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The normal Normal distribution

We like it!

e Nice shape.

e Named after Gauss. Decorated the 10 DM bill.

® We know it. Passed the exam.
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Why it is right.
It is given by mathematical theory.
® Adding normal random variables gives a normal sum.

e Linear combinations ¥ = oo + a1 X1 + arX> + ...
remain normal.

° —— Means of normal variables are normally distributed.

® Central Limit Theorem: Means of non-normal variables
are approximately normally distributed.

° — “Hypothesis of Elementary Errors”:
If random variation is the sum of many small random effects,
a normal distribution must be the result.

® Regression models assume normally distributed errors.



Is it right?
Mathematical statisticians believe(d) that it is prevalent in Nature.

Well, it is not. Purpose of this talk: What are the consequences?
1. Empirical Distributions

2. Laws of Nature

3. Logarithmic Transformation, the Log-Normal Distribution

4. Regression

5. Advantages of using the log-normal distribution

6. Conclusions
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1. Empirical Distributions

1. Empirical Distributions

Measurements:
size, weight, concentration, intensity, duration, price, activity
All > O —— “amounts” (John Tukey)

Example: HydroxyMethylFurfurol (HMF) in honey (Renner 1970)
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1. Empirical Distributions

Measurements:
size, weight, concentration, intensity, duration, price, activity

All > 0 —— “amounts”

Distribution is skewed: left steep, right flat, skewness > O
unless coefficient of variation cv(X ) = sd(X)/E(X) is small.

Other variables may have other ranges and negative skewness.

They may have a normal distribution.
They are usually derived variables, not original measurements.

Any examples?
Our examples: Position in space and time, angles, directions. That’s it!

For some, O is a probable value: rain, expenditure for certain goods, ...

pH, sound and other energies [dB] —> log scale!
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1. Empirical Distributions

The 95% Range Check

For every normal distribution, negative values have a probability > O.
—— normal distribution inadequate for positive variables.

Becomes relevant when 95% range & + 20 reaches below 0.
Then, the distribution is noticeably skewed.
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2. Laws of Nature

2. Laws of Nature

(a) Physics E=m-c?

Stopping distance s = -v*/(2 - a) ; Velocity v = F -t/m
Gravitaton F' = G - m1 - mo /7?2
Gas laws pV:nRT, R:pO°VO/TO

Radioactive decay N; = Ng - e~

(b) Chemistry

Reaction velocity v = k - [A]™A . [B]"B
change with changing temperature At — +109C = v — -2
based on Arrhenius’ law k = A - e PA/R. T

E 4 = activation energy; R = gas constant

Law of mass action: A+B < C+D : K. = [A]-[B]/[C]-[D]



2. Laws of Nature

(c) Biology

Multiplication (of unicellular organisms) 1 —2 —4 — 8 — 16
Growth, size sy = sq - kt

Hagen-Poiseuille Law; Volume:
Vi= (AP -rv*-7)/(8-n-L); AP : pressure difference

Permeability

Other laws in biology?
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3. Logarithmic Transformation, Log-Normal Distribution

3. Logarithmic Transformation, Log-Normal Distribution

Transform data by log transformation
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3. Logarithmic Transformation, Log-Normal Distribution
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The log transform Z = log(X)

e turns multiplication into addition,

e turnsvariables X > O into Z with unrestricted values,

® reduces (positive) skewness (may turn it negatively skewed)

® Often turns skewed distributions into normal ones.

Note: Base of logarithm is not important.
e natural log for theory,

e |09 for practice.



3. Logarithmic Transformation, Log-Normal Distribution
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The Log-Normal Distribution

If Z = log(X) is normally distributed (Gaussian), then
the distribution of X is called log-normal.

Densities

normal distribution




3. Logarithmic Transformation, Log-Normal Distribution 12

2
Density: J\/—x e><p< . (|Og(£;)—u) )

Parameters: 1, o: Expectation and st.dev. of 10g(X)

More useful:
e M = u* :median, geometric “mean”, scale parameter

e Y = o™ : multiplicative standard deviation, shape parameter

o™® (or o) determines the shape of the distribution.

Contrast to
>
e expectation E(X) = et - e /2
2/ 2
e standard deviation sd(X) from var(X) = e° (60 —1) e

Less useful!



3. Logarithmic Transformation, Log-Normal Distribution

Ranges
Probability normal log-normal
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3. Logarithmic Transformation, Log-Normal Distribution 14

Properties

We had for the normal distribution:

Adding normal random variables gives a normal sum.

Linear combinations ¥ = oo + a1 X1 + arX> + ...
remain normal.

——> Means of normal variables are normally distributed.

Central Limit Theorem: Means of non-normal variables
are approximately normally distributed.

— “Hypothesis of Elementary Errors”:
If random variation is the sum of many small random effects,
a normal distribution must be the result.

Regression models assume normally distributed errors.
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Properties: We have for the log-normal distribution:

e Muliiplying log-normal random variables gives a log-normal pro-
duct.

® —— Geometric means of log-normal var.s are log-normally distr.

e Multiplicative Central Limit Theorem: Geometric means
of (non-log-normal) variables are approx. log-normally distributed.

° — Multiplicative “Hypothesis of Elementary Errors”:
If random variation is the product of several random effects,
a log-normal distribution must be the result.

Better name: Multiplicative normal distribution!



3. Logarithmic Transformation, Log-Normal Distribution 16
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3. Logarithmic Transformation, Log-Normal Distribution
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Back to Properties

— Multiplicative “Hypothesis of Elementary Errors”:
If random variation is the product of several random effects,
a log-normal distribution must be the result.

Note: For “many small” effects, the geometric mean will have
a small o™ — approx. normal AND log-normal!

Such normal distributions are “intrinsically log-normal”.
Keeping this in mind may lead to new insight!

Regression models assume normally distributed errors! 777
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4. Regression

Multiple linear regression:

Y =00+ B81X1+BXo+ ...+ F

Regressors Xj may be functions of original input variables
——> model also describes nonlinear relations, interactions, ...
Categorical (nominal) input variables = “factors”

— “dummy” binary regressors

—— Model includes Analysis of Variance (ANOVA)!

Linear in the coefficients 3
— “simple”, exact theory, exact inference
estimation by Least Squares —— simple calculation



4. Regression
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Characteristics of the model:

Formula:
Y =080+061X1+B2Xo+ ...+ FE

additive effects, additive error

Errorterm E ~ N (0,0%) —
— constant variance
— symmetric error distribution

Target variable has skewed (error) distribution,
standard deviation of error increases with Y
— transform Y — 1og(Y) |

0g(Y) =Y = Bo+B1X14B2X0...+E



4. Regression
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Ordinary, additive model

Multiplicative model

additive effects, additive error

E ~N(0,0%) —
— constant variance
— symmetric error distribution

Y =080+B81X1+082Xo+...+F

Formula

Error

|09(Y)—Y Bo+B1 X1+ B2Xo...+FE

~

60 Xﬁl XBQ E

multiplicative effects, mult. errors

term

E ~¢N(1,0%) —
— constant relative error

— skewed error distribution
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Figure 2. Mean longitudinal distance (in meters) as a function of standard distance under natural binocular viewing. The
open circles represent the vertical standard and the filled circles represent the horizontal standard. The left panel is for the up-
right subjects; the center pane] for the lying-on-side subjeets; and the right panel for the lying-on-belly subjects. The bars pass-
ing through the data points represent the standard deviations.
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Figure 1. The probability of releasing glutamates increases during sequential presynaptic spikes...



4. Regression
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5. Advantages of using the log-normal distribution

... or of applying the log transformation to data.

The normal and log-normal distributions are difficult to distinguish
forc* < 1.2 < ¢cv<0.18
where the coef. of variation cv =~ o™ — 1

— We discuss case of larger ™.



5. Advantages of using the log-normal distribution
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More meaningful parameters

® The expected value of a skewed distribution is less typical
than the median.

e (cv or) o™ characterizes size of relative error

e Characteristic o* found in diseases:
latent periods for different infections: o™ ~ 1.4;
survival times after diagnosis of cancer, for different types: o* ~ 3
—— Deeper insight?



5. Advantages of using the log-normal distribution
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Fulfilling assumptions, power

What happens to inference based on the normal distribution
if the data is log-normal?

® Level = prob. of falsely rejecting the null hypothesis
coverage prob. of confidence intervals are o.k.

® Loss of powerl — wasted effort!



5. Advantages of using the log-normal distribution
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® Loss of powerl — wasted effort!
Difference between 2 groups (samples)
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5. Advantages of using the log-normal distribution

More informative graphics
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5. Advantages of using the log-normal distribution
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More informative graphics
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6. Conclusions

Genesis

The normal distribution is good for estimators, test statistics,
data with small coef.of variation, and log-transformed data.
The log-normal distribution is good for original data.

Summation, Means, Central limit theorem, Hyp. of elem. errors
— normal distribution

Multiplication, Geometric means, ...
— log-normal distribution



6. Conclusions
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Applications

e Adequate ranges: 11* < /o2 covers == 95% of the data

e (ain of power of hypothesis tests ——> save efforts for experiments
(e.g., saves animals!)

® Regression models assume normally distributed errors.
—— Regression model for |0g(Y") instead of Y.
Back transformation: Y = (g - Xlﬁ1 : ng S

e Parameter o™ may characterize a class of phenomena
(e.g., diseases) ——> new insight ?!
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Mathematical Statistics adds. Nature multiplies
— uses normal distribution — yields log-normal distribution

Scientists (and applied statisticians)
add logarithms!
use the normal distribution for log(data) and theory
use log-normal distribution for data

Thank you for your attention!



