基于YOLOv8的智能鼠类目标检测系统 | 室内外老鼠自动识别与追踪【含完整训练源码+部署教程】
源码包含:完整YOLOv8训练代码+数据集(带标注)+权重文件+直接可允许检测的yolo检测程序+直接部署教程/训练教程‘
源码在文末哔哩哔哩视频简介处获取。
基本功能演示
智能鼠类目标检测系统-基于YOLOv8:完整源码+PyQt5界面+完整训练,源码数据集一步到位!【技术开箱】
项目摘要
本项目集成了 YOLOv8 高精度目标检测模型 与PyQt5 图形界面工具,实现对老鼠(鼠类)在图片、视频、文件夹、摄像头等多场景中的自动检测与追踪。
适用于:
- 智能鼠害监控系统
- 实验动物行为分析
- 工厂/仓储环境下的老鼠入侵检测
- 科研用途的图像分析辅助系统
项目配套完整源码与训练流程说明,支持开箱即用,可供学习、部署与二次开发使用。
文章目录
前言
在城市环境、食品工厂、仓储物流以及实验室等场景中,老鼠(鼠类)检测需求逐渐增加。传统的红外检测或人工排查手段存在成本高、误报多、实时性差的问题。
本项目结合深度学习中的YOLOv8目标检测算法,训练了专门用于识别“老鼠”目标的模型,可快速部署至视频监控系统、摄像头终端、图像分析平台等环境中,真正实现实时、高效、准确的鼠类识别,为智能化鼠害防控系统提供核心技术支撑。
一、软件核心功能介绍及效果演示
本项目基于 YOLOv8 模型,搭配可选的 PyQt5 图形界面,设计了一套功能齐全、操作简便的鼠类检测系统,支持多种输入方式与结果保存,覆盖实际应用中的多个场景需求。
功能模块 | 描述说明 |
---|---|
图像检测 | 选择单张图片进行老鼠目标识别并显示检测框 |
批量检测 | 对文件夹中所有图片自动检测并保存结果图 |
视频检测 | 支持本地视频检测老鼠目标,可保存识别后的视频 |
摄像头实时检测 | 打开电脑摄像头进行实时识别,适合鼠害监控场景 |
检测结果导出 | 支持检测结果图像或视频的保存,便于复查与分析 |
图形化界面(选配) | 通过 PyQt5 提供交互式操作界面,便于非技术用户使用 |
二、软件效果演示
为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。
(1)单图片检测演示
用户点击“选择图片”,即可加载本地图像并执行检测:
(2)多文件夹图片检测演示
用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。
(3)视频检测演示
支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:
(4)摄像头检测演示
实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。
(5)保存图片与视频检测结果
用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。
三、模型的训练、评估与推理
YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:
- 高速推理,适合实时检测任务
- 支持Anchor-Free检测
- 支持可扩展的Backbone和Neck结构
- 原生支持ONNX导出与部署
3.1 YOLOv8的基本原理
YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:
- 速度快:推理速度提升明显;
- 准确率高:支持 Anchor-Free 架构;
- 支持分类/检测/分割/姿态多任务;
- 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。
YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。
YOLOv8原理图如下:
3.2 数据集准备与训练
采用 YOLO 格式的数据集结构如下:
dataset/
├── images/
│ ├── train/
│ └── val/
├── labels/
│ ├── train/
│ └── val/
每张图像有对应的 .txt
文件,内容格式为:
4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757
分类包括(可自定义):
3.3. 训练结果评估
训练完成后,将在 runs/detect/train
目录生成结果文件,包括:
results.png
:损失曲线和 mAP 曲线;weights/best.pt
:最佳模型权重;confusion_matrix.png
:混淆矩阵分析图。
若 mAP@0.5 达到 90% 以上,即可用于部署。
在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:
3.4检测结果识别
使用 PyTorch 推理接口加载模型:
import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel
# 加入可信模型结构
safe_globals().add(DetectionModel)
# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)
# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name
# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
预测结果包含类别、置信度、边框坐标等信息。
四.YOLOV8+YOLOUI完整源码打包
本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:
4.1 项目开箱即用
作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。
运行项目只需输入下面命令。
python main.py
读者也可自行配置训练集,或使用打包好的数据集直接训练。
自行训练项目只需输入下面命令。
yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001
4.2 完整源码
至项目实录视频下方获取:https://www.bilibili.com/video/BV1NMhpzNEie/
包含:
📦完整项目源码
📦 预训练模型权重
🗂️ 数据集地址(含标注脚本)
总结
本项目以 YOLOv8 为核心,构建了一套高效、实用的智能鼠类检测系统,涵盖从模型训练、推理到部署的一体化流程。通过集成 PyQt5 图形界面,进一步降低了使用门槛,便于在实际环境中推广应用。
项目具备以下显著优势:
- 💡 高准确率与实时性:依托 YOLOv8 强大的目标检测能力,实现对老鼠的高效识别与追踪。
- 🧰 多场景兼容性:支持图像、视频、文件夹与摄像头等多种检测输入,满足多元化场景需求。
- 🖥️ 图形化界面支持:结合 PyQt5 实现图形操作界面,适合非技术用户直接部署使用。
- 🚀 开箱即用与可二次开发:源码完整,权重已训练完毕,支持快速上手与个性化改造。
本系统不仅适用于城市防鼠系统、实验动物监控、食品厂仓储检测等场景,也为图像识别初学者提供了一个结构清晰、可执行性强的实战范例。
✅ 无论是科研探索还是工业部署,基于YOLOv8的智能鼠类检测系统都提供了一条切实可行的路径。