二值选择模型-以stata为工具

这篇博客介绍了如何在Stata中应用二值选择模型,特别是逻辑回归模型,来处理二值因变量的问题。通过读取数据、建立模型和进行预测,详细展示了如何用Stata实现模型的构建和分析,以泰坦尼克数据为例,探讨不同身份人群的生存概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二值选择模型-以stata为工具

          在这里插入图片描述


1. 命令语法

二值选择模型是计量经济学中常用的一种模型,用于处理因变量为二值(0或1)的情况。
这种模型通常用来研究个体在面临两个或多个离散选择时的决策行为。其中,最常见的二值选择模型是LogitProbit模型。

Logit模型基于逻辑回归,假设被解释变量服从二项分布,通过对概率模型的线性组合进行logistic转换,将连续的预测值映射到[0, 1]之间,从而进行概率估计。Probit模型则基于正态分布,假设被解释变量服从二项分布,在预测值与概率之间建立累积分布函数的联系。

下面以Logit模型为例,演示如何使用Stata软件来实现二值选择模型。

// 导入数据
use data, clear

// 做Logit回归模型
logit y x1 x2 x3

// 只显示回归结果
estimates table

// 获取预测概率
predict p, pr

// 展示预测概率
list y x1 x2 x3 p
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯小啾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值