JVM故障排查实战指南

本文总结了JVM故障排查的一些常见问题,包括线程死锁的排查思路,分析了如何通过jstack、MAT工具找到CPU飙升的原因,以及如何处理OOM问题。通过对线程状态的复习,理解Monitor锁工作机制,结合实际代码示例,深入剖析了故障排查的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在文章开头

在现代软件开发中,Java 虚拟机(JVM)作为 Java 应用程序运行的基础平台,其稳定性和性能直接影响到应用程序的表现。无论是大型企业系统还是小型应用,JVM 的健康状况都是确保业务连续性的关键因素之一。

然而,在实际生产环境中,JVM 时常会遇到各种各样的问题,如内存泄漏、垃圾回收频繁、线程死锁等。这些问题不仅会导致系统响应变慢,甚至可能引发服务中断,给企业和用户带来严重损失。

本指南旨在帮助开发者和运维人员快速定位并解决常见的 JVM 故障。我们将从基础知识入手,逐步深入到具体的故障现象分析与解决方案,希望能够为读者提供一套系统的故障排查方法论。

在这里插入图片描述

Hi,我是 sharkChili ,是个不断在硬核技术上作死的技术人,是 CSDN的博客专家 ,也是开源项目 Java Guide 的维护者之一,熟悉 Java 也会一点 Go ,偶尔也会在 C源码 边缘徘徊。写过很多有意思的技术博客,也还在研究并输出技术的路上,希望我的文章对你有帮助,非常欢迎你关注我的公众号: 写代码的SharkChili

同时也非常欢迎你star我的开源项目mini-redis:https://github.com/shark-ctrl/mini-redis

因为近期收到很多读者的私信,所以也专门创建了一个交流群,感兴趣的读者可以通过上方的公众号获取笔者的联系方式完成好友添加,点击备注 “加群” 即可和笔者和笔者的朋友们进行深入交流。

前置储备

jstack简介

jstackJVM自带的工具,用于追踪Java进程线程id的堆栈信息、锁信息,或者打印core file,远程调试Java堆栈信息等。

而我们常用的指令则是下面这条:

# 打印对应java进程的堆栈信息
jstack [ option ] pid 

对应的option常见选项如下:

-F	当正常输出的请求不被响应时,强制输出线程堆栈
-m	如果调用到本地方法的话,可以显示C/C++的堆栈
-l	除堆栈外,显示关于锁的附加信息,在发生死锁时可以用jstack -l pid来观察锁持有情况

线程状态复习

在使用jstack排查问题之前,我们必须了解堆栈中的信息,所以我们首先必须复习一下线程中的六大状态:

  1. New:线程处于创建但还未启动的状态。
  2. RUNNABLE:RUNNABLE其实是JVM自定义的一种状态,如果和操作系统的线程状态进行等价理解的话,RUNNABLE是处于操作系统Running或者Ready状态,因为CPU在这两个状态间的切换几乎是瞬时的,所以JVM统一用RUNNABLE表示。
  3. Waiting:线程处于等待唤醒状态。
  4. Timed Waiting:在有限时间内线程等待唤醒。
  5. Blocked:程序等待进入同步区域,等待监视器锁中,线程处于阻塞状态。
  6. Terminated:线程工作完成,处于结束状态了。

了解过线程状态后,我们就可以了解一下jstack导出的dump文件中线程会基于这些状态出现的各种情况:


runnable:线程处于执行中
deadlock:死锁(重点关注)
blocked:线程被阻塞 (重点关注)
Parked:停止
locked:对象加锁
waiting:线程正在等待
waiting to lock:等待上锁
Object.wait():对象等待中
waiting for monitor entry:等待获取监视器(重点关注)
Waiting on condition:等待资源(重点关注),最常见的情况是线程在等待网络的读写


MAT(Memory Analyzer)下载安装

下载地址

mat下载地址:https://www.eclipse.org/mat/previousReleases.php

为了后续我们可以查看JVM输出的hprof日志,我们需要下载一个MAT的工具,如下图所示,选择更早版本

在这里插入图片描述

以笔者为例,笔者就选择了1.7版本

在这里插入图片描述

完成下载后,双击下面这个exe文件能打开就说明一切正常

在这里插入图片描述

详解线程死锁问题排查思路

问题代码

如下所示,笔者写了一段死锁的代码,如下所示,然后将其放到服务器中启动:

@RestController
public class TestController {

    private static Logger logger = LoggerFactory.getLogger(TestController.class);

    private Object lock1 = new Object();
    private Object lock2 = new Object();

    /**
     * 模拟一个线程死锁的请求
     *
     * @return
     */
    @GetMapping("deadLock")
    public String deadLock() throws Exception {

        Thread t1 = new Thread(() -> {
            logger.info("线程1开始工作,先获取锁1");
            synchronized (lock1) {
                try {
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                logger.info("线程1获得锁1,尝试获得锁2");

                synchronized (lock2) {
                    logger.info("线程1获得锁2成功");
                }
            }

        });

        Thread t2 = new Thread(() -> {
            logger.info("线程2开始工作,先获取锁2");
            synchronized (lock2) {

                try {
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                synchronized (lock1) {
                    logger.info("线程2获得锁1成功");
                }
            }


        });

        t1.setName("my-thread-1");
        t2.setName("my-thread-2");
        t1.join();
        t2.join();
        t1.start();
        t2.start();


        return "success";
    }
}

复现问题

由于这只是一个demo,我们日常发现这种问题的时候大概率是多线程中的业务没有结束,所以重现问题也很简单,通过命令调用一下接口即可

curl http://localhost:8888/deadLock

排查思路

首先确定当前发生死锁的java应用,我们通过jps确定进程id,可以看到笔者服务器的进程id23334,然后通过jstack -l查看锁以及锁的附加信息:

jstack -l 23334

最终可以在jstack的最下方看到这样一段信息(Found one Java-level deadlock),由此确认出现my-thread-1持有0x00000000ec509610等待0x00000000ec509620my-thread-2反之。

然后我们通过jstack信息即可定位到问题代码在TestController.java:53以及TestController.java:37

Found one Java-level deadlock:
=============================
"my-thread-2":
  waiting to lock monitor 0x00007f2800ac9318 (object 0x00000000ec509610, a java.lang.Object),
  which is held by "my-thread-1"
"my-thread-1":
  waiting to lock monitor 0x00007f27e40062c8 (object 0x00000000ec509620, a java.lang.Object),
  which is held by "my-thread-2"

Java stack information for the threads listed above:
===================================================
"my-thread-2":
        at com.example.jstackTest.TestController.lambda$deadLock$1(TestController.java:53)
        - waiting to lock <0x00000000ec509610> (a java.lang.Object)
        - locked <0x00000000ec509620> (a java.lang.Object)
        at com.example.jstackTest.TestController$$Lambda$582/2089009876.run(Unknown Source)
        at java.lang.Thread.run(Thread.java:748)
"my-thread-1":
        at com.example.jstackTest.TestController.lambda$deadLock$0(TestController.java:37)
        - waiting to lock <0x00000000ec509620> (a java.lang.Object)
        - locked <0x00000000ec509610> (a java.lang.Object)
        at com.example.jstackTest.TestController$$Lambda$581/1994255298.run(Unknown Source)
        at java.lang.Thread.run(Thread.java:748)

Found 1 deadlock.

详解CPU 飙升问题排查思路

问题复现

导致CPU 100%的原因有很多,一般来说都是编码不当导致的,所以常规的排查思路为:

  1. 定位进程号,如果是Java进程则查看是哪个线程导致的。
  2. 定位导致CPU 飙升的线程号,转为16进制。
  3. 导致JVM锁信息日志,使用线程号定位代码。
  4. 排查并修复代码问题。

首先笔者准备了一个导致CPU飙升的问题代码,可以看到线程池中的线程不会停止不断工作

private ExecutorService threadPool = Executors.newFixedThreadPool(100);
    private static Object lock = new Object();
    private static Logger logger = LoggerFactory.getLogger(TestController.class);

    public TestController() {
    }

    @GetMapping({"/test"})
    public void test() {
        for(int i = 0; i < 100; ++i) {
            this.threadPool.execute(() -> {
                logger.info("加法线程开始工作");
                long sum = 0L;
                Object var2 = lock;
                synchronized(lock){}

                try {
                    while(true) {
                        sum += 0L;
                    }
                } finally {
                    ;
                }
            });
        }

    }

然后我们发起请求

 curl http://localhost:9550/test

排查过程

此时使用top命令查看,可以看到24411号进程CPU占用百分比飙升。此时我们就需要进一步定位这个进程的哪一个线程出问题了。

在这里插入图片描述

所以我们需要进一步定位这个问题是哪一个线程导致的,命令如下所示,使用线程模式查看对应pid的线程情况

top -Hp 24411

可以看到25321这个线程CPU占用过高,此时我们就可以通过thread dump定位导致问题的代码段

在这里插入图片描述

键入jstack -l 24411 >/tmp/log.txt到处日志,然后将线程号25321转为16进制,这里笔者使用了一个在线的网站地址

16进制转换:https://www.sojson.com/hexconvert.html

可以看到25321转换为16进制值为62e9,所以我们就使用62e9到导出的日志文件中查看这个线程堆栈情况。

在这里插入图片描述

使用转换的值从刚刚导出的日志中定位,可以看到该线程处于运行状态,很明显这个线程一直处于运行中,有一段逻辑肯定在不停的消耗CPU资源,所以我们查看代码位置在TestController.java:32,由此得到问题代码并修复问题。

在这里插入图片描述

详解OOM问题排查思路

复现问题

出现OOM问题大抵是有两个原因:

  1. 大流量导致服务器创建大量的对象把内存打爆了,面对这种情况我们除了熔断以外别无他法。
  2. 程序编写不规范导致,大流量情况下出现垃圾内存进而出现OOM,笔者本地探讨的就是这种情况。

如下所示,笔者初始化了一个程序,创建一个线程池,模拟无数个线程池将不断将内存写入4M的数据,并且不清理。

RestController
public class TestController {
    final static ThreadPoolExecutor poolExecutor = new ThreadPoolExecutor(100, 100, 1, TimeUnit.MINUTES,
            new LinkedBlockingQueue<>());// 创建线程池,通过线程池,保证创建的线程存活

    final static ThreadLocal<Byte[]> localVariable = new ThreadLocal<Byte[]>();// 声明本地变量

    (value = "/test0")
    public String test0(HttpServletRequest request) {
        poolExecutor.execute(() -> {
            Byte[] c = new Byte[4* 1024* 1024];
            localVariable.set(c);// 为线程添加变量

        });
        return "success";
    }

   
}

完成后部署到服务器上,并使用以下命令启动,可以看到笔者调整的jvm堆内存大小(笔者服务器内存为1g故这里设置为100m),以及设置OOM输出参数

java -jar -Xms100m -Xmx100m # 调整堆内存大小
-XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/heapdump.hprof  # 表示发生OOM时输出日志文件,指定path为/tmp/heapdump.hprof
-XX:+PrintGCTimeStamps -XX:+PrintGCDetails -Xloggc:/tmp/heapTest.log # 打印日志、gc时间以及指定gc日志的路径
demo-0.0.1-SNAPSHOT.jar

完成后我们启动项目使用HTTP接口请求工具进行压测,可以看到服务器不久之后就出现了OOM问题:

java.lang.OutOfMemoryError: Java heap space
Dumping heap to /tmp/heapdump.hprof ...
Heap dump file created [151939570 bytes in 1.112 secs]
Exception in thread "pool-1-thread-5" java.lang.OutOfMemoryError: Java heap space
        at com.example.jstackTest.TestController.lambda$test0$0(TestController.java:25)
        at com.example.jstackTest.TestController$$Lambda$582/394910033.run(Unknown Source)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)
Exception in thread "pool-1-thread-7" java.lang.OutOfMemoryError: Java heap space
        at com.example.jstackTest.TestController.lambda$test0$0(TestController.java:25)
        at com.example.jstackTest.TestController$$Lambda$582/394910033.run(Unknown Source)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
        at java.lang.Thread.run(Thread.java:748)
Exception in thread "pool-1-thread-9" java.lang.OutOfMemoryError: Java heap space

排查思路

我们直接锁定java进程号之后,使用top -Hp pid查看进程的线程信息,可以看到这里面的每一个线程基本都把堆区内存打满了,我们不妨查看任意一个线程:

在这里插入图片描述

我们首先使用jstack -l 3721将日志导出,这里就以3873转为16进制查看线程状态,可以发现线程处于等待状态,而且日志中并没有存在死锁的信息,所以我们必须进一步查看堆区情况确认是否是因为内存泄漏导致的。

在这里插入图片描述

然后使用jmap查看堆区使用情况

jmap -heap 3721

从下面的日志可以看出老年代使用率高达82%,很明显有一些长期没有释放的对象在内存中导致OOM问题。

在这里插入图片描述

我们从上文设置的oom日志路径中找到日志/tmp/heapdump.hprof,导出到本地,使用MAT打开,找到使用率最高的Byte数组,点击下图Histogram ,点击内存占用最高的选项展开。

在这里插入图片描述

这里补充一下截图中看到的两个选项:

  1. with incoming references: 表示的是 当前查看的对象,被外部的应用。
  2. with outGoing references: 表示的是 当前对象,引用了外部对象。

所以我们的选择with incoming reference:

在这里插入图片描述

可以定位到就是我们一个线程池中的threadLocal使用不当导致OOM问题了

在这里插入图片描述

小结

通过本指南的学习,我们希望读者能够对 JVM 的内部机制有更深入的理解,并掌握一系列有效的故障排查方法和工具。JVM 作为 Java 应用程序的核心组件,其稳定性和性能对于业务的成功至关重要。

在实际工作中,面对复杂的生产环境和多变的应用需求,仅仅依赖于理论知识是远远不够的。因此,我们鼓励读者在实践中不断积累经验,结合实际情况灵活运用所学的知识和技术。只有这样,才能在遇到问题时迅速定位并解决问题,确保系统的高效运行。

我是 sharkchiliCSDN Java 领域博客专家mini-redis的作者,我想写一些有意思的东西,希望对你有帮助,如果你想实时收到我写的硬核的文章也欢迎你关注我的公众号: 写代码的SharkChili

同时也非常欢迎你star我的开源项目mini-redis:https://github.com/shark-ctrl/mini-redis

因为近期收到很多读者的私信,所以也专门创建了一个交流群,感兴趣的读者可以通过上方的公众号获取笔者的联系方式完成好友添加,点击备注 “加群” 即可和笔者和笔者的朋友们进行深入交流。

参考

Java内存分析工具MAT(Memory Analyzer Tool)安装使用实例:https://blog.csdn.net/Jin_Kwok/article/details/80326088

JVM参数-XX:+HeapDumpOnOutOfMemoryError使用方法:https://blog.csdn.net/lusa1314/article/details/84134458

Java 内存限制:https://www.jianshu.com/p/de0c4118f2ce

Java 性能调优实战:https://time.geekbang.org/column/intro/185

面渣逆袭(Java 虚拟机-JVM面试题八股文)必看👍:https://tobebetterjavaer.com/sidebar/sanfene/jvm.html#_40-有没有处理过内存泄漏问题-是如何定位的

Java程序员必备:jstack命令解析:https://juejin.cn/post/6844904152850497543

内存分析工具MAT的使用入门:https://cloud.tencent.com/developer/article/1676945

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shark-chili

您的鼓励将是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值