pytorch exp_(), add_()等运算

本文通过实例解析PyTorch中的Inplace操作,如add_()与add()的区别,展示了如何直接修改张量的值,这对于理解PyTorch内存管理和优化计算图至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytroch小白,今天看到别人代码有exp_(), add_()等函数,一开始以为是python的,搜了半天没搜到。回来意识到是torch的,再搜发现搜的都是 VAE的定义。后来去中文手册搜了以下,发现这些是函数inplace的简写。举个例子,就明白了

    a = torch.tensor([2, 2])
    print("a =", a)
    a.add_(1)
    print("a =", a)
    b = a.add_(1)
    print("a =", a)
    print("b =", b)
    d = a.add(1)
    print("a =", a)
    print("d =", d)

其结果为:

可以发现当使用add_()的时候a的值被修改了,而使用add()时没有被修改。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值