python DataFrame的stack()方法,unstack()方法,pivot()方法

本文详细介绍了如何使用pandas库中的stack()方法将列转换为行,unstack()方法反转这一过程,以及pivot()函数用于重塑数据以创建多维度表格。通过实例演示,展示了这些函数在数据重构和分析中的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在这里插入图片描述

1.stack()

                      在这里插入图片描述
stack()用于将列索引转换为最内层的行索引,这样叙述比较抽象,看示例就容易理解啦:

准备一组数据,给其设置双索引。

import pandas as pd
data = [['A类', 'a1', 123, 224, 254], ['A类', 'a2', 234, 135, 444], ['A类', 'a3', 345, 241, 324],
        ['B类', 'b1', 112, 412, 466], ['B类', 'b2', 224, 235, 345], ['B类', 'b3', 369, 214, 352],
        ['C类', 'c1', 236, 251, 485], ['C类', 'c2', 378, 216, 515], ['C类', 'c3', 135, 421, 312],
        ['D类', 'd1', 306, 325, 496], ['D类', 'd2', 147, 235, 524], ['D类', 'd3', 520, 222, 267]]
df = pd.DataFrame(data=data, columns=['类别', '编号', 'A指标', 'B指标', 'C指标'])
df = df.set_index(['类别', '编号'])
print(df)

在这里插入图片描述

df = df.stack()
print(df)

在这里插入图片描述
如图,成功将索引列之外的 A指标,B指标,C指标三列放在了同一列。
此时的df,不再是一个DataFrame,而变为了一个Series对象。:

print(type(df))

在这里插入图片描述
该Series的index列不同于原DataFrame的index列,而是在原DataFrame的index列的基础上,又增加了从右边合并过来的部分:

print(df.index)

在这里插入图片描述
此时Values为:

print(df.values)

在这里插入图片描述


2. unstack()

                      在这里插入图片描述
unstack是stack的逆向操作。
在上述示例的代码的基础上,对上边的df继续调用unstack()方法:

df1 = df.unstack()
print(df1)

在这里插入图片描述
可以看到unstack变回了原来的样子。


3. pivot()

                      在这里插入图片描述

这里对于上边例子中的数据稍作调整:
不设置多重索引

import pandas as pd
data = [['A类', '1', 123, 224, 254], ['A类', '2', 234, 135, 444], ['A类', '3', 345, 241, 324],
        ['B类', '1', 112, 412, 466], ['B类', '2', 224, 235, 345], ['B类', '3', 369, 214, 352],
        ['C类', '1', 236, 251, 485], ['C类', '2', 378, 216, 515], ['C类', '3', 135, 421, 312],
        ['D类', '1', 306, 325, 496], ['D类', '2', 147, 235, 524], ['D类', '3', 520, 222, 267]]
df = pd.DataFrame(data=data, columns=['类别', '编号', 'A指标', 'B指标', 'C指标'])
print(df)

在这里插入图片描述

df2 = df.pivot(index='编号', columns='类别', values='A指标')
print(df2)

在这里插入图片描述
index和columns分别指设定那一列的值为index,设置那一列的值为columns。values指表格要体现的指标。

df3 = df.pivot(index='类别', columns='编号', values='A指标')
print(df3)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

侯小啾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值