本文带来的最新改进机制是我独家创新设计的 FASFFHead 检测头,基于经典的 ASFFHead(自适应空间特征融合)进行二次改进和扩展,解决了其只能用于三头检测且在跨尺度融合中存在特征信息丢失的问题。本文所提出的 FASFFHead 不仅结构更灵活,而且支持四分支输出(四头版本),可进一步增强对小目标或大目标的专属检测能力,尤其适用于多尺度目标分布复杂的场景。
与原始 ASFF 检测头相比,FASFFHead 在保持空间自适应融合机制的同时,通过引入额外的检测分支,实现了更细粒度的特征重采样与融合,支持添加第四层特征图(如P6)用于大目标检测,或插入一层更高分辨率的特征图(如P2)以增强小目标检测能力。该机制允许模型在各尺度上动态聚焦最有判别力的特征区域,从而显著提升检测精度,尤其是在小物体密集或多目标重叠场景中表现出色。
值得一提的是,FASFFHead 的设计灵感来源于付费专栏用户对 ASFF 四头版本的强烈需求,因此该结构不仅具有实际应用价值,也兼具论文发表潜力。其创新性和适应性使其成为构建高性能目标检测模型的一项强有力武器。目前,相关结构和实现方式仅在本专栏首次公开,全网独家,极具学术和工程推广价值。