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The normal Normal distribution

We like it!

• Nice shape.

• Named after Gauss. Decorated the 10 DM bill.

• We know it. Passed the exam.
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Why it is right.

It is given by mathematical theory.

• Adding normal random variables gives a normal sum.

• Linear combinations Y = α0 + α1X1 + α2X2 + ...

remain normal.

• −→ Means of normal variables are normally distributed.

• Central Limit Theorem: Means of non-normal variables

are approximately normally distributed.

• −→ “Hypothesis of Elementary Errors”:

If random variation is the sum of many small random effects,

a normal distribution must be the result.

• Regression models assume normally distributed errors.
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Is it right?

Mathematical statisticians believe(d) that it is prevalent in Nature.

Well, it is not. Purpose of this talk: What are the consequences?

1. Empirical Distributions

2. Laws of Nature

3. Logarithmic Transformation, the Log-Normal Distribution

4. Regression

5. Advantages of using the log-normal distribution

6. Conclusions
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1. Empirical Distributions

Measurements:

size, weight, concentration, intensity, duration, price, activity

All > 0 −→ “amounts” (John Tukey)

Example: HydroxyMethylFurfurol (HMF) in honey (Renner 1970)
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Measurements:

size, weight, concentration, intensity, duration, price, activity

All > 0 −→ “amounts”

Distribution is skewed: left steep, right flat, skewness > 0
unless coefficient of variation cv(X) = sd(X)/E(X) is small.

Other variables may have other ranges and negative skewness.

They may have a normal distribution.

They are usually derived variables, not original measurements.

Any examples?

Our examples: Position in space and time, angles, directions. That’s it!

For some, 0 is a probable value: rain, expenditure for certain goods, ...

pH, sound and other energies [dB] −→ log scale!
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The 95% Range Check

For every normal distribution, negative values have a probability > 0.

−→ normal distribution inadequate for positive variables.

Becomes relevant when 95% range x± 2σ̂ reaches below 0.

Then, the distribution is noticeably skewed.
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2. Laws of Nature

(a) Physics E = m · c2

Stopping distance s = ·v2/(2 · a) ; Velocity v = F · t/m
Gravitation F = G ·m1 ·m2/r

2

Gas laws p · V = n ·R · T ; R = p0 · V0/T0

Radioactive decay Nt = N0 · e−kt

(b) Chemistry

Reaction velocity v = k · [A]nA · [B]nB

change with changing temperature ∆t→ +100C =⇒ v → ·2
based on Arrhenius’ law k = A · e−EA/R · T
EA = activation energy; R = gas constant

Law of mass action: A+B ↔ C+D : Kc = [A]·[B]/[C]·[D]
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(c) Biology

Multiplication (of unicellular organisms) 1− 2− 4− 8− 16
Growth, size st = s0 · kt

Hagen-Poiseuille Law; Volume:

Vt = (∆P · r4 · π)/(8 · η · L); ∆P : pressure difference

Permeability

Other laws in biology?
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3. Logarithmic Transformation, Log-Normal Distribution

Transform data by log transformation
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The log transform Z = log(X)

• turns multiplication into addition,

• turns variables X > 0 into Z with unrestricted values,

• reduces (positive) skewness (may turn it negatively skewed)

• Often turns skewed distributions into normal ones.

Note: Base of logarithm is not important.

• natural log for theory,

• log10 for practice.
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The Log-Normal Distribution

If Z = log(X) is normally distributed (Gaussian), then

the distribution of X is called log-normal.
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Density: 1
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Parameters: µ, σ : Expectation and st.dev. of log(X)

More useful:

• eµ = µ∗ : median, geometric “mean”, scale parameter

• eσ = σ∗ : multiplicative standard deviation, shape parameter

σ∗ (or σ) determines the shape of the distribution.

Contrast to

• expectation E(X) = eµ · eσ2/2

• standard deviation sd(X) from var(X) = eσ
2
(
eσ

2−1
)
e2µ

Less useful!
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Ranges

Probability normal log-normal

2/3 (68%) µ± σ µ∗ ×/ σ∗

95% µ± 2σ µ∗ ×/ σ∗2
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Properties

We had for the normal distribution:

• Adding normal random variables gives a normal sum.

• Linear combinations Y = α0 + α1X1 + α2X2 + ...

remain normal.

• −→ Means of normal variables are normally distributed.

• Central Limit Theorem: Means of non-normal variables

are approximately normally distributed.

• −→ “Hypothesis of Elementary Errors”:

If random variation is the sum of many small random effects,

a normal distribution must be the result.

• Regression models assume normally distributed errors.
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Properties: We have for the log-normal distribution:

• Multiplying log-normal random variables gives a log-normal pro-

duct.

• −→ Geometric means of log-normal var.s are log-normally distr.

• Multiplicative Central Limit Theorem: Geometric means

of (non-log-normal) variables are approx. log-normally distributed.

• −→ Multiplicative “Hypothesis of Elementary Errors”:

If random variation is the product of several random effects,

a log-normal distribution must be the result.

Better name: Multiplicative normal distribution!
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Back to Properties

• −→ Multiplicative “Hypothesis of Elementary Errors”:

If random variation is the product of several random effects,

a log-normal distribution must be the result.

Note: For “many small” effects, the geometric mean will have

a small σ∗ −→ approx. normal AND log-normal!

Such normal distributions are “intrinsically log-normal”.

Keeping this in mind may lead to new insight!

• Regression models assume normally distributed errors! ???
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4. Regression

Multiple linear regression:

Y = β0 + β1X1 + β2X2 + ...+ E

Regressors Xj may be functions of original input variables

−→ model also describes nonlinear relations, interactions, ...

Categorical (nominal) input variables = “factors”

−→ “dummy” binary regressors

−→ Model includes Analysis of Variance (ANOVA)!

Linear in the coefficients βj
−→ “simple”, exact theory, exact inference

estimation by Least Squares −→ simple calculation
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Characteristics of the model:

Formula:
Y = β0 + β1X1 + β2X2 + ...+ E

additive effects, additive error

Error term E ∼ N (0, σ2) −→
– constant variance
– symmetric error distribution

Target variable has skewed (error) distribution,

standard deviation of error increases with Y

−→ transform Y −→ log(Y ) !

log(Ỹ ) = Y = β0+β1X1+β2X2...+E
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Ordinary, additive model Multiplicative model

Formula
Y = β0 + β1X1 + β2X2 + ...+E log(Ỹ ) = Y = β0+β1X1+β2X2...+E

Ỹ = β̃0 · X̃
β1
1 · X̃

β2
2 · ... · Ẽ

additive effects, additive error multiplicative effects, mult. errors

Error term

E ∼ N (0, σ2) −→ Ẽ ∼ `N (1, σ∗) −→
– constant variance – constant relative error
– symmetric error distribution – skewed error distribution
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Yu et al (2012): Upregulation of transmitter release probability improves a conversion of synaptic
analogue signals into neuronal digital spikes

Figure 1. The probability of releasing glutamates increases during sequential presynaptic spikes...
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Yu et al (2012): Upregulation of transmitter release probability improves a conversion of synaptic
analogue signals into neuronal digital spikes

Figure 4. Presynaptic Ca 2+ enhances an efficiency of probability-driven facilitation.
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5. Advantages of using the log-normal distribution

... or of applying the log transformation to data.

The normal and log-normal distributions are difficult to distinguish

for σ∗ < 1.2 ↔ cv < 0.18
where the coef. of variation cv ≈ σ∗ − 1

−→ We discuss case of larger σ∗.
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More meaningful parameters

• The expected value of a skewed distribution is less typical

than the median.

• ( cv or) σ∗ characterizes size of relative error

• Characteristic σ∗ found in diseases:

latent periods for different infections: σ∗ ≈ 1.4;

survival times after diagnosis of cancer, for different types: σ∗ ≈ 3
−→ Deeper insight?
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Fulfilling assumptions, power

What happens to inference based on the normal distribution

if the data is log-normal?

• Level = prob. of falsely rejecting the null hypothesis

coverage prob. of confidence intervals are o.k.

• Loss of power! −→ wasted effort!
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• Loss of power! −→ wasted effort!
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More informative graphics
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More informative graphics
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6. Conclusions

Genesis

• The normal distribution is good for estimators, test statistics,

data with small coef.of variation, and log-transformed data.

The log-normal distribution is good for original data.

• Summation, Means, Central limit theorem, Hyp. of elem. errors

−→ normal distribution

Multiplication, Geometric means, ...

−→ log-normal distribution
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Applications

• Adequate ranges: µ∗ ×/σ∗2 covers ≈ 95% of the data

• Gain of power of hypothesis tests −→ save efforts for experiments

(e.g., saves animals!)

• Regression models assume normally distributed errors.

−→ Regression model for log(Y ) instead of Y .

Back transformation: Y = β̃0 ·Xβ1
1 ·X

β2
2 · ... · Ẽ

• Parameter σ∗ may characterize a class of phenomena

(e.g., diseases) −→ new insight ?!
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Mathematical Statistics adds. Nature multiplies

−→ uses normal distribution −→ yields log-normal distribution

Scientists (and applied statisticians)

add logarithms!

use the normal distribution for log(data) and theory

use log-normal distribution for data

Thank you for your attention!


