wikipedia.

https://research.googleblog.com/2016/08/improving-inception-and-image.html

Show and Tell

https://research.googleblog.com/2016/09/show-and-tell-image-captioning-open.html

Text Summarization

Original text

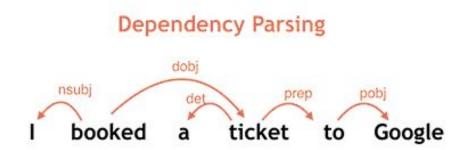
• Alice and Bob took the train to visit the zoo. They saw a **baby giraffe, a lion, and a flock of colorful tropical birds**.

Abstractive summary

• Alice and Bob visited the zoo and saw **animals and birds**.

https://research.googleblog.com/2016/08/text-summarization-with-tensorflow.html

Parsey McParseface



https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

What's TensorFlow?

A multidimensional array.

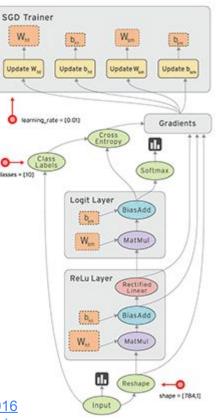
TensorFlow

A graph of operations.

Operates over **tensors**: *n*-dimensional arrays Using a **flow graph**: data flow computation framework

- Flexible, intuitive construction
- automatic differentiation
- Support for threads, queues, and asynchronous computation; <u>distributed runtime</u>
- Train on CPUs, GPUs, ...and coming soon, **TPUS**...
- Run wherever you like

https://cloudplatform.googleblog.com/2016 /05/Google-supercharges-machine-learnin g-tasks-with-custom-chip.html



http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop

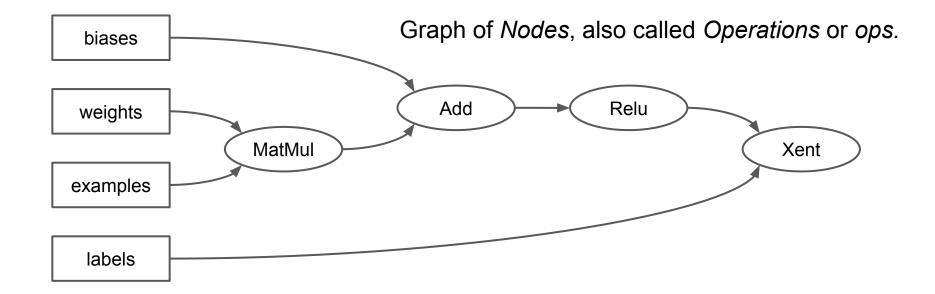
Tensors - generalized matrices

Tensors have a Shape that's described with a vector.

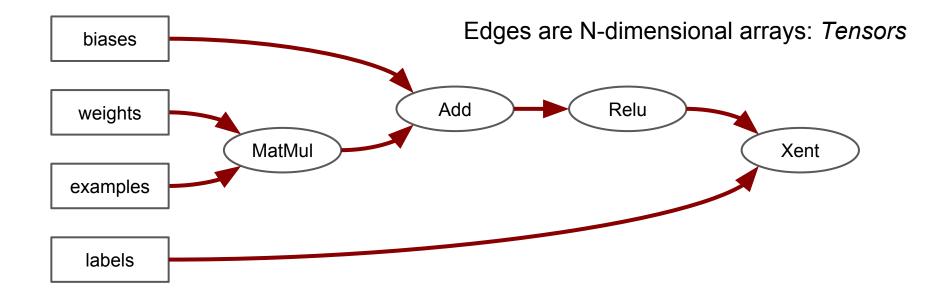
[10000, 256, 256, 3]

- 10000 Images
- Each Image has 256 Rows
- Each Row has 256 Pixels
- Each Pixel has 3 channels (RGB)

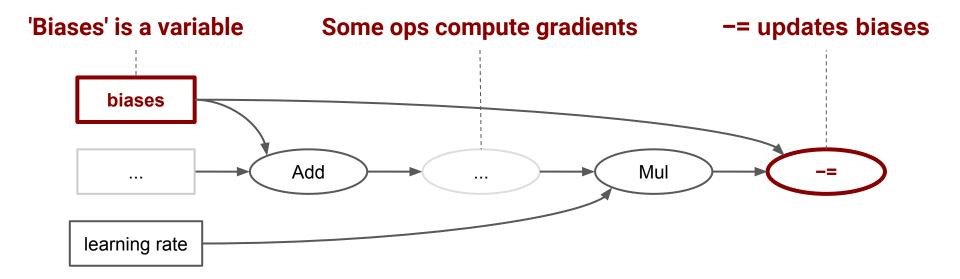
Computation is a dataflow graph



Computation is a dataflow graph

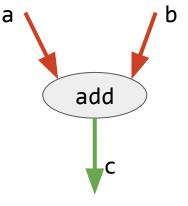


Computation is a dataflow graph

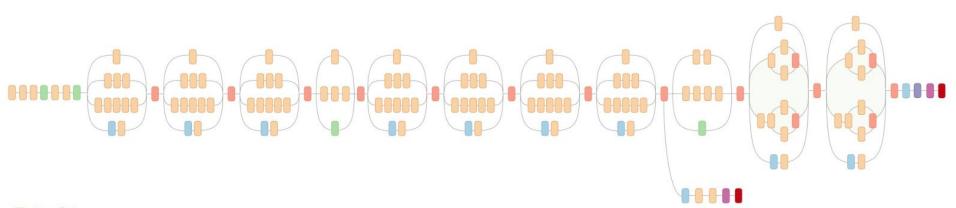


Build a graph; then run it.

$$c = tf.add(a, b)$$



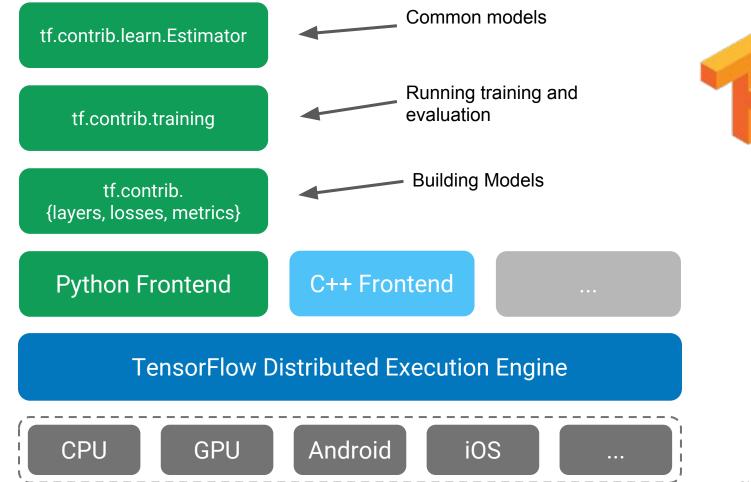
session = tf.Session()
value_of_c = session.run(c, {a=1, b=2})



- ConvolutionAvgPoolMaxPool
- Concat
- Dropout
- Fully connected
- Softmax

From: http://googleresearch.blogspot.com/2016_03_01_archive.html

bit.ly/tensorflow-workshop



24

TensorFlow API Documentation: https://www.tensorflow.org/api_docs/

Cloud ML: Scaling TensorFlow

Many machine-learning frameworks can handle toy problems

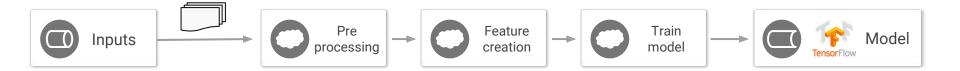
Google Cloud

Proprietary + Confidential

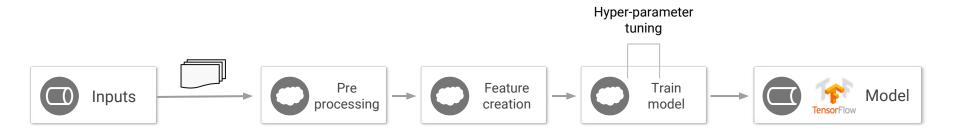
As your data size increases, batching and distribution become important

Proprietary + Confidential

Input necessary transformations



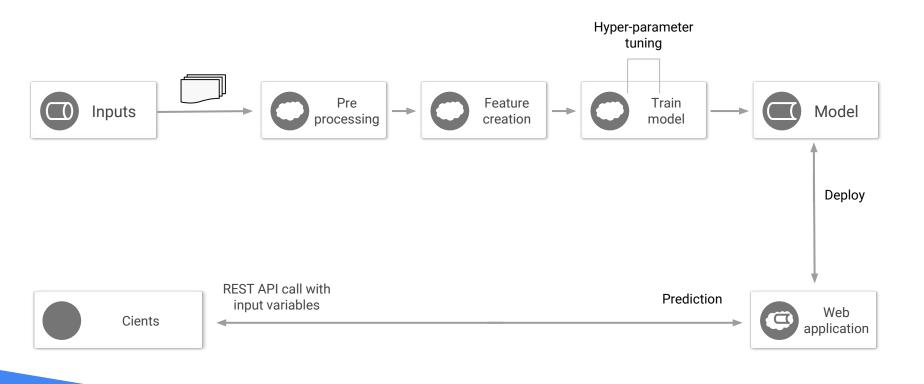
Hyperparameter tuning might be nice



Google Cloud

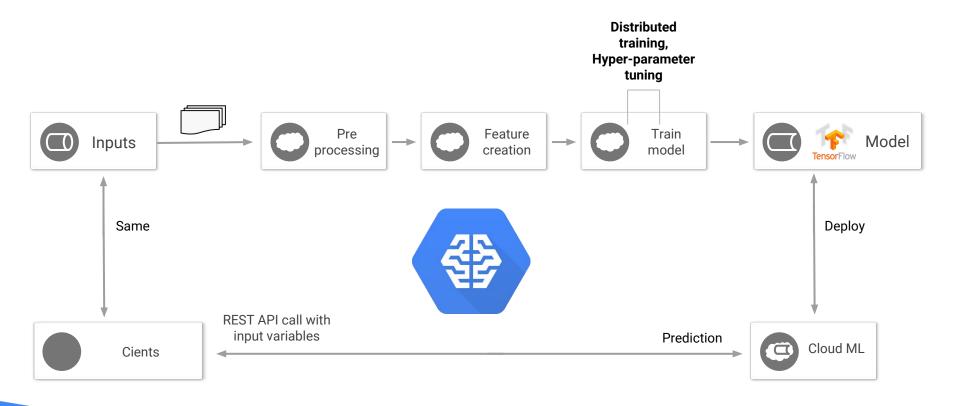
Proprietary + Confidential

Need to autoscale prediction code



Google Cloud

Cloud machine learning-repeatable, scalable, tuned



Google Cloud

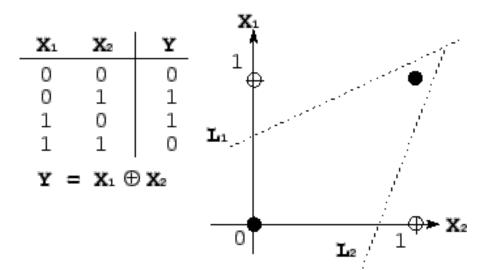
A first look at some code: Creating and running a TensorFlow graph to learn **XOR**

Warmup Lab: Learning to Learn XOR

Workshop section: xor

XOR: A Minimal Training Example

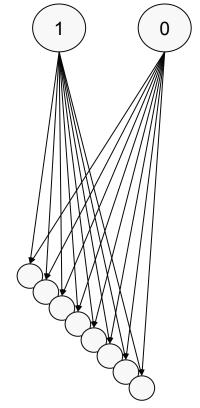
- Simple
- No need to do data manipulation
- Can't learn with a single linear regression
- Can use TensorFlow's standard gradient descent tools to learn it.
- XOR cannot be learned without artificial non-linearity, and at least one hidden layer



http://bit.ly/tf-workshop-slides

XOR: Building The Graph

```
def make graph(features,
               labels,
               num hidden=8):
  hidden weights = tf.Variable(
       tf.truncated_normal(
           [2, num hidden],
           stddev=1/math.sqrt(2)))
  # Shape [4, num hidden]
  hidden activations = tf.nn.relu(
       tf.matmul(features, hidden weights))
```



bit.ly/tensorflow-workshop

http://bit.ly/tf-workshop-slides

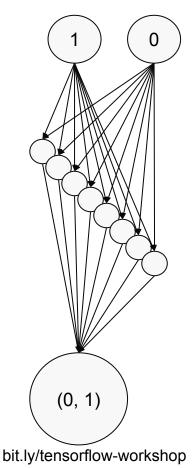
XOR: Building The Graph

```
output_weights = tf.Variable(tf.truncated_normal(
      [num_hidden, 1],
      stddev=1/math.sqrt(num_hidden)
))
```

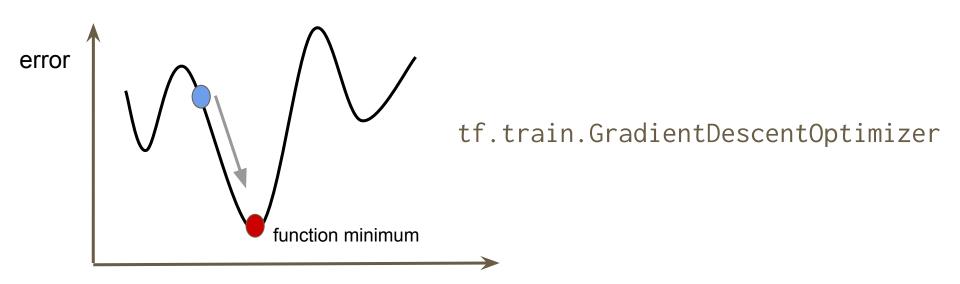
```
# Shape [4, 1]
logits = tf.matmul(hidden_activations,
output_weights)
```

```
# Shape [4]
predictions = tf.sigmoid(tf.squeeze(logits))
```

http://bit.ly/tf-workshop-slides



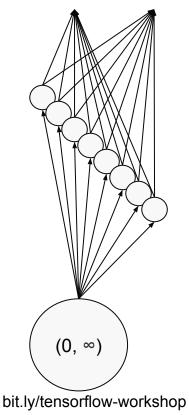
Minimize loss: optimizers



parameters (weights, biases)

XOR: Building The Graph

```
loss = tf.reduce_mean(
tf.square(predictions - tf.to_float(labels)))
```



Notebook Interlude

XOR: Building The Graph For Real

```
xy, y_ = # numpy truth table
graph = tf.Graph()
with graph.as_default():
   features = tf.placeholder(tf.float32, shape=[4, 2])
   labels = tf.placeholder(tf.int32, shape=[4])
   train_op, loss, gs = make_graph(features, labels)
   init = tf.global variables initializer()
```

XOR: Running The Graph

```
with tf.Session(graph=graph) as sess:
   while step < num_steps:
   _, step, loss_value = sess.run(
      [train_op, gs, loss],
      feed_dict={features: xy, labels: y_}
   )
```

42

Common TF NN pattern:

- Create the model (inference) graph
- Define the **loss function**
- specify the **optimizer** and learning rate
 → training step op
- In a training loop, call
 sess.run([train_step,..], feed_dict={....})
 where feed dict maps inputs to placeholder values

Monitoring With TensorBoard: xor summaries

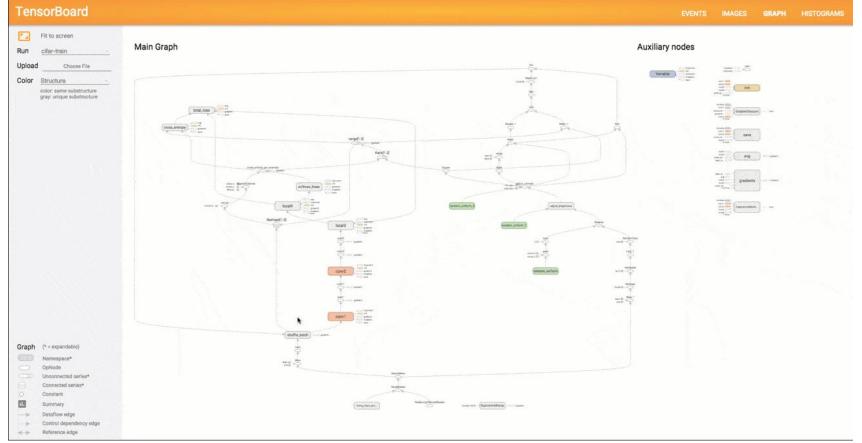
Getting information about your models and training runs:

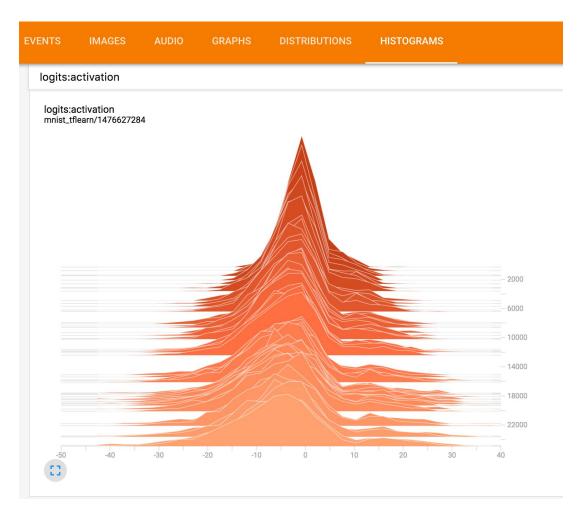
Introducing **TensorBoard**

tensorboard --logdir=<logdir>

(reads subdirs recursively! Great for multiple runs)

Tensorboard: Graph Visualization





Related concepts / resources

- Softmax Function: <u>http://bit.ly/softmax</u>
- Loss Function: <u>http://bit.ly/loss-fn</u>
- Gradient Descent Overview:

http://bit.ly/gradient-descent

 Training, Testing, & Cross Validation: http://bit.ly/ml-eval

Break (10 min)

Up next: Using the TensorFlow High-level APIs

"Wide and Deep": Using the TensorFlow High-level APIs

TensorFlow toolkit hierarchy

High-level "out-of-box" API Inspired by scikit-learn

Components useful when building custom NN models

Python API gives you full control

C++ API is quite low-level

TF runs on different hardware

tf.learn

tf.layers, tf.losses, tf.metrics

Tensorflow Python

Tensorflow C++

CPU GPU TPU Android

google.cloud.ml

http://scikit-learn.org/

Many levels of abstraction

Choose the right one for you:

- Layers, losses, metrics
- Training/Eval loop functions
- Estimator (BaseEstimator)
 - Any model you want, but must separate input from the rest of the model
- Predefined estimators
 - LinearClassifier, DNNClassifier,

DNNRegressor, ... DNNLinearCombinedClassifier

• Limited configuration options: feature columns, metrics.

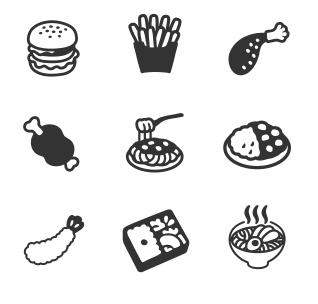
Typical structure

- Load data
- Set up feature columns
- Create your model
- Run the training loop (fit the model)
- Evaluate your model's accuracy (and other metrics)
- (optional) Predict new examples

tf.learn high-level structure

```
# data already loaded into 'data sets'
feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(
    data sets.train.images)
model = tf.contrib.learn.DNNClassifier(
        [layer2 hidden units, layer1 hidden units],
        feature columns=feature columns,
        n classes=NUM CLASSES
model.fit(x=data sets.train.images, y=data sets.train.labels)
model.evaluate(x=data_sets.eval.images, y=data_sets.eval.labels)
model.predict(x=some new images)
```

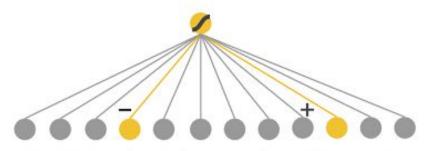

Motivation - a "magical" food app



Launch and Iterate!

- Naive character matching
- Say "Fried chicken"
- Get "Chicken Fried Rice"
- Oops. Now what?
- Machine learning to the rescue!

v2.0: memorize all the thingsTrain a linear TF model



AND(query="fried chicken", item="chicken fried rice")

AND(query="fried chicken", item="chicken and waffle")

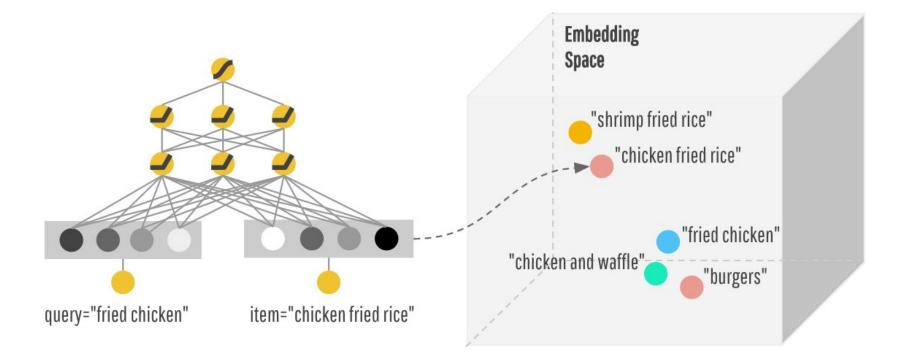
• Your app is gaining traction!

Problem: Your users are bored!

- Too many 🌮 & waffles
- Show me similar, but different food

Your users are picky 🙊

v3.0: More generalized recommendations for all



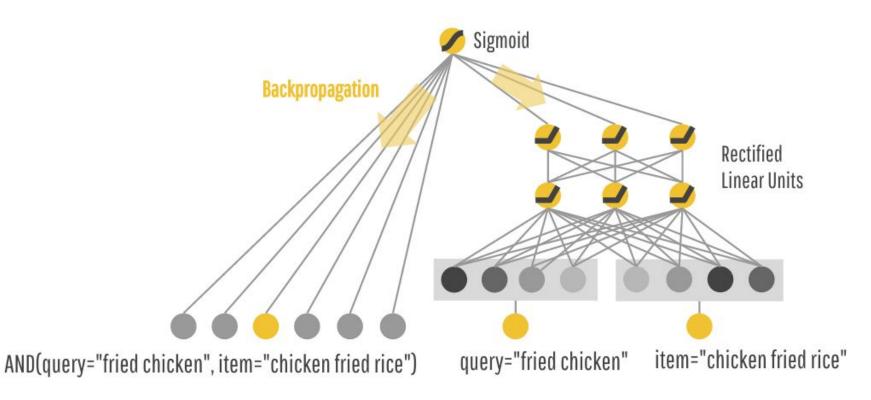
No good deed goes unpunished

- Some recommendations are "too general"
 - Irrelevant dishes are being sent
- Your users are still picky 👁

No good deed goes unpunished

- 2 types of requests: specific and general
- "iced decaf latte with nonfat milk" != "hot latte with whole milk"
- "seafood" or "italian food" or "fast food"
- How to balance this?

v4.0: Why not both?



Lab: Wide and Deep: Using TensorFlow's high-level APIs

Workshop section: wide_n_deep

- Just as exciting as chicken and waffles
- **Task**: predict the probability that the individual has an annual income of over 50,000 dollars
- Over 32k training examples
- Was extracted from the 1994 US Census by Barry Becker.

Column Name	Туре	Description
age	Continuous	The age of the individual
workclass	Categorical	The type of employer the individual has (government, military, private, etc.).
fnlwgt	Continuous	The number of people the census takers believe that observation represents (sample weight). This variable will not be used.
education	Categorical	The highest level of education achieved for that individual.
education_num	Continuous	The highest level of education in numerical form.
marital_status	Categorical	Marital status of the individual.

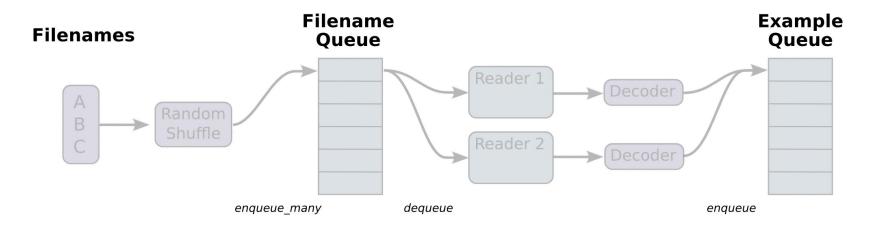
Column Name	Туре	Description
occupation	Categorical	The occupation of the individual.
relationship	Categorical	Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
race	Categorical	White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
gender	Categorical	Female, Male.
capital_gain	Continuous	Capital gains recorded.
capital_loss	Continuous	Capital Losses recorded.

Column Name	Туре	Description
hours_per_week	Continuous	Hours worked per week.
native_country	Categorical	Country of origin of the individual.
income_bracket	Categorical	">50K" or "<=50K", meaning whether the person makes more than \$50,000 annually.

Typical structure

- Load data
- Set up feature columns
- Create your model
- Run the training loop (fit the model)
- Evaluate your model's accuracy (and other metrics)
- (optional) Predict new examples

(File) Queues In TensorFlow



http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop

File Queues

```
filename_queue = tf.train.string_input_producer([filename])
```

```
reader = tf.TextLineReader()
```

key, value = reader.read_up_to(filename_queue,

```
num_records=BATCH_SIZE)
```

columns = tf.decode_csv(value, record_defaults=record_defaults)

Input data format

features = {

'hours_per_week': array([16, 45, 50], dtype=int32),

'relationship': SparseTensorValue(indices=array([[0, 0],[1, 0],[2, 0]]), values=array(['
Not-in-family', ' Husband', ' Not-in-family'], dtype=object), shape=array([3, 1])),

```
'gender': SparseTensorValue(indices=array([[0, 0],[1, 0],[2, 0]]), values=array([' Female', '
Male', ' Female'], dtype=object), shape=array([3, 1])),
```

```
'age': array([49, 52, 31], dtype=int32)
...
}
labels = [0 1 1]
```

Input data format

features, income_bracket = dict(zip(COLUMNS, columns[:-1])), columns[-1]

for sparse tensors

for feature_name in CATEGORICAL_COLUMNS:

features[feature_name] = tf.expand_dims(features[feature_name], -1)

convert ">50K" => 1 and "<=50K" => 0

income_int = tf.to_int32(tf.equal(income_bracket, " >50K"))

return features, income_int

Typical structure

- Load data
- Set up feature columns
- Create your model
- Run the training loop (fit the model)
- Evaluate your model's accuracy (and other metrics)
- (optional) Predict new examples

Feature columns

Sparse base columns.


```
gender = tf.contrib.layers.sparse_column_with_keys(
```

```
column_name="gender", keys=["female", "male"])
```

education = tf.contrib.layers.sparse_column_with_hash_bucket(
 "education", hash_bucket_size=1000)

```
• • •
```

Continuous base columns.

age = tf.contrib.layers.real_valued_column("age")

• • •

Feature columns continued

Transformations.

. . .

age_buckets = tf.contrib.layers.bucketized_column(
 age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
education_occupation = tf.contrib.layers.crossed_column(
 [education, occupation], hash_bucket_size=int(1e4))

embeddings for deep learning

tf.contrib.layers.embedding_column(workclass, dimension=8)

Typical structure

- Load data
- Set up feature columns
- Create your model
- Run the training loop (fit the model)
- Evaluate your model's accuracy (and other metrics)
- (optional) Predict new examples

Make the model (Estimator)

m = tf.contrib.learn.DNNLinearCombinedClassifier(
 model_dir=model_dir,
 linear_feature_columns=wide_columns,
 dnn_feature_columns=deep_columns,
 dnn_hidden_units=[100, 70, 50, 25])

Typical structure

- Load data
- Set up feature columns
- Create your model
- Run the training loop (fit the model)
- Evaluate your model's accuracy (and other metrics)
- (optional) Predict new examples

Fit and Evaluate

m.fit(input fn=generate input fn(train file), steps=1000) results = m.evaluate(input fn=generate input fn(test file), steps=1) print('Accuracy: %s' % results['accuracy'])

Checkpointing and reloading a trained model

• Everything is stored in the model_dir folder

m = tf.contrib.learn.DNNLinearCombinedClassifier(
 model_dir=model_dir,
 linear_feature_columns=wide_columns,
 dnn_feature_columns=deep_columns,
 dnn_hidden_units=[100, 70, 50, 25])

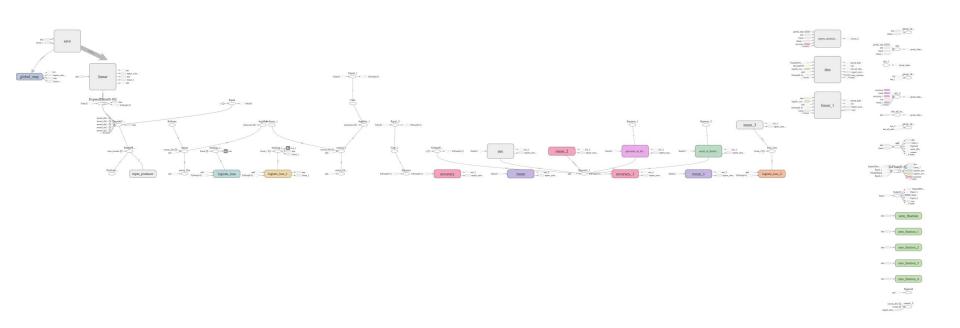
• If you run multiple fit operations on the same Estimator and supply the same directory, training will resume where it left off.

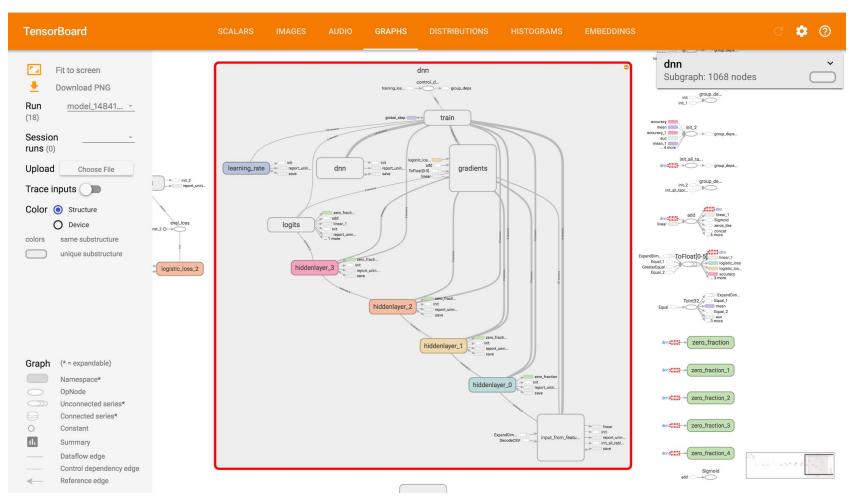
http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop

To the code!

Time for a vision test





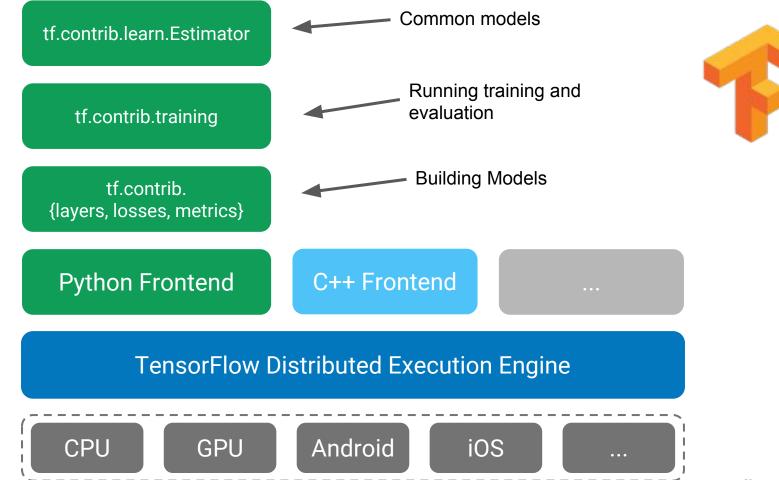
RECAP: what we've done so far

So far we've...

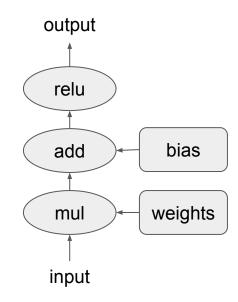
- Learned and used common patterns for defining and training TensorFlow model graphs
- Used TensorFlow's high-level APIs
- Discussed the merits of wide linear models and deep neural networks
- Introduced queues
- Created summary info and introduced **TensorBoard**

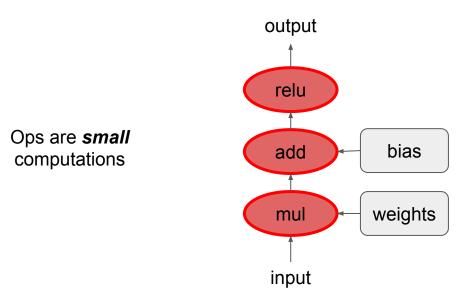
Break (10 min)

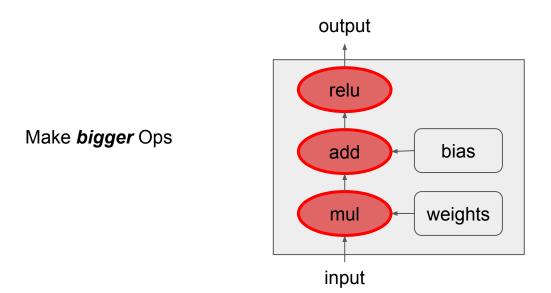
Up next: Building Word embeddings and Custom Estimators

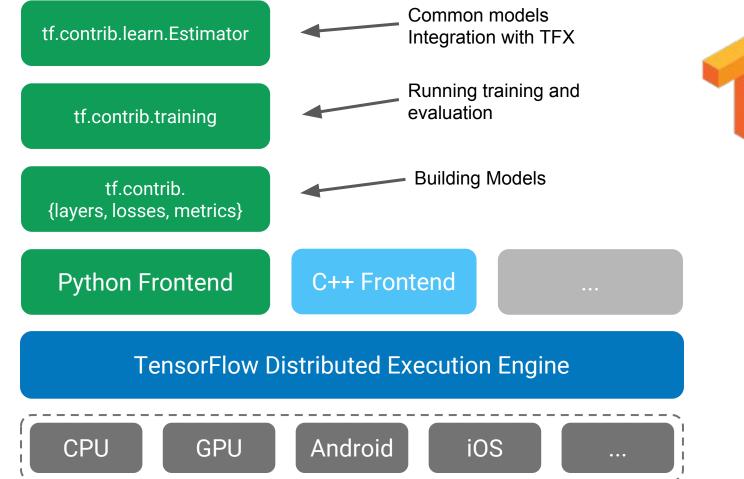


89

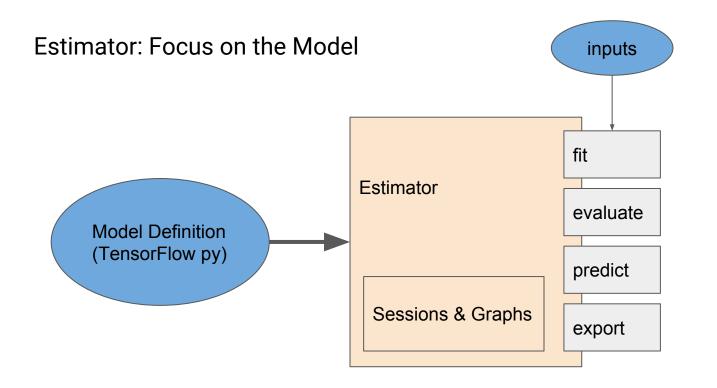








93



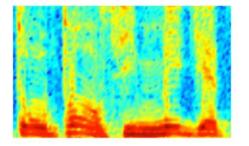
But, what if there is not a pre-baked Estimator for your model?

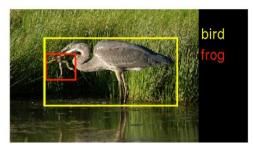
Word2vec: Learning and using word embeddings, Building Custom Estimators

What is an embedding?

AUDIO

TEXT





0 0 0 0.2 0 0.7 0 0 0

Audio Spectrogram

DENSE

Image pixels

DENSE

Word, context, or document vectors

http://bit.ly/tf-workshop-slides

Word embeddings

- Word data (and categorical data in general) can't be modeled as dense data
- The **word2vec** model attempts to "compress" sparse "word-indices" into dense "word-vectors."
- These word vectors tend to have neat properties!

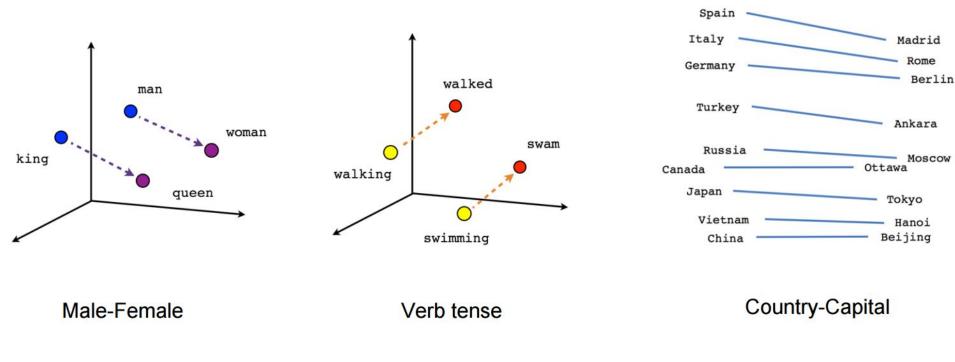
NIPS paper: Mikolov et al.: <u>http://bit.ly/word2vec-paper</u>

model.nearby([b'cat'])

b'cat'	1.0000
b'cats'	0.6077
b'dog'	0.6030
b'pet'	0.5704
b'dogs'	0.5548
b'kitten'	0.5310
b'toxoplasma'	0.5234
b'kitty'	0.4753
b'avner'	0.4741
b'rat'	0.4641
b'pets'	0.4574
b'rabbit'	0.4501
b'animal'	0.4472
b'puppy'	0.4469
b'veterinarian'	0.4435
b'raccoon'	0.4330
b'squirrel'	0.4310

http://bit.ly/tf-workshop-slides

model.analogy(b'cat', b'kitten', b'dog') Out[1]: b'puppy'



https://www.tensorflow.org/versions/r0.8/images/linear-relationships.png

http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop

Making word2vec scalable

- Instead of a full probabilistic model... Use logistic regression to discriminate target words from imaginary (noise) words.
- <u>Noise-contrastive estimation (NCE)</u>
 <u>loss</u>
 - tf.nn.**nce_loss()**
 - Scales with number of noise words



https://www.tensorflow.org/versions/r0.8/images/nce-nplm.png

Skip-Gram model (predict source context-words from target words)

Context/target pairs, window-size of 1 in both directions:

the quick brown fox jumped over the lazy dog ... → ([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...

Skip-gram model (predict source context-words from target words)

Context/target pairs, window-size of 1 in both directions:

```
the quick brown fox jumped over the lazy dog ... →
([the, brown], quick), ([quick, fox], brown), ([brown, jumped], fox), ...
```

Input/output pairs:

(quick, the), (quick, brown), (brown, quick), (brown, fox), ...

Typically optimize with stochastic gradient descent (SGD) using minibatches

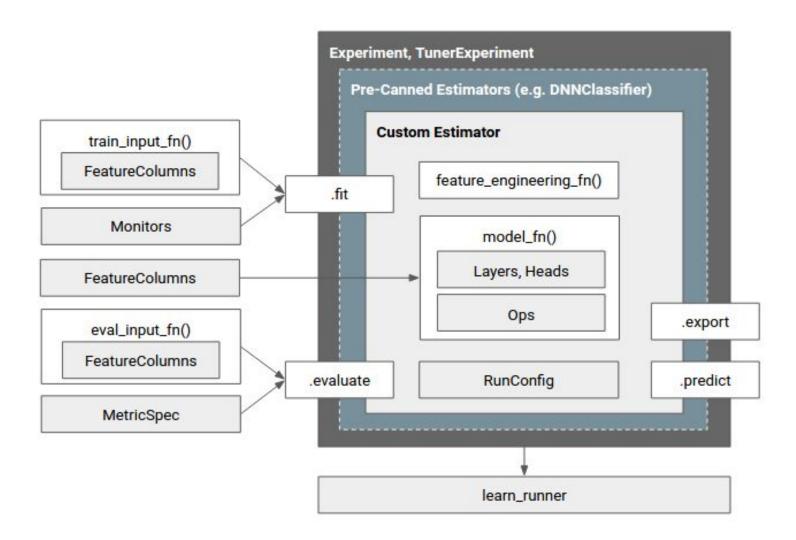
Custom Estimator:

- model_fn: Constructs the graph given features, labels, and a "mode"
- input_fn: Constructs a graph to read input tensors from files using a QueueRunner

Why Is Word2Vec a good example problem?

- Complex data input (generate skipgrams).
- Different data input for training and inference (indexed words vs. text words).
- Different computation graph for training and inference.
- Benefits from sophisticated distribution primitives.
- Can use cool new TensorBoard tools! (Embedding Visualizer)

Experiment and learn_runner



Experiment

Encapsulates all of the information to run an estimator:

- Training data locations \bullet
- Evaluation data locations
- Estimator
- Misc training loop information: \bullet
 - How often should we evaluate? \bigcirc
 - What metrics should we use? Ο
 - How much computational power should we spend Ο evaluating?

learn_runner

Runs an Experiment in either single worker or distributed mode depending on clues from the environment:

>>> config =

json.loads(os.environ.get('TF_CONFIG'))
Two Important Pieces of Information:

• Where is everyone else?

```
>>> print(config['cluster'])
{'master': ['localhost:0'], 'ps':
['localhost:1', 'localhost:2'], 'worker':
['localhost:3', 'localhost:4']}
```

• Who am I?

```
>>> print(config['task'])
{'type': 'worker', 'index': 1}
```


Lab: word2vec: learning and using word embeddings

Workshop section: word2vec

 \odot

Some Code Highlights

Conditional Graph Construction

```
def model fn(inputs, context indices, mode):
  if mode == ModeKeys.INFER:
    sparse index tensor = tf.string split(
        [tf.read_file(vocab_file)], delimiter='\n')
    . . .
    reverse index = tf.contrib.lookup.HashTable(
        tf.contrib.lookup.KeyValueTensorInitializer(
            index tensor,
            tf.constant(range(vocab_size), dtype=tf.int64)
        ), 0)
    target indices = reverse index.lookup(inputs)
  else:
```

Queues to broadcast tensors across batches

```
range_queue = tf.train.range_input_producer(
    num_windows,
    shuffle=False,
    capacity=windows_per_batch * 2,
    num_epochs=num_epochs
)
indices = range queue.dequeue many(windows per batch)
```

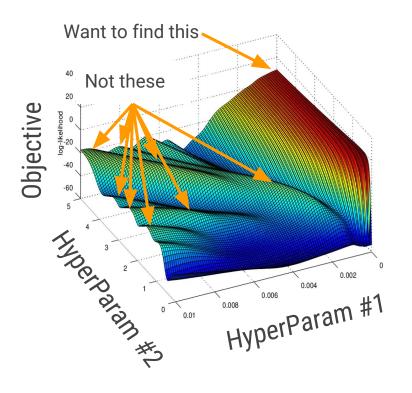
Variable Partitioning

```
with tf.device(tf.train.replica device setter()):
  with tf.variable scope('nce',
                         partitioner=tf.fixed size partitioner(
                         num partitions)):
        embeddings = tf.get variable(
            'embeddings',
            shape=[vocab size, embedding size],
            dtype=tf.float32,
            initializer=tf.random uniform initializer(-1.0, 1.0)
```

Hyperparameter Tuning

Automatically tune your model with HyperTune

- Automatic hyperparameter tuning service
- Build better performing models faster and save many hours of manual tuning
- Google-developed search algorithm efficiently finds better hyperparameters for your model/dataset
- One line of code: tf.summary.scalar('training/hptuning/ metric', my_metric_tensor)



Break (10 min)

Up next: Transfer Learning and Online Prediction Transfer Learning (using the *Inception v3* model) and Online Prediction

Transfer Learning

• The <u>Cloud Vision API</u> is great...

...but what if you want to identify more personal/specialized image categories?

• It turns out that we can do this without needing too much data or training time.

Transfer Learning

- We can 'bootstrap' an existing model to reduce the effort needed to learn something new.
- we will use an *Inception v3* architecture model trained on ImageNet images:
 - use values generated from its penultimate "bottleneck" layer
 - train a new top layer that can recognize other classes of images.

Hug?

Don't Hug?

http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop

Okay, how did we do that?

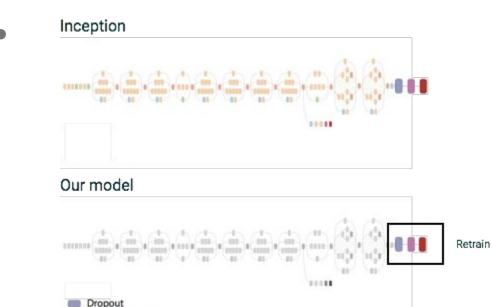
Our steps:

• Do image **pre-processing** using the Inception v3 model to get image bottleneck embeds: these express useful high-level image features

• **Train** a small model that sits "on top", taking the embeds as input

- Tell Cloud ML that we want to use and **serve our trained model**.
- Use the **Cloud ML API for online prediction** with the model

Bootstrapping with the Inception model



http://bit.ly/tf-workshop-slides

Fully connected Softmax

bit.ly/tensorflow-workshop

Our steps:

- Do image **pre-processing** using the Inception v3 model to get image bottleneck embeds: these express useful high-level image features
 - We'll use **Apache Beam (Cloud Dataflow)** for this
- **Train** a small model that sits "on top", taking the embeds as input
 - We'll do this **on Cloud ML**
- Tell Cloud ML that we want to use and **serve our trained model**.
- Use the **Cloud ML API for online prediction** with the model

Lab: Transfer Learning: Bootstrapping the Inception v3 model to learn whether objects are "huggable" or not + making predictions using the Cloud ML API

Workshop section: transfer_learning/cloudml

Generating the embeddings

```
checkpoint_path = (
    'gs://cloud-ml-data/img/flower_photos/inception_v3_2016_08_28.ckpt')
```

```
def restore_from_checkpoint(self, checkpoint_path):
    # Get all variables to restore.
    all_vars = tf.contrib.slim.get_variables_to_restore(
        exclude=['InceptionV3/AuxLogits', 'InceptionV3/Logits', 'global_step'])
    saver = tf.train.Saver(all_vars)
    saver.restore(self.tf_session, checkpoint_path)
```

Generating the embeddings

```
def build graph(self):
  """Returns:
    input jpeg: A tensor containing raw image bytes as the input layer.
    embedding: The embeddings tensor, that will be materialized later.
  ......
  input jpeg = tf.placeholder(tf.string, shape=None)
  ... add some image conversion ops...
  inception input = munged image
  # Build Inception layers, which expect a tensor of type float from [-1, 1)
  # and shape [batch_size, height, width, channels].
  with slim.arg scope(inception.inception v3 arg scope()):
    _, end_points = inception.inception_v3(inception_input, is_training=False)
  embedding = end_points['PreLogits']
  return input_jpeg, embedding
```

Generating the embeddings

def calculate_embedding(self, batch_image_bytes):

"""Get the embeddings for a given JPEG image.

Args:

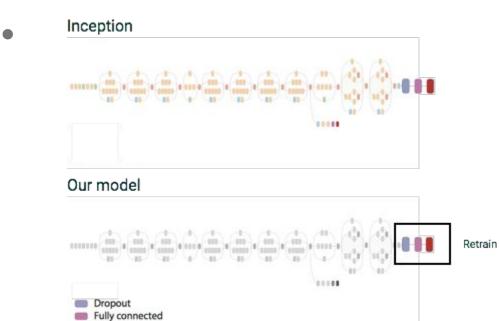
```
batch_image_bytes: As if returned from [ff.read() for ff in file_list].
Returns:
```

```
The Inception embeddings (bottleneck layer output)
```

```
return self.tf_session.run(
    self.embedding, feed_dict={self.input_jpeg: batch_image_bytes})
```

Lab Step 1: Deploy the pre-processing pipeline

Bootstrapping with the Inception model: building our own model



Softmax

http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop

Building our own model

- Build model graph conditionals for train, evaluate, and predict
 - The prediction part will need to know how to generate the embeds
- Using "tf.layers" makes it easy to build the graph

```
def add final training ops(
    self,embeddings, all_labels_count, bottleneck tensor size,
     hidden_layer_size=BOTTLENECK_TENSOR_SIZE / 4, dropout_keep_prob=None):
    with tf.name scope('input'):
      bottleneck input = tf.placeholder with default(
          embeddings, shape=[None, bottleneck tensor size],
          name='ReshapeSqueezed')
      bottleneck with no gradient = tf.stop gradient(bottleneck input)
      with tf.name scope('Wx plus b'):
        hidden = layers.fully connected(bottleneck with no gradient,
                                        hidden layer size)
        if dropout keep prob:
          hidden = tf.nn.dropout(hidden, dropout keep prob)
        logits = layers.fully connected(
            hidden, all labels count, activation fn=None)
    softmax = tf.nn.softmax(logits, name='softmax')
    return softmax, logits
```

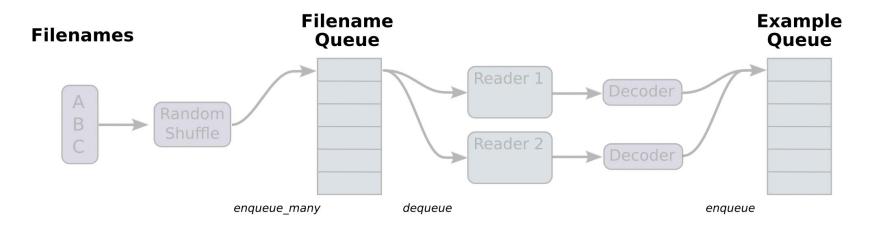
Lab Step 2: Train our model on Cloud ML

TFRecords and Scalable I/O

What are TFRecords?

- Binary (protobuf) format
- Written and read by TensorFlow via gRPC
- Read in via input_fns which are part of the
 - TensorFlow graph

Queues In TensorFlow!



http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop

Lab Step 3: Use the trained model for prediction

Exporting the trained model for prediction

- gcloud beta ml models create <model_name> gcloud beta ml models list
- gcloud beta ml versions set-default <version_name> \
 --model <model_name>

Making online predictions

- Using the Cloud ML API (and the Google API client libraries)

Putting it all together: back to our demo!

Wrap up and Q&A

Eli elibixby@google.com @eli_bixby

Yufeng yfg@google.com @YufengG

Amy amyu@google.com @amygdala

Where to go for more (an incomplete list..)

- <u>http://tensorflow.org</u> : API, tutorials, resources...
- TensorFlow whitepaper: <u>http://bit.ly/tensorflow-wp</u>
- TensorFlow models: http://bit.ly/tensorflow-models
- Deep Learning Udacity course: <u>http://bit.ly/udacity-tensorflow</u>
- <u>http://www.deeplearningbook.org/</u>
- Neural Networks Demystified (video series): <u>http://bit.ly/nn-demystified</u>
- Gentle Guide to Machine Learning: <u>http://bit.ly/gentle-ml</u>
- Some more TensorFlow tutorials :<u>https://github.com/pkmital/tensorflow_tutorials</u>

Thank you!

Amy amyu@google.com @amygdala

 \odot

Eli elibixby@google.com @eli_bixby Yufeng yfg@google.com @YufengG

Google Cloud Platform

Thank you!

Le fin

http://bit.ly/tf-workshop-slides

bit.ly/tensorflow-workshop