
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Performance of Paradigms for
Storing and Querying

Multidisciplinary Engineering
Models

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering / Internet Computing

eingereicht von

Michael Wapp, BSc

Matrikelnummer 01325702

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao. Univ.Prof. Dr. Stefan Biffl

Mitwirkung: Dipl.-Ing. Kristof Meixner, BSc

Wien, 2. Dezember 2019

Michael Wapp Stefan Biffl

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Performance of Paradigms for
Storing and Querying

Multidisciplinary Engineering
Models

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering / Internet Computing

by

Michael Wapp, BSc

Registration Number 01325702

to the Faculty of Informatics

at the TU Wien

Advisor: Ao. Univ.Prof. Dr. Stefan Biffl

Assistance: Dipl.-Ing. Kristof Meixner, BSc

Vienna, 2nd December, 2019

Michael Wapp Stefan Biffl

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Michael Wapp, BSc

Bahnstraße 16-18/2/11 7000 Eisenstadt

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Dezember 2019

Michael Wapp

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Danksagung

Ich möchte mich hiermit bei meinen Betreuern Dr. Stefan Biffl, Dr. Dietmar Winkler und
Dipl.-Ing. Kristof Meixner für die Unterstützung bei der Entstehung dieser Diplomarbeit
bedanken. Dabei möchte ich besonders meinen Dank an Kristof Meixner für seine Geduld
und Motivation richten. Weiters bedanke ich mich auch bei meiner Familie und meinen
Freunden für die geleistete Unterstützung während meiner Diplomarbeit, vor allem möchte
ich mich bei meiner Freundin Sirimah bedanken, welche diese Arbeit Korrektur gelesen
hat.

Wir bedanken uns für die finanzielle Unterstützung durch das Bundesministerium für Di-
gitalisierung und Wirtschaftsstandort und die Nationalstiftung für Forschung, Technologie
und Entwicklung.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

I would like to thank my advisor Dr. Stefan Biffl and his assistants Dr. Dietmar Winkler
and Dipl.-Ing. Kristof Meixner for their guidance through this master thesis. Especially
Kristof Meixner for his patience and motivation. I would also like to thank my family and
friends for their support and most importantly my girlfriend Sirimah who was involved
in proofreading process of this thesis.

The financial support by the Austrian Federal Ministry for Digital, Business and Enterprise
and the National Foundation for Research, Technology and Development is gratefully
acknowledged.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Im Bereich der multidisziplinären Produktionssystemplanung, werden Daten zwischen
den verschiedenen beteiligten Ingenieuren ausgetauscht. Dieser Datenaustausch muss
möglichst effektiv und effizient sein, um einen erfolgreichen Projektablauf zu gewährleisten.
Gewöhnlich wird dieser Datenaustauschprozess von multidisziplinären Modelldaten, wie
etwa Automation Markup Language (AML), mit Technologien wie E-Mail durchgeführt.
AML ist ein maschinen-lesbares Datenaustauschformat das auf der Extensible Markup
Language (XML) basiert und von verschiedensten Ingenieursdisziplinen verwendet werden
kann. Historisch betrachtet, war AML als reines Austauschformat geplant, erhält aber
immer mehr Aufmerksamkeit als Modell um ingenieurstechnische Information zu beschrei-
ben. Dies führt dazu, dass die Darstellung und Speicherung von AML in XML in Hinsicht
auf Zugreifbarkeit und Lesbarkeit oft nicht ausreicht. Deshalb ist es notwendig passende
Speichertechnologien zu finden, um AML Modelle effizient persistieren zu können.

Diese Arbeit greift dieses Problem auf und schlägt eine Lösung vor die Einsicht in Daten-
speicherungsmöglichkeiten für multidisziplinäre Modelldaten ermöglicht. Weiters werden
zwei Datenbanklösungen für AML Modelldaten für das Speichern und Auslesen der Daten
evaluiert. Um diese Performanzevaluierung durchzuführen, werden folgende Schritte aus-
geführt. Zu Beginn werden zwei Datenspeicherungsparadigmen und -lösungen basierend
auf Kriterien welche sich Multidisciplinary Engineering (MDE) Modelldaten ergeben
ausgewählt. Danach wird eine Softwarearchitektur vorgeschlagen die es ermöglicht, Daten-
banklösungen flexibel auszutauschen und AML Modelldaten zu speichern und auszulesen.
Zusätzlich wird ein Prozess definiert welcher in der Durchführung der Evaluierung der
zwei gewählten Datenspeicherungslösungen angewendet wird. Die gewählten Datenbanken
sind BaseX als XML-basierte und Neo4J als graph-basierte Datenspeicherungslösung.
Die Ergebnisse der Evaluierung werden analysiert und diskutiert um einen erweiterten
Einblick zu bekommen welcher definiert welche Datenbank unter welchen Konditionen für
AML Modelldaten geeignet ist. Im Detail ergeben sich daraus Erkenntnisse, welche für
die Entscheidung welche der Datenbanken besser geeignet ist genutzt werden können. Die
Analyse der Ergebnisse zeigt, dass BaseX für das Erzeugen, Aktualisieren und Löschen
und Neo4J für lesende Operation besser geeignet ist. Es wird festgestellt, dass es keine
klare Empfehlung gibt, welche der beiden Datenbanken in multidisziplinären Projekten
verwendet werden soll da immer die situationsabhängige Nutzung im Projekt beachtet
werden muss. Die Erkenntnisse der Arbeit können verwendet werden, um Datenbanken
für das Speichern und Auslesen von AML Modelldaten zu ermitteln.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

In Multidisciplinary Engineering (MDE), projects rely on the effective and efficient
coordination and collaboration of participating project members from various engineering
disciplines such as electrical and mechanical engineering. Therefore, an effective and
efficient exchange of engineering information and artifacts is vital to a successful project
execution. Usually engineers exchange MDE data such as Automation Markup Language
(AML) files by sharing them via common data sharing processes such as email. AML is a
machine-readable data format which is based on the Extensible Markup Language (XML)
allowing engineers from various disciplines to describe engineering data. Historically,
AML was only meant as a data exchange format but nowadays receives more and more
attention as a general model to describe engineering information. This however leads to
the problem, that the representation and storage of AML as XML file is often insufficient
in the sense of, e.g., querying or access control. Hence, it is important to find suitable
storage technologies to persist the AML engineering model efficiently.

This thesis addresses this problem and proposes a solution to compare and evaluate
storage solutions for MDE model data. Moreover, the thesis evaluates two selected data
storage solutions for AML model data for their storing and querying performance. In
order to carry out this performance evaluation, the following steps are executed. At first,
two data storage paradigms and solutions are selected based on elicited criteria from
MDE model data and related work. Then, a prototypical layered software architecture is
designed and built which allows for a flexible exchange of the underlying data storage
solution as well as storing and querying of AML model data. Furthermore, a performance
evaluation process is established and used to execute a performance evaluation benchmark
on the two selected data storage solutions, i.e. BaseX as an XML data store and Neo4J
as a graph data store. The results of the evaluation are analyzed and discussed in order
to provide deeper insight on the capabilities of the data storage paradigms to store and
query AML model data. In particular, the results provide findings which can be used to
determine whether one of the selected data storage solutions is better suited under certain
conditions. The analysis of the performance results showed, that BaseX performs better
for use cases which involve create, update and delete operations while Neo4J performs
better for use cases involving read operations. In conclusion, a clear recommendation for
MDE projects using AML as a data exchange format cannot be provided as it depends
on the intended usage of the data storage solution. Yet, the gained insight can be used
to determine a data storage solution for a MDE project.

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Expected Results . 3
1.4 Thesis Structure . 4

2 Related Work 5
2.1 Multidisciplinary Engineering . 5
2.2 Automation Markup Language . 7
2.3 Data Storage Paradigms . 13
2.4 Data Storage Performance Benchmarking 21

3 Research Questions 23
3.1 RQ1 - Data Storage Paradigms for Multidisciplinary Engineering . . . 23
3.2 RQ2 - Software Architecture for Storing and Querying Multidisciplinary

Engineering Models . 24
3.3 RQ3 - Performance Evaluation Method 24

4 Research Approach 27
4.1 Design Science Research Approach . 27
4.2 Adapted Design Science Research Approach 29

5 Evaluation Use Cases 31
5.1 Use Case Definitions . 31
5.2 Use Case Execution Workflows . 34

6 Benchmark Evaluation Architecture and Design 39
6.1 Benchmark Evaluation Architecture 39

xv

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2 Benchmark Evaluation Design . 52

7 Evaluation Process and Results 61
7.1 Evaluation Experiment Design . 61
7.2 Benchmarking Process . 64
7.3 Execution of Performance Evaluation 65

8 Discussion & Limitations 75
8.1 Discussion Performance Evaluation . 75
8.2 Discussion RQ1 . 77
8.3 Discussion RQ2 . 78
8.4 Discussion RQ3 . 79
8.5 Limitations . 80

9 Conclusion and Future Work 83
9.1 Conclusion . 83
9.2 Future Work . 85

List of Figures 87

List of Algorithms 89

Acronyms 91

Bibliography 93

Used Technologies 99

Test Environment 101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

This Chapter provides an introduction to the topic of database paradigms as persistence
solutions for engineering data formats. Section 1.1 explains the motivation to study
database paradigms that enable a better exchange of Multidisciplinary Engineering (MDE)
models. Furthermore, Section 1.2 describes the problems which arise with exchanging
MDE model data and Section 1.3 discusses the proposed results to these problems. Lastly,
Section 1.4 provides a brief overview of the structure of this thesis.

1.1 Motivation

MDE projects such as the engineering needed for a production system and their according
processes, such as planning a production system (e.g. a car manufacturing plant),
typically involve heterogeneous tools and systems used independently by engineers of
various engineering domains such as mechanical, electrical or logical engineering [10].
These domain-specific tools are all used to manipulate the same engineering product
(e.g. a production plant); therefore, the underlying data also describes the same project.
One of the main goals of the engineering process is the consistency of plan data among
engineers in order to avoid duplicated or lost information. Typically, engineering data
is shared via email or other basic forms of transferring data which can involve loss of
information and usually only focuses on bulk data changes [18]. According to Drath [18],
the data exchange format Automation Markup Language (AML) provides a solution
to this problem. AML is an industry-standard data exchange format for production
systems based on the Extensible Markup Language (XML) that aims at improving the
data exchange process for MDE processes [25]. It provides the syntax and semantics to
define automation objects which represent the entities of the modeled production system;
this can range from a small screw of a robot to a complete construction hall. By utilizing
AML for MDE, data can be exchanged via a standardized common data format that can
be read by all involved engineers and is mappable to formats of other existing software

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

tools. Nevertheless, the process of sharing information between engineers, their software
tools and systems is far from being considered as trivial since each engineering tool used
to modify data usually utilizes a proprietary data format that is tailored to the tool or
system [51]. Basic import and export functions are typically provided, but in order to
use an open data exchange format such as AML the engineering data has to be converted
into the format used by the engineering software tool. In order to fully utilize AML as a
supported data exchange format, the engineering tools would have to be adapted. AML
itself is just a data exchange format stored in the form of an XML file and therefore
the engineering process differs only by switching from several data sources to one data
source in the form of a file. This AML file also has to be maintained and shared among
engineers in order to avoid duplicated or lost information. Therefore, in order to achieve
a central data source that is used by all stakeholders involved and would store data
losslessly, AML itself has to be stored in a central data storage solution accessible by all
engineers and their according tools and systems. This data storage solution has to be
efficient in storing AML model data and provide an open access to the data so that it
can be used by engineers working in various domains and their according software tools.

1.2 Problem Statement

In order to efficiently use a data exchange format such as AML for MDE projects, an
efficient storage solution which improves the process of sharing data among different
engineers of the MDE process is needed. In particular, a centralized storage solution for
a common data exchange format such as AML omits the additional overhead of sharing
data. Figure 1.1 shows the engineering process which uses a centralized data storage
solution which is accessible for all involved engineers. Storing the AML model data in
a central data store would keep the model up-to-date for every engineer involved. In
addition, a concurrent data store allows for the tracking of changes which would avoid
arising problems as a result of incompatible plan data. By utilizing such AML model data
storage solutions, the overall work flow for engineering teams could be improved, leading
to a more streamlined and less complex development. However, indicators need to be
established for the evaluation of different data storage paradigms and comparison of their
advantages and disadvantages as well as for measuring the performance characteristics of
these paradigms.

The main stakeholders of this thesis can be categorized into four groups. The first
stakeholder group consists of engineers of different disciplines such as electrical, mechanical
or software engineering which face data exchange process problems directly. The second
category–the project managers–are typically responsible for project planning, monitoring
and controlling as well as team coordination. Project management itself deals with
problems such as deadlines and time constraints and is therefore also directly influenced
by a problematic data exchange process. The third category are tool developers which
focus on the design and creation of software products that can be used in the processes
of MDE. These developers face problems during the implementation such as choosing a

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Expected Results

Central
Data
Store

Plant Planner

Electrical Engineer

Software Engineer

M
echanical Engineer

Central
Data
Store

Figure 1.1: Engineering Process with Central Data Storage

data storage solution for MDE model data. The fourth group are researchers and domain
experts which provide input and findings to the area of MDE.

1.3 Expected Results

The expected outcome of this thesis is a performance evaluation design. This design
can be used to measure the performance of different data storage paradigms for storing
and querying AML model data. For the performance evaluation, data storage solutions
will be selected based on their applicability to support the specific data model structure
of AML. The performance evaluation will focus on data storage CRUD operations (e.g.
Create, Read, Update, and Delete operations) use cases. Furthermore, the example AML
input data will be provided by research experts of the Otto-von-Guericke University
Magdeburg, Germany that created this AML model as an academic demonstration and
testing project with focus on a production system [37]. The comparison will provide
a foundation for choosing a data storage paradigm for managing MDE model data, in
particular AML model data.

The following steps will be executed in order to achieve the expected results of this thesis:

The first step is to identify suitable data storage paradigms for managing MDE model
data. Therefore, common data storage paradigms that are suitable for analysis will be
selected. Based on the result list, a subset of specific database implementations that
look promising to be able to support the efficient storage of AML model data will be
defined. Furthermore, performance indicators that are used to measure the efficiency and

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

speed of the data storage paradigm have to be selected . These indicators will be derive
from the defined use cases since the outcome of this thesis is an evaluation of the chosen
paradigms for managing MDE model data.

Secondly, use cases have to be defined which can be used for the performance evaluation.
In particular, a set of CRUD operations for AML model concepts will form the list of
use cases.

Based on the chosen database types and use cases, a prototype will be designed and
developed that can be utilized to store an example MDE model. In particular, this
prototype design will use AML models. It will provide a suitable software architecture
that can be transparently used from the underlying database technology and will be able
to execute defined use cases on the database implementations. Furthermore, the prototype
allows for a performance evaluation based on the defined performance indicators. The
execution of this performance evaluation leads to different results which will be compared
in the last part of this thesis.

A discussion of the performance of the proposed data storage paradigms for managing
MDE model data based on the results of the performance evaluation will form the last
part of this thesis The outcome of this part should be a detailed comparison between the
performances of the chosen data storage implementations for the defined use cases on
the MDE data exchange format AML.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2 defines the concepts used in this thesis and describes the related work
this thesis is based on.

• Chapter 3 defines the research questions which will be answered in the discussion.

• Chapter 4 explains the research approach and methodology used for this thesis.

• Chapter 5 defines the use cases for the performance evaluation.

• Chapter 6 gives an in-depth discussion about the prototype implementation which
is used to execute a performance evaluation based on different storage paradigms.

• Chapter 7 describes the process of the performance evaluation which is executed in
this thesis.

• Chapter 8 discusses the results of the performance evaluation of Chapter 7 based
on defined performance indicators.

• Chapter 9 concludes the thesis by summarizing the limitations of the implemented
prototype and provides an outlook on possible future work based on the prototype
implementation executed in this thesis.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Related Work

This chapter 2 provides an overview of the related work which serves as a source of
basic knowledge relevant to this thesis. Furthermore, the context and area of this thesis
are established. Section 2.1 introduces the concept of Multidisciplinary Engineering
(MDE) by presenting a general overview and Section 2.2 provides an introduction to
Automation Markup Language (AML) by describing the approach and its structural
overview. Different data storage paradigms that can be used to manage MDE data will
be explained in Section 2.3. Lastly, Section 2.4 defines the process of benchmarking data
storage paradigms by giving a detailed introduction on how to measure the efficiency
and suitability of different data storage paradigms for MDE data.

2.1 Multidisciplinary Engineering

According to Biffl et al. [10], MDE is an area in modern engineering where engineers
from multiple engineering disciplines need to work together in order to create a Cyber-
Physical Production System (CPPS) [10]. CPPS are systems where computational
entities collaborate with the surrounding physical world and its processes as well as
providing data or accessing it on the internet [41]. For example, as stated by Moser et al.
in [43] industrial production automation systems consist of manufacturing systems which
construct complex products and goods by combining smaller parts. These production
lines are used in the car or furniture industry and allow for autonomous manufacturing
processes. Typically, during MDE processes different engineering tools and systems are
used [10]. MDE is used in engineering projects where systems, for example a production
line or a power plant, are created [9]. The two main engineering disciplines in the
1950s were mechanical and electrical engineering [10]. With the introduction of logical
engineering (e.g. software engineering) in the years following 1950, the engineering process
has become much more complex. Additionally, all engineering disciplines have become
more specialized and developed their own methods, models and terminologies. The

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

current state of engineering processes is a result of all aforementioned factors combined:
modern CPPS are complex and not trivial to manage. By providing general rules and
applications that aim at streamlining the process of MDE the engineering itself becomes
more usable for engineers and saves time during the execution of the engineering project.

As defined in [10], talking about MDE also implies talking about the following disciplines:

• Mechanical engineering, which is one of the oldest engineering disciplines and covers
areas such as physics, mathematics and material sciences.

• Electrical engineering, which deals with the study, design and conception of systems
that include electricity.

• Logical Engineering (Software Engineering), a discipline where engineering is applied
to the conception of software systems.

Production Systems Engineering

Production Systems Engineering (PSE) can be described as a part of MDE. The main
goal lies in providing quantitative and analytic methods for the analysis, continuous
improvement and design of production systems [10]. By utilizing terms such as bottleneck,
leanness and continuous improvement emerged with detailed production data, PSE offers
design and managing metrics aiming at providing highest efficiency and performance.
PSE follows a life cycle process [8].

Design Planning Engineering Installation

Commissioning
Use
&

Maintenance
Decommissioning

1 2 3 4

5 6 7

Figure 2.1: PSE Process

This process–shown in Figure 2.1–includes the system design phase (Pos. 1), the planning
phase (Pos. 2), the engineering phase (Pos. 3), the installation phase (Pos. 4), the
commissioning (Pos. 5), use and maintenance (Pos. 6) and decommissioning (Pos. 7).
In addition, PSE projects can traverse back from the use and maintenance step to
the planning and engineering phase due to problems and limitation in the execution.
All these steps pass data to the subsequent step which involves sharing data between
different engineers and their used tools. As different engineers have different views on
the engineering project, they usually do not share the same plan. This results in several
problems in terms of exchanging planning data and communicating on the project between

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Automation Markup Language

two different engineering departments. Therefore, a data format which can be used to
model the whole system by providing object-oriented concepts can be an improvement
for that particular area of MDE [18]. By agreeing to use this data format as a central
exchange format, engineers of all disciplines can communicate with one another by using
it. It would eliminate the need for exchanging data in different data formats between
different engineering departments. Makris and Alexopoulos [35] propose a prototype AML
server which aims at providing a central storage solution for AML model data. The focus
lies on providing a central server for collaborative computer-aided production engineering
processes that enables the interaction of manufacturer and supplier companies. A data
exchange format which is relevant to this thesis will be introduced in Section 2.2.

2.2 Automation Markup Language

AML is a data exchange format for MDE based on the Extensible Markup Language
(XML), which was first introduced by Graeser et al. [25]. AML is aimed specifically
for the purpose of providing a common data exchange format for engineering data and
is therefore particularly useful for the area of MDE as it aims at solving the problem
of having to deal with different plan data for different engineering departments [21].
According to Drath et al. [19], AML stores information about plants in terms of structure
(topology and geometry) and behaviour (logical and kinematics). Furthermore, as stated
in [40] by Miriam and Drath, AML is able to store vendor independent interlinked
engineering data.

2.2.1 Historical Overview

The process of MDE involves engineering of different domains in a combined effort. Before
the concept of MDE came up, the engineering steps used for engineering projects were
strongly separated [10].

A strong separation provides the benefit of having distinct steps for each part of the process.
However, a negative aspect is that the communication and exchange of information
between those separated processes is more difficult in comparison to a homogeneous
process. The problem occurs for the exchange of the data between all different engineering
tools. According to Drath [18], this exchange process is a significant bottleneck of the
PSE process.

In order to solve this problem, Daimler AG evaluated different data exchange formats [18].
Based on this evaluation, Daimler AG initialized the development and standardization
of AML. Is is intended to be used as a standardized data exchange format for plant
engineering [18]. This standardization was initialized in a industry consortium founded

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

with the companies ABB1, KUKA2, Rockwell Automation3, Siemens4, netAllied5 and
Zühlke6 and on the scientific side the University of Karlsruhe7 and the University of
Magdeburg8 in 2006 [18]. This consortium founded an organization with the intent to
further standardize and develop AML.

2.2.2 Approach

AML is used to describe the components of a production system of plants [25]. Based
on the actual hierarchy of components, a described object can have sub-components
and also ancestor-components (e.g. being part of something bigger). These components
can range from a small screw, a production machine or a complete production line. It
is possible to describe these components using different levels of detail. In terms of
software engineering, AML is a data exchange format which follows the object-oriented
and template-based approach.

AML itself utilizes different standardized aspects to describe the components as well as
its structure and properties [18]:

Computer Aided Engineering Exchange (CAEX)

CAEX is a data format developed by RWTH Aachen in 2002 with industrial support
of the ABB cooperation [18]. Its intended purpose is to provide a vendor- and system-
neutral data format that allows to store hierarchy information of engineering objects or
entities. CAEX can be used for a production system to represent the hierarchy in the
plant (e.g. from production line to production machine and a particular part of the small
machine). Basically, CAEX provides a way to represent the engineering objects and
entities as the object-oriented paradigm is providing in the software development world
[18]. Therefore, the concepts of inheritance, relations, instances, class libraries, instance
hierarchies, attributes and interfaces are supported in CAEX. It is important to state
that CAEX does not only support plant or production systems but can also be applied to
all forms of hierarchical objects which correspond with each other in an object-oriented
manner. CAEX is based on XML and can be verified using a XML Schema Definition
(XSD) file. As of writing this thesis, the CAEX productive version used for AML is
Version 2.15.

1Asea Brown Boveri AG new.abb.com
2Kuka AG www.kuka.com
3Rockwell Automation, Inc. www.rockwellautomation.com
4Siemens AG www.siemens.com
5NetAllied Systems netallied.de
6Zühlke Technology Group AG www.zuehlke.com
7Karlsruhe Institute of Technology www.kit.edu
8Otto von Guericke University Magdeburg www.uni-magdeburg.de

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Automation Markup Language

Collaborative Design Activity (COLLADA)

COLLADA is an open and interchangeable data format for 3D applications [5]. The data
format was originally developed by Sony Computer Entertainment9 but has become a
shared copyright between Sony and the Khronos Group10, which is an industry consortium
dealing with the development of open industry standards and APIs. COLLADA is XML
based and defines an XML schema for exchanging data. The data can be seen as digital
assets of various graphical software applications. The COLLADA data format standard
is compatible with many software tools and game engines including Adobe Photoshop,
Blender, Cinema 4D, Unity, ArchiCAD, and Autodesk11.

PLCopen XML

PLCopen is an industry organization which independently aims at developing efficiency
and industrial standards in automation based industries. PLCopen’s main area interest
is the development of logic-focused industry standards as defined in IEC 61131-3 [18].
Additionally, they provide an XML schema–PLCopen XML–which can be utilized to
describe logical processes in plant and production systems including sequences, internal
behaviour of processes and input/output connections. Therefore, this schema is used
to define attributes of plant and production systems in AML. PLCopen XML was first
published in 2005 and has since been updated several times. As of writing this thesis,
the current version of PLCopen XML–used in AML–is version 2.01.

2.2.3 Structure

As AML is XML data, it is by definition semi-structured data. Listing 1 shows a simple
skeleton of an AML file.

As shown in Listing 1, the data is structured in an XML form where the XML tags
correspond to the object hierarchy defined in CAEX and the attributes are used to define
relationships. The usage of parent and child XML elements makes it easy to see–in
this example file–how the data is structured. In comparison to the example shown in
Listing 1, bigger files with several thousand lines of data are much more complex and
therefore usually require more effort for humans to understand their overall structure.
Nevertheless, as machines typically prefer structured data, complex files are perfectly
processable by them and only require more computing power or longer execution times.

In addition to the example shown in Listing 1, Figure 2.2 shows the introduced modelling
concepts in their relationship to each other. This hierarchy shows the parent elements and
their according child elements. The modelling concepts themselves also provided inter-
element links which combine several child elements via links (i.e. graph like structure).

9Sony Computer Entertainment sony.at
10Khronos Group, Inc. khronos.org/
11Collaborative Design Activity khronos.org/collada

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

<?xml version="1.0" encoding="utf-8"?>

<CAEXFile FileName="CAEX_simple.aml" SchemaVersion="2.15">

<InstanceHierarchy Name="ManufacturingSystem">

<InternalElement Name="firstScrewdriver"

RefBaseSystemUnitPath="LibCT/ElectricScrewdriver">

</InternalElement>

<InternalElement Name="secondScrewdriver"

RefBaseSystemUnitPath="LibCT/ElectricScrewdriver">

</InternalElement>

</InstanceHierarchy>

<InterfaceClassLib Name="MyInterfaces">

<Version>1.0</Version>

<InterfaceClass Name="Energy"

RefBaseClassPath="BaseInterfaceClassLib@

AutomationMLInterfaceClassLib/

AutomationMLBaseInterface"/>

</InterfaceClassLib>

<RoleClassLib Name="ManufacturingRoleClasses">

<Version>1.0</Version>

<RoleClass Name="Tool"

RefBaseClassPath="BaseRoleClassLib@

AutomationMLBaseRoleClassLib/

AutomationMLBaseRole"/>

</RoleClassLib>

<SystemUnitClassLib Name="LibOfCommonTools">

<Version>1.0</Version>

<SystemUnitClass Name="ElectricScrewdriver">

<ExternalInterface Name="EnergySupply"

RefBaseClassPath="MyInterfaces/Energy"/>

<SupportedRoleClass RefRoleClassPath=

"ManufacturingRoleClasses/Tool"/>

</SystemUnitClass>

</SystemUnitClassLib>

</CAEXFile>

Listing 1: Example for AML File

The example shown in Listing 1 includes all modelling concepts that are relevant to this
thesis. The following list introduces these concepts [25]:

CAEXFile / AMLFile: This concept is the parent entity which holds all properties and
elements relevant to the engineering project. Its main purpose is to contain hierarchical
information about objects of the plant model which should be represented. For example,
a CAEXFile is the planning file of a complete plant engineering project.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Automation Markup Language

CAEX / AMLFile

InstanceHierarchy SystemUnitClassLib

InterfaceClassLib RoleClassLib

InternalElement InternalElement

InternalElement

SystemUnitClass SystemUnitClass

InterfaceClass InterfaceClass

SystemUnitClass

InterfaceClass

RoleClass RoleClass

RoleClass

Figure 2.2: AML modelling concepts in its relationship structure

InstanceHierarchy: This concept is used to store the topological data of projects and is
therefore the core of AML. As InstanceHierarchies are used to store all engineering-related
information, they contain all data objects and their according properties as well as the
relations to other objects and entities. For example, an InstanceHierarchy can be used
to define a manufacturing system in a production line. InstanceHierarchies are located
directly inside an CAEXFile as top-level concepts.

InternalElement: This concept can be seen as objects that represent real or logical
entities e.g. robots or pumps. For example, an InternalElement can be a actual
instance of a small tool in a manufacturing system. InternalElements are used inside
SystemUnitClasses or another InternalElement.

SystemUnitClassLib: This concept contains a library of plant entities (SystemUnit-
Class) where one CAEXFile can have as many plant entity libraries as it requires. For
example, a SystemUnitClassLib can be used to describe a library of all tools used in the
production system. As the InstanceHierarchy, this concepts is located directly inside an
CAEXFile as a top-level concept.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

SystemUnitClass: This concept describes a plant entity and captures all its relevant
properties and relations. These entities are concrete objects and are typically reused. For
example, SystemUnitClasses describe a specific type of tool in a manufacturing system.
SystemUnitClasses are located inside a SystemUnitClassLib.

RoleClassLib: This concept is used to capture all roles (i.e. abstract characteristics)
which are relevant to define the plant entities in the project. For example, all tools used
for a manufacturing system have specific roles assigned and these roles are all contained
in a RoleClassLib. As it is a library of RoleClasses, it is directly located under the
CAEXFile and can be considered to be one of the four top-level concepts.

RoleClass: This concept describes a role of plant entity which does not include technical
definitions but rather gives a general category in order to structure plant entities in their
according RoleClasses. For example, all entities in a manufacturing system that are tools
have the role Tool assigned which is represented by a RoleClass. A RoleClass is located
directly inside a RoleClassLib.

InterfaceClassLib: This concept consists of all connections between plant entities. For
example, all connections in a manufacturing system (e.g. energy, data) can be defined
in an InterfaceClassLib. InterfaceClassLibs are top-level concepts as they are located
directly under CAEXFile.

InterfaceClass: This concept defines a connection between plant entities and is located
inside an InterfaceClassLib. An InterfaceClass can represent an energy connection
between two components in a manufacturing system.

In order to be able to edit or manage AML model data, several software tools are available.
The following list includes typical software tools used for managing AML data:

AutomationML Editor12 is a software tool developed by AutomationML e.V. 13 which
allows to create, visualize and edit AML files. It is mainly suited for evaluation purposes.

AML.hub14 is a central software platform for exchanging engineering data in the area
of industry 4.0 developed by logi.cals15 and the CDL-Flex research laboratory16 at the
Technical University of Vienna.

COMAN17 is a project management tool for MDE projects aimed at providing a
synchronous view for all stakeholders of the project.

12AutomationML Editor automationml.org/o.red.c/tools.html
13AutomationML e.V. - open AutomationML society automationml.org
14AML.hub amlhub.at
15logi.cals GmbH logicals.com
16Christian Doppler Laboratory

Software Engineering Integration for Flexible Automation Systems

cdl.ifs.tuwien.ac.at
17Coman GmbH coman-software.com

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Data Storage Paradigms

RF::Suite18 is a software suite for virtual plants and can be used for different project
steps such as simulation, visualization, development and execution. AML is used as an
import format for plant data.

Siemens TIA Portal V1419 is part of the Siemens engineering framework and allows
for exchanging hardware configuration data via AML.

2.3 Data Storage Paradigms

Data storage paradigms, or also called data store models, are the basic concepts on
what a database is based on [3]. Data stores structure data differently based on the
data storage paradigm they are following. These different data storage paradigms offer
advantages and disadvantages for specific tasks and requirements. In order to select
data storage paradigms which are relevant to the topic of storing and querying MDE
models, a collection of common data storage paradigms has to be established. In this
thesis, the focus lies on the data storage paradigms proposed in the following sections.
These paradigms were elicited from interviews with MDE domain experts and selected
as relevant data storage paradigms. The following lists provides an introduction to these
selected data storage paradigms and introduces to implementation examples:

2.3.1 Semi-Structured Data Paradigm

In order to define the semi-structured data storage paradigm, the concept of semi-
structured data has to be introduced. Buneman [15] defined semi-structured data as
data that does not strictly follow a structure as it is typically contained in the data itself.
The most prominent example for semi-structured data is XML [14]. XML is a markup
language which can be used to define hierarchical data structures in a text document.
Due to the generality of XML, it is widely used across the internet and in different
areas of engineering. As AML is based on XML [25], semi-structured data is already
used in the area of MDE. JavaScript Object Notation (JSON) is another example for
semi-structured data.

Based on this introduction of semi-structured data, the semi-structured data storage
paradigm utilizes semi-structured data as a basis to store data. The following subsection
introduces to an example of a database implementation which is based on the semi-
structured data storage paradigm utilizing XML.

18RF::Suite eks-intec.de/rf.html
19Siemens TIA Portal V14

new.siemens.com/global/de/produkte/automatisierung/industrie-software/

automatisierungs-software/tia-portal.html

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

XML-Based Database

XML-based databases or XML databases are data persistence software systems that
use the XML format for specifying and storing data [28]. XML databases are specific
document-oriented databases or also called Non Structured Query Language (NoSQL)
(see Section 2.3.3) databases due to the fact that Structured Query Language (SQL) (sse
Section 2.3.2 is not used for querying and managing data [28].

As most other data storage solutions, data can be queried by using a specific data query
language. Therefore, XML databases use a querying languages such as XML Query
Language (XQuery), which is a World Wide Web Consortium (W3C) recommendation20.
XQuery can be used to extract and edit parts of big XML-databases or documents. In
general, XML-databases are not as widely used as other databases (such as relational
databases) but they are relevant21 in the industry of MDE [28].

Example: BaseX

BaseX is an open-source implementation of the XML-based database paradigm22. BaseX
is implemented using the Java23 programming language. For accessing data in BaseX
XQuery is used. BaseX implements the XQuery 3.1 processor and fully supports the
newest full text implementation defined by the W3C.

BaseX is structured in three parts:

BaseX Client/Server: The BaseX server implements the database functionality in
a small package which does not depend on other external libraries. By implementing
a client server architecture, it offers a central storage solution for XML documents.
Additional features such as a REST server (to query and edit the data) and a WebDAV
Server to access data using a web browser are also included in this part of the database.

XQuery Processor: In order to be able to provide efficient querying of XML, BaseX
implements an XQuery processor that supports, at the time of writing this thesis, XQuery
version 3.1. By providing different modules which are accessible by the database user, this
processor offers the key functionality which makes BaseX an ideal solution for managing
a huge number of XML files.

BaseX UI: The graphical user interface provides a way to visually inspect the main
database feature and the data stored in the databases. Additionally, a powerful query
editor is implemented that enables the user to execute queries on the connected database.

20XQuery 3.1: An XML Query Language w3.org/TR/xquery-31
21DB-Engines Ranking: db-engines.com/en/ranking
22BaseX - The XML Framework basex.org
23Java Programming Language: https://www.java.com/

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Data Storage Paradigms

2.3.2 Relational Data Model Paradigm

As stated by Elmasri and Navathe in [20], relational databases provide a way to store and
manage data based on the relational model. This data model can be seen as the relational
data model paradigm. The relational model utilizes the concept of mathematical relations
by structuring the data in tables with different columns. Tables represent entities of
the data model containing columns (attributes of the entity). One row of the table is a
specific instance of the entity. Columns can contain keys which map to other columns in
different tables in order to represent a connection between the data. Based on a survey
among database market share24, relational database systems are the most widely used
data storage systems. The relational database paradigm offers a standardized query
language–Structured Query Language (SQL)–which can be used to retrieve data from the
data store. The following subsection provides an introduction to a relational database
implementation.

Relational Database

Relational database follow the relational data model paradigm by utilizing the relational
approach for storing and managing data. By structuring data into tables which represent
entities and columns which represent parameters of those entities the relational model
follows a straight forward approach on how to store data.

The general approach of the relational model is based on entities (tables) which have
parameters (columns) and relationships (links between the data). In order to achieve
that, the relational model introduces the concept of keys. Keys and relationships can be
defined as follows [20]: (a) Keys are used to uniquely identify instances of entities (a tuple
or row in a table) and links between those entities. (b) Relationships are interconnections
between tables via keys.

Relational databases usually follow the ACID principle. According to Elmasri and
Navathe [20], the ACID principle is defined as follows:

• The Atomicity property requires the database to guarantee that transactions of
databases either succeed or fail completely and leave the database unchanged. This
property must be guaranteed in every situation the database can be in.

• The Consistency property requires database transactions to transfer databases
only from a valid state into another valid state.

• The Isolation property requires the database to ensure that concurrent transac-
tions result in the same database state as if the same transaction were executed
sequentially.

• The Durability property requires the database to ensure that committed transac-
tions stay committed even in case of a system failure.

24DB-Engines Ranking: db-engines.com/en/ranking

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

To manage the data stored in relational databases a query language is needed [20].
Therefore, most of the implementations use SQL which allows the user to maintain and
query the data stored in the system.

Relational Database Management System (RDBMS) are the actual implementations
of the relational database model. The following subsection introduces an example
implementation of a RDBMS:

Example: PostgreSQL

PostgreSQL is an open-source implementation of the relational database paradigm25. It is
designed to be used from small applications to large data warehouses due to its simplicity
and flexibility. The developer of PostgreSQL–the PostgreSQL Global Development
Group–states that this database system needs minimal maintenance effort due to the
provided stability. Furthermore, PostgreSQL is designed to be extensible providing, for
example, the option to define user specific data types.

2.3.3 Document-oriented Paradigm

According to Han et al. [29], document-oriented databases, also known as document
stores, are designed to support mass storage of data provided in a semi-structured data
format. As document stores are part of the NoSQL database category, they do not utilize
a relational model and SQL to store and retrieve information.

Document-oriented Databases

The main design goal of a document-oriented database is to manage information which
is provided in a document-oriented way [29] e.g. utilizing a JSON document or an XML
document. This document-orientation can also be seen as semi-structured data and
therefore, document-oriented databases are a subset of the main data storage paradigm
semi-structured data. Data is stored in documents which provide a structure for the data
by utilizing different data formats such as XML or JSON. Furthermore, document stores
are NoSQL databases, which do not use SQL to manage data stored in the database.
Document-oriented databases also utilize a query language to retrieve data. This query
language is not standardized and differs between implementations of this paradigm.

Example: MongoDB

MongoDB26 is an implementation of the document-oriented database paradigm [6]. The
format of the internal documents used by MongoDB is BSON27, a binary representation
of JSON documents. In contrast to JSON, more data types are provided by BSON.

25PostgreSQL postgresql.org
26MongoDB: mongodb.com
27Binary JSON: http://bsonspec.org/

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Data Storage Paradigms

MongoDB itself provides functionality to execute data management operations such as
creating, accessing, updating and deleting of data.

2.3.4 Graph Data Paradigm

Angles and Gutierrez [3] defined that in graph databases a graph is used to model the
data structure for schema and instances. According to Vicknair et al. [56], it is simple
to store a graph in a relational database but the problem is the querying performance.
As data structures may contain cyclic links between data entities, fitting this data into
a relational data store approach could lead to performance disadvantages. Therefore,
representing the data in graph-like structures can improve the (querying) speed of the
database [56]. The graph data paradigm utilizes this graph-based concept to store and
manage data in the data store.

Graph Databases

Graph databases are the implementation of the graph data paradigm which utilize a
graph as their main data store model. In contrast to the relational model, the following
concepts are used to store data [3]:

• A node represents an entity which can be seen as a row or a record in a relational
database.

• Edges build direct relationships between different nodes by connecting them. This
offers a better traversal speed in order to find connected entities.

• Properties can be seen as general attributes for nodes which describe the node in
more detail.

In contrast to the traditional relational database model, graph databases require a specific
query language that supports accessing and modifying data in the database. There are
several implementations of these languages–the most common is Cypher used in Neo4J
[32], SPARQL [44], GraphQL [30] and Gremlin [32]. A comparison of common graph
databases is shown in [2]. For the purpose of this thesis, one graph database is selected
(see Section 2.3.7).

The following subsection introduces an example graph database implementation.

Example: Neo4J

Neo4J28 is an implementation of the graph database paradigm. It is aimed at providing a
data storage solution that focuses on the connections between the stored data by storing
everything in the form of an edge, node or attribute (property).

The used querying language is Cypher, which is also developed by Neo4J, Inc.29. Cypher
28Neo4J Database: neo4j.com
29Neo4J Cyper Query Language neo4j.com/developer/cypher-query-language

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

offers the capability to query and update the data in the stored graph [32]. The focus
lies on simplicity and compatibility to express complex queries in a relatively simple way.
This simplicity is achieved by providing the option to label node which can be used inside
a database query.

2.3.5 Hybrid Data Storage Paradigms

Hybrid data storage paradigms are a combination of two or more data storage paradigms
in a single data storage implementation [24]. By combining the properties of several
data storage paradigms, the advantages of two or more data storage paradigms can be
bundled into one.

Hybrid Databases

According to Goyal et al. [24], hybrid databases are abstraction layers which combine
relational database models with NoSQL-like paradigms. Additionally to the above defined
paradigms, there are some hybrid databases which combine features of two or more
paradigms. The goal is to combine the best of the different data storage paradigms
approaches in order to provide a more suitable data storage solution for specific cases of
application.

The following subsection introduces an example hybrid data store.

Example: ArangoDB

ArangoDB30 is an implementation of a hybrid data storage paradigm. It is a combination
of the graph and document data storage paradigm with the addition of features from
key/value stores. Furthermore, a unified (e.g. independent from the underlying data
model approaches) query language (ArangoDB Query Language (AQL)) is used to
enhance the process of accessing and managing data. AQL is an SQL-like data query
language.

2.3.6 Linked Data Paradigm

As stated by Bizer et al. in [12], linked data is interlinked to other data sets and can be
seen as structured data. Based on this, the linked data storage paradigm focuses on the
connection between the data sets. Additionally, linked data is typically identifiable by
some form of id. Due to the fact that the data is interlinked with other linked data it is
queryable using semantic queries. Semantic queries not only provide a way to retrieve
data stored in the linked data but also meta-data (e.g. data about the data) about the
linked data which can be used to reason about the data itself. SPARQL Protocol And
RDF Query Language (SPARQL)31 is the W3C recommendation to formulate semantic
queries on the web and it is based on the SQL syntax. Linked data is particularly useful

30ArangoDB: arangodb.com
31SPARQL Query Language for RDF w3.org/TR/rdf-sparql-query

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Data Storage Paradigms

Data Storage Paradigm Implementation

Graph Data Neo4J

Relational PostgreSQL

Hybrid ArangoDB

Semi-Structured BaseX

Document-oriented MongoDB

Linked Data DBPedia

Table 2.1: Data Storage Paradigms Relevant for this Thesis

for the web because it is linked together which allows persons and machines to explore
the data.

Example: DBPedia

DBPedia32 is an example of linked data which extracts content from Wikipedia33 and
makes it available in a structured and interlinked form. This provides the benefit of
finding answers to questions which require information from data spread across multiple
Wikipedia articles. Another benefit is that DBPedia does not only provide access to the
content of Wikipedia but also provides connections to other information provided on the
internet (e.g. GeoNames34). These links are useful for applications by providing much
more information than a standard non-interlinked data set would provide.

2.3.7 Relevance to this Thesis

Section 2.3 provided an overview of common data storage paradigms. Table 2.1 lists all
data storage paradigms introduced in Section 2.3. For the performance evaluation of this
thesis, these paradigms must be analyzed and a selection must be executed based on
their relevance to store and query MDE model data. Therefore, this section deals with
the relevance of the introduced data storage paradigms to the work of this thesis.

In order to decide whether a data storage paradigm is well suited to store and query MDE
models efficiently, criteria have to be defined. As theMDE model data format addressed
in this thesis is an AML model, the relevance must be based on attributes and properties
of AML. The following listing defines criteria which are used to select the relevant data
storage paradigms. In addition, the selected relevant data storage paradigms and their
implementations are proposed.

• Hierarchical Structure

As shown in [25], the data structure of AML provides internal links between the
stored data. These internal links are part of the AML specification and therefore,

32DBPedia wiki.dbpedia.org
33Wikipedia www.wikipedia.org
34GeoNames Data Set: geonames.org

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Data Storage Paradigm Implementation

Graph Data Neo4J

Semi-Structured Data BaseX

Table 2.2: Chosen Data Storage Paradigms for Managing MDE Model Data

AML can be seen as a graph. Therefore, a data storage paradigm for AML should
also natively support a graph structure in order to be able to query efficiently
and fast. As stated in Section 2.3.4, graph databases provide exactly this kind of
functionality by supporting graph-like data structures. The data storage paradigm
Graph Stores is therefore relevant for managing MDE model data. In particular,
the selected implementation of the paradigm will be Neo4J because of its high
relevancy in the market.

• XML based Format

AML files are typically stored by using the filetype .aml which is by definition
XML [25]. As AML is the chosen MDE model which has to be managed, a data
storage paradigm that supports XML data is needed in order to efficiently manage
AML data. As shown in [28], BaseX provides an efficient solution to query and
transform single or multiple XML documents stored in a database. Due to the
fact that BaseX is a highly efficient XML storage solution with features, such as
querying and managing of the stored data, it is clear that this implementation of
the XML-based paradigm is an obvious choice. Furthermore, according to Grün
shown in [26] and [27], BaseX is capable of storing an querying large XML files.
Therefore, BaseX will be another relevant model data management paradigm.

Table 2.2 shows the data storage paradigms and their implementation chosen for the
performance evaluation of this thesis.

At the time of writing this thesis, the relational data storage paradigm is the most
commonly used paradigm in informatics35. Therefore, using this data storage paradigm
in the performance evaluation of this thesis would be a rational choice. However, AML
model data is used that is based on semi-structured data and provides a graph-like data
structure. These two attributes lead to the conclusion that data storage paradigms which
mainly focus on providing a data storage solution for semi-structured data or graphs
offers the better suitability for this work. Therefore, no relational data storage solution
will be used in the performance evaluation. Evaluating the performance for relational
data storage paradigms is up for future work (see Chapter 9).

Other data storage paradigms such as document-oriented (Section 2.3.3) or hybrid
databases (Section 2.3.5) would also be able to support model data in the format of AML.
These data storage paradigms are left for future research as the focus lies on the graph
database and the XML database paradigm.

35DB-Engines Ranking: db-engines.com/en/ranking

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Data Storage Performance Benchmarking

2.4 Data Storage Performance Benchmarking

As the main purpose of this thesis is to find out which of the two selected data storage
paradigms is better suited for managing MDE model data, an evaluation process has
to be established. This evaluation process has to determine whether one paradigm
is better suited than the other. Therefore, this process can be seen as performance
benchmark. In [4], database benchmarks are defined as important tools for researches
to make comparisons between different database systems. Due to the fact that there is
no general rule for the prototypical design used to execute a database benchmark, it is
not possible to define a common architecture. Nevertheless, a general abstraction of the
main parts a benchmark consists of is provided in the following listing.

• Input Data

Data storage benchmarks usually utilize some form of input data which will be
used for the execution of the benchmark. Based on the given input data, the
benchmark will execute different steps to process the data and therefore provide
different performance results. Therefore, input data can be seen as the basis for
every performance evaluation.

• Execution Platform

The data storage benchmark has to be performed on an execution platform which
usually is a computing device (e.g. laptop, server). Differences in computation speed
may influence the results of the performance evaluation. If eligible, executing the
benchmark on different compute devices will enhance the results of the benchmark.

• Executing Program

As data storage benchmarks operate on data storage implementation, an executing
program (i.e. the database implementation) is needed. This executing program
runs on the execution platform (or in some form of virtualization environment) and
utilizes the computation resources of this platform.

• Measurement Tool

In addition to the computation power provided by the executing platform and
the data storage implementation another measurement tool is needed. This mea-
surement tool has the following task: gathering the results and measuring the
performance of the data storage paradigm under test.

• Use Cases

Use cases provide a set of operations which are measured by the performance bench-
mark. These use cases can vary from basic CRUD (i.e. creating, reading, updating
and deleting data) functions to more complex use cases which combine multiple
CRUD operations. These more complex use cases are typically representations of
real world business procedures.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Indicator Unit Measurement

Duration of Operation Seconds Measure Time

Size of Input Data Bytes Storage Calculation

Complexity of Input Data Level Using a Tool

Number of Operations - -

Compute Performance of Executing System - -

RAM Memory Usage - -

Storage Memory Usage - -

Table 2.3: General Performance Indicators of Data Storage Benchmarks

Indicator Unit Measurement

Duration of Operation Seconds Measure Time

Size of Input Data Bytes Storage Calculation

Complexity of Input Data Level Using a Tool

Table 2.4: Relevant Performance Indicators

Furthermore, performance indicators have to be defined in order to define how results
can be measured. This will be done in Section 2.4.1

2.4.1 Data Storage Performance Indicators

In data storage performance evaluations (i.e. benchmarks) a set of performance indicators
has to be defined in order to reason about the performance of a database. In order
to properly evaluate the data storage performance of different database paradigms (i.e.
benchmark execution), researcher define different data storage performance indicators
to reason about performance characteristics, the particular context of the respective
domain and data model under investigation [4][54][50]. Therefore, Table 2.3 lists general
performance indicators used in database performance evaluations. This list is based on
performance indicators used in database benchmarks and related work as conducted in
[4], [54] and [50].

In addition to the performance indicators listed in Table 2.3, factors like the compute power
of the executing system and the used program can alter the results of the performance
evaluation. These factors will not be included in the results of the evaluation. As not all
performance indicators seem relevant for the performance evaluation of this thesis, Table
2.4 shows relevant performance indicators which are possible candidates used during the
performance benchmark. These indicators were selected based on their common usage in
other performance benchmark.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Research Questions

This Chapter discusses the research questions of this thesis. The answers to these
questions will be provided in Chapter 8. The answers will be based on the results of the
performance evaluation as defined in Chapter 7 and will utilize information provided in
Chapter 2. The main focus of the research questions is on the evaluation of data storage
solutions which are well suited to store and query Multidisciplinary Engineering (MDE)
model data.

3.1 RQ1 - Data Storage Paradigms for Multidisciplinary

Engineering

Which data storage paradigms are well suited to store and query models of
Multidisciplinary Engineering (MDE), such as Automation Markup Language
(AML)?

As stated in Section 1.2, a centralized data storage solution could improve the data
exchange process in the area of MDE. In order to be able to store and query MDE
model data in a central data storage solution, an underlying data storage paradigm must
be selected. Therefore, an analysis of data storage paradigms for MDE model data is
needed which should reveal promising candidates. This selection can be done by using the
characteristics of MDE model data–in particular Automation Markup Language (AML)
model data–and comparing them to the characteristics of the data storage paradigms. In
addition to analyzing the characteristics of MDE model data, finding appropriate data
storage solutions can be achieved by selecting common data storage paradigms which
are typically used in the context of software engineering. The focus of this research
question is on finding applicable data storage paradigms and establishing a set of criteria
for selecting a suitable data storage solution. This results in a list of paradigms which
are suitable for storing and querying MDE model data–in particular AML model data.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Research Questions

3.2 RQ2 - Software Architecture for Storing and

Querying Multidisciplinary Engineering Models

Which software architecture is well suited for storing and querying MDE
models, such as AML models, independently from the implementation of a
data storage paradigm?

This research question deals with designing a suitable software architecture which is well
suited for storing and querying AML model data. The software architecture has to be
established based on the attributes and properties of the data exchange format AML as
well as the used data storage solutions (BaseX and Neo4J). Additionally, this architecture
should allow for a flexible exchange of the underlying data storage solution. Furthermore,
it should be able to execute a performance evaluation which can be used to determine
which data storage paradigm and implementation is better suited for storing and querying
AML model data. Therefore, the performance evaluation infrastructure (i.e. the software
architecture) will be a prototypical design that provides flexibility in the exchange of
the underlying data storage solution. In addition to being easily exchangeable, it is
important that the performance evaluation process executed using this infrastructure is
reproducible and expandable for further additions to the performance evaluation process
(e.g. adding new use cases or additional data storage technologies, see Section 9.2). To
address this research question, a software architecture should be defined which can be
used to execute a performance evaluation

3.3 RQ3 - Performance Evaluation Method

How can a standard database performance evaluation method be adapted to
measure the performance of storing and querying MDE models, such as AML
models?

In order to determine the performance of the selected data storage paradigms and
their implementations, a performance evaluation has to be conducted. The performance
evaluation of this thesis will consist of executing a database performance benchmark using
example data provided by researchers of the Otto-von-Guericke Univeristy Magdeburg,
Germany1. This performance benchmark execution process is derived from standard
database performance evaluation methods (see [50] and [4]) and utilizes the prototypical
design, which is the result of RQ2. Furthermore, an analysis of the performance benchmark
results is needed. The results of this data analysis can be used as a basis for further
discussion. This analyzed benchmark data is likely to provide deeper insights and allows
for reasoning about which data storage paradigm is better suited for storing and querying
MDE model data. Therefore, the result of this research questions is a case study of

1University Magdeburg: uni-magdeburg.de

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. RQ3 - Performance Evaluation Method

how a performance evaluation method can look like. This case study is built-up by the
performance benchmark process an all its according steps.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Research Approach

This chapter describes the research approach used in this thesis. Section 4.1 discusses
the fundamental approach which is applied and provides the scientific background of
it. Afterwards, Section 4.2 explains the methodology used, which leads to the research
process.

4.1 Design Science Research Approach

Hevner et al. in [31] propose a Design Science approach for information system research.
Their approach is used as the fundamental research approach for this thesis. The Design
Science approach is not behavioural driven and differs therefore from the behavioural
research approach. It is not based on the creation and refinement of ideas coming from
the observation of phenomena inside an environment. In contrast, the Design Science
approach shows how IT artifacts and their evaluation can be utilized to gain deeper
insight to a defined problem. This insight can then be used to find an answer to a defined
problem which can then be used to solve this problem. In addition to Hevner et al.,
Wieringa also define a Design Science research approach for information system and
software engineering research which follows the same principles.

The artifacts used during the execution of the approach are defined by Hevner et al. [31]
as follows:

Constructs can be seen as vocabulary and symbols which provide the language in which
problems and their according solutions can be defined and communicated.

Models are defined as abstractions and representations.

Methods are described as algorithms and practices.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Research Approach

Instantiations are implemented and prototype systems.

In order to illustrate the process which is used to execute this research approach, Figure
4.1 shows its concepts and tasks which need to be executed in order to achieve the
proposed outcome of providing deeper insights to a defined problem of the research
process.

Business
Needs

Organizations

Application in the
Appropriate Environment

Additions to the
Knowledge Base

As
se

ss

Develop / Build

Re
fin

e

Justify / Evaluate

Applicable
Knowledge

FoundationsPeople

Environment IS Research Process Knowledge Base

Technology

Methodologies1

2

3

5

6

7

9

10

4 8

Figure 4.1: Design Science Approach Framework by Hevner et al. [31]

As shown in Figure 4.1, the research process is executed in cycles (1). Hevner et al. define
these cycles as Design Science research cycles and as an iterating process with the goal
of building (2) and evaluating (3) the previously defined IT artifacts. These artifacts are
based on two input areas, namely Environment and Knowledge Base.

The Environment (4) defines three categories which serve as business needs inputs to
the iterating IS process. The first category (5) describes the people and their respective
needs towards the research process. The capabilities and characteristics of the people
involved are relevant for the execution of the research process as they provide input in
the form of business needs. The second category (6) describes the organizations involved,
and their strategies, structures & cultures and processes. The third category describes
(7) the technology as well as the according infrastructure, applications, communication’s
architecture and development capabilities. All these categories build the relevant business
needs which form the first input to the research process.

The Knowledge Base (8) is split into two categories. The first category (9) describes the
foundations of the research process i.e. theories, frameworks, instruments, constructs,

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Adapted Design Science Research Approach

models, methods and instantiations. The second category (10) describes the used
methodologies i.e. data analysis techniques, formalism, measures and validation criteria.
These two categories form the applicable knowledge which is the foundation for the
research process and provides the second input source.

The information system research process itself is split into two parts:

Develop/Build (2): This part is the main task where the IT artifacts and their concepts
are modeled and built. These artifacts serve as one part of the result of the research
process.

Justify/Evaluate (3): This part executes an evaluation and justification process which
is called in a cyclic manner. This is done to improve and justify the artifacts built in the
other part of the process.

4.2 Adapted Design Science Research Approach

In order to achieve the expected result of finding a data storage solution which is well
suited to store and manage Automation Markup Language (AML) model data (see
Section 1.3), a methodological research approach has to be defined and followed. The
research approach of this thesis is based on the Design Science approach [31] as described
in Section 4.1. The main goal of the Design Science research approach is to develop
and evaluate artifacts and their design and to improve their functional performance by
iterating over them following the IS process cycle (see 1 in Figure 4.1). The resulting
artifact of this thesis is the design of a prototypical benchmark which will be used for the
performance evaluation of different data storage solutions. The research process as well
as the resulting artifact are based on the Environment and the Knowledge Base. The
Knowledge Base itself is defined by the current state of the art. Figure 4.2 shows the
Design Science approach used in this thesis in detail. The environment part illustrates the
business needs which are relevant to the research process, including the requirements of the
stakeholders (i.e. find a well suited data storage solution for a central Multidisciplinary
Engineering (MDE) model data store) as well as the technology and its capabilities
currently used (i.e. current situation of exchanging AML files without a central data
store) by the stakeholder (see Section 1.1). The Knowledge Base provides input to the
research process (i.e. research questions and evaluation criteria) based on known scientific
theories (i.e. related work)

These two parts are used in the research process in order to achieve the expected result of
finding deeper insight which can be used to determine a well suited data storage solution
for a central AML model data store (as defined Section 1.3).

The research process can be divided up into three parts that are described in the following
listing:

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Research Approach

Stakeholders

Technology

§

Requirement
Analysis

Prototype
Design

Evaluation

Related
Work

StakeholdersStakeholders

Environment & Business
Needs Research Process Knowledge Base

Requirements

Capabilities

Research
Questions

Evaluation

Crite
ria

Figure 4.2: Design Science Approach of this Thesis based on [31]

Requirement Analysis Based on the business needs and the research questions (defined
in Section 3) a requirement analysis to elicit the needs of the prototype design and the
evaluation will be executed. This includes a description and analysis of the use cases,
which form the basis for the performance evaluation. Furthermore, based on common
data storage paradigms and criteria provided by the characteristics of the AML model
data format, a selection of data storage paradigms will be executed. These data storage
paradigms are then used for the prototype design and performance evaluation executed
in this thesis.

Prototype Design for Evaluation In order to evaluate the selected data storage
paradigms used for storing and querying AML model data, a prototype will be designed.
This prototypical design includes a software architecture that allows for persisting data
independently from the underlying database technology. Therefore, the underlying
database solution can be flexibly exchanged. Additionally, a performance benchmark
component will be designed which can be used to execute a performance evaluation.

Evaluation Furthermore, an evaluation on the suitability of the selected data storage
paradigms for storing and querying AML model data will be executed. This performance
evaluation will use the prototype design as well as the defined use cases in order to
create performance results. In particular, these performance results of the selected data
storage solutions will be compared and a detailed explanation will be given about which
paradigms should be used for which use case. This leads to the conclusion of which data
storage solution is better suited to store and query AML model data.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Evaluation Use Cases

This chapter defines the required use cases, which frame the context and are relevant
for the execution of the performance evaluation. The first part of this chapter, Section
5.1 provides an overview on the use cases used in this thesis which build a foundation
for the performance evaluation. Furthermore, Section 5.2 illustrates and explains the
execution process of several use cases.

5.1 Use Case Definitions

As stated in Section 2.4, a benchmark needs use cases as a basis for its execution.
Therefore, relevant use cases have to be defined beforehand to afterwards structure the
performance benchmark design accordingly. Use cases can derive from the needs of
relevant stakeholder of the domain (e.g. Multidisciplinary Engineering (MDE) domain).
Additionally, use cases can vary widely between more complex use cases, which represent
real world processes, and more standard use cases, which represent technical approaches.
Furthermore, use cases can derive from operations and processes which are common
in the area of research e.g. steps required in the planning process of a plant. As use
cases raised by domain experts usually focus on the business side of the particular
problem, use cases from the area of research put their focus more on the theoretical
side. Use cases relevant to this thesis are based on common data storage operations
such as creating, accessing, updating and deleting data. Therefore, the use cases which
provide a foundation for the performance evaluation focus on the so-called create, read,
update and delete operations (CRUD) [34]. More complex use cases, such as filtering the
data or checking data consistency, are subject to future work (Section 9.2) as specific
requirements and examples of industry partners need to be elicited.

Therefore, the following list of uses cases was selected using a subset of Automation
Markup Language (AML) model concepts [25]. For each of these model concepts, use
cases focusing on either create, read, update or delete operations are defined.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation Use Cases

• AMLFile

A user should be able to create, read, update or delete an AMLFile in the database,
provided in an Extensible Markup Language (XML) format. This is, e.g., the case
when an engineer creates the initial AMLFile for a Production Systems Engineering
(PSE) project.

• InstanceHierarchy

A user should be able to create, read, update or delete an InstanceHierarchy of
a specified AMLFile in the database. For example, adding new machines to a
production line would involve the creation of an InstanceHierarchy.

• InterfaceClass

A user should be able to create, read, update or delete an InterfaceClass of an
InterfaceClassLib of a specified AMLFile in the database. In case, e.g., an engineer
wants to add a new connection between machines in a production line (e.g. new
energy or data flow) a new InterfaceClass is created.

• InterfaceClassLib

A user should be able to create, read, update or delete an InterfaceClassLib
of a specified AMLFile in the database. For example, adding new connections
between machines in a production line requires an corresponding entry in an
InterfaceClassLib.

• InternalElement

A user should be able to create, read, update or delete an InternalElement of an
InstanceHierarchy of a specified AMLFile in the database. As InternalElements
represent real world objects (e.g. robots or pumps), adding objects to a production
line or a specific machine requires, e.g., the creation of an InternalElement.

• RoleClass

A user should be able to create, read, update or delete a RoleClass of a RoleClassLib
of a specified AMLFile in the database. For example, engineers update RoleClasses
when additional ports are added to a single devices role.

• RoleClassLib

A user should be able to create, read, update or delete a RoleClassLib of a specified
AMLFile in the database. As, e.g., plant entities are described with specific roles,
a RoleClassLib is updated in case a new device role is added.

• SystemUnitClass

A user should be able to create, read, update or delete a SystemUnitClass of a
SystemUnitClassLib of a specified AMLFile in the database. SystemUnitClasses
are used to describe plant entities including all its properties and relations and

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Use Case Definitions

therefore, for example, adding adding a new plant entity requires the execution of
this use case.

• SystemUnitClassLib

A user should be able to create, read, update or delete a SystemUnitClassLib of a
specified AMLFile in the database. In case, e.g., a SystemUnitClass is added or
updated, the according SystemUnitClassLib has to be changed as it is a library
containing SystemUnitClasses.

These use cases are defined using natural language. The advantage of a natural language
is that every stakeholder, no matter how high a person’s technical knowledge is, can define
and understand these use cases. The disadvantage is that they have to be transferred into
a machine-readable format (e.g. source code) by a human. In order to solve this problem,
a conceptual language, like Unified Modeling Language (UML) activity diagrams1 or
Petri-nets can be used that is interpreted by a corresponding tool or framework, like
Foundational UML (fUML) 2 [36]. However, the focus of this thesis was rather on the
benchmark than the use case descriptions. Therefore, the use case definitions are provided
using natural language. However, selected use cases are introduced in more detail using
flow diagrams (see Section 5.2).

For a better identification in later sections of this thesis, Table 5.1 numbers the use cases
used in the performance benchmark.

Create Read Update Delete

InstanceHierarchy C-IH R-IH U-IH D-IH
InterfaceClass C-IC R-IC U-IC D-IC
InterfaceClassLib C-ICL R-ICL U-ICL D-ICL
InternalElement C-IE R-IE U-IE D-IE
RoleClass C-RC R-RC U-RC D-RC
RoleClassLib C-RCL R-RCL U-RCL D-RCL
SystemUnitClass C-SUC R-SUC U-SUC D-SUC
SystemUnitClassLib C-SUCL R-SUCL U-SUCL D-SUCL
AMLFile C-AML R-AML U-AML D-AML

Table 5.1: Performance Benchmark Use Cases

1Unified Modelling Language uml.org
2Foundational UML omg.org/spec/FUML/About-FUML

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation Use Cases

5.2 Use Case Execution Workflows

The identification of the use cases listed in the Table 5.1 is not sufficient to implement
them using a programming language. Therefore, the following subsections provide a
more detailed look at use case examples and state their input data. These use cases were
selected as they representative for the main data operations (create, read, update and
delete). Furthermore, these use cases cover AML model which are commonly used and
are included in a representative manner in the performance evaluation input data (see
Section 7.3.1).

5.2.1 Use Case C-RC: Create RoleClass

Figure 5.1 displays the execution steps–in the form of a flow diagram–needed to create
a RoleClass element in the data store. The inputs to this use case are the name of the
AMLFile and the name of the RoleClassLib as well as the RoleClass itself (see Section
2.2.3). These inputs are used during the execution of the use case and are mapped
to the actual execution steps (marked orange). By using the AMLFile name, the first
step (labelled with 1 in Figure 5.1) is to find the intended AMLFile in the data store.
In case the database does not find an AMLFile with the provided name, an error is
thrown stating that no AMLFile with the given AMLFile name is stored in the data
store and nothing will be created (5). The AMLFile will be analyzed for the existence
of an according RoleClassLib with the provided RoleClassLib name (2). In case the
database does not find a RoleClassLib with the provided name, an error is thrown stating
that no RoleClassLib with the given RoleClassLib name was found and nothing will be
created (5). If a RoleClassLib is found, the database looks whether a RoleClass with
the particular name already exists (3). If so, the database throws an error stating that
a RoleClass with the particular name already exists and nothing will be created (5).
Otherwise, the RoleClass will be added to the RoleClassLib and stored in the data store
(4). In any case, the execution terminates.

amlFileName: String
roleClassLibName: String

roleClass: RoleClass

Sts

Find AMLFile by
name Yes

No

Find RoleClassLib
in AMLFile
 by name

Throw Error

Yes

No

Found? No

Yes

Exists? Create RoleClassFound?
Check if RoleClass

exists in
RoleClassLib

Start End

1 2 3 4

5

 roleClassLibName roleClass.name roleClass amlFileName

Figure 5.1: Creation of a RoleClass

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Use Case Execution Workflows

5.2.2 Use Case R-IE: Read Internal Element

Figure 5.2 shows the execution sequence of the read operation for an InternalElement
from a data store. The inputs to this use case are the name of the AMLFile and the
InstanceHierarchy in which the InternalElement is located as well as the name of the
InternalElement itself. As in the first use case flow diagram, the inputs used during the
execution of the use case are mapped to the actual execution steps (marked orange). The
first step is to locate theAMLFile with the given name in the data store, labelled with 1
in Figure 5.2. In case the AMLFile is not found, the database throws an error stating
that there is no AMLFile with the given AMLFile name in the data store (5). If the
AMLFile is found, the data store will be searched for an InstanceHierarchy using the
given InstanceHierarchy name (2). If there is no suitable InstanceHierarchy, the database
throws an error stating that there is no InstanceHierarchy stored in the data store under
the AMLFile with the AMLFile name and the given InstanceHierarchy name (5). If the
InstanceHierarchy possesses an InternalElement with the given InternalElement name,
the InternalElement will be returned (4); otherwise, the database throws an error stating
that there is no InternalElement with the given name (5). In any case, the execution
terminates.

amlFileName: String
instanceHierarchyName: String
internalElementName: String

Sts

Find AMLFile
by name Yes

No

Find InstanceHierarchy
in AMLFile
by name

Throw Error

Yes

No

Found? Yes

No

Exists? Return
InternalElementFound?

Check if
InternalElement

exists in
InstanceHierarchy

Start End

1 2 3 4

5

 amlFileName instanceHierarchyName internalElementName

Figure 5.2: Read InternalElement

5.2.3 Use Case U-SUCL: Update SystemUnitClassLib

Figure 5.3 shows the execution sequence which is needed to update a SystemUnitClassLib.
For this use case execution, an AMLFile name in which the SystemUnitClassLib, that
needs to be updated is stored and the SystemUnitClassLib itself is needed. As before, the
inputs are mapped to the actual use case execution steps and marked in orange. Based
on this input, the AMLFile must be found in the data store based on the given AMLFile
name (1). In case the AMLFile is not found, an error is thrown stating that there is no
AMLFile stored with the given AMLFile name (4). In case the AMLFile is found, the
data store will be checked if a SystemUnitClassLib already exists with the name of the
SystemUnitClassLib (2). If a SystemUnitClassLib exists, the given SystemUnitClassLib in
the data store will be updated based on the given SystemUnitClassLib (3). If there is no
SystemUnitClassLib, an error will be thrown stating that there is no SystemUnitClassLib
based on the name of the SystemUnitClassLib (4). In any case, the execution finishes.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation Use Cases

amlFileName: String
systemUnitClassLib: SystemUnitClassLib

Sts

Find AMLFile
by name Yes

No

Throw Error

Yes

No

Exists? Update System Unit
Class LibFound?

Check if
SystemUnitClassLib

exists in
InstanceHierarchy

Start End

1 2 3

4

 amlFileName systemUnitClassLib.name systemUnitClassLIb

Figure 5.3: Update SystemUnitClassLib

5.2.4 Use Case D-AML: Delete AMLFile

Figure 5.4 shows the execution sequence of deleting an AMLFile. The input to the
execution is a string variable containing the name of the AMLFile. Its usage is shown by
the orange box connected to the consuming use case execution step. Based on this input,
the data store must be searched for the AMLFile based on the given file name (1). In
case a file is found, the complete file and all its connected sub elements are deleted (2)
and the execution is finished. In case the file is not available in the data store, an error
is thrown stating that no file with the given file name was found (3). Both of these steps
result the execution to end.

amlFileName: String

Sts

Find AMLFile
by name Yes

No

Delete AMLFile

Throw Error

Found?

Start End

1 2

3

amlFileName

Figure 5.4: Delete AMLFile

Summary

This chapter defined the use cases which are relevant for the performance evaluation of
the proposed solution design presented in this thesis. This was done by elaborating the
scope of the uses cases (i.e. typical data operations such as create, read, update and

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Use Case Execution Workflows

delete) and by mapping this scope to relevant AML model concepts. The result of this
process is a list of use cases (see Table 5.1). In addition, example use cases were further
explained in detail using flow diagrams. The prototypical design–introduced in Chapter
7–utilizes these explanations as well as the created flow diagrams in the implementation
process.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Benchmark Evaluation

Architecture and Design

This chapter introduces and describes the design of the evaluation infrastructure including
the most relevant components, aiming at addressing the research questions in Chapter 3.
Therefore, Section 6.1 explains the underlying software architecture of the performance
evaluation infrastructure. In addition, Section 6.2 presents the benchmarking compo-
nent of this prototype design and discusses the Java Microbenchmark Harness (JMH)
framework which is used as a benchmarking framework for the performance evaluation.

6.1 Benchmark Evaluation Architecture

In order to follow the Design Science methodology and to address the research questions
stated in Chapter 3, a design for a performance evaluation infrastructure has to be
established. This design will be provided in the form of a prototypical infrastructure.
This section provides an architectural overview of this infrastructure as well as information
about the infrastructure’s core components.

The architectural design of the performance evaluation infrastructure follows a layered
software architecture pattern where different components build upon each other [45].
The layered software architecture pattern focuses on the separation of concerns, meaning
that the layers provide a strict separation in terms of bundling common functionalities
[52]. Therefore, layers only utilize concepts of their own or the layer below. Addition-
ally, Richards proposes other software architecture patterns such as the event-driven
architecture or microservices architecture pattern [45]. The event-driven architecture
pattern is used for distributed systems which are event-driven and asynchronous. It
consists of decoupled event processing components that receive and process events in an
asynchronous manner. The software architecture for this performance evaluation does

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

not need to be event-driven nor does the evaluation consist of events which can occur
asynchronously. Therefore, the event-driven pattern is not a suitable architecture choice.
The microservices architecture pattern is also not suitable for this performance evaluation
infrastructure either as this pattern focuses on services which provide functionality to
other services in the architecture. This would not be beneficial for the performance
evaluation as the intended layers build on top of each other and are not decoupled services
which communicate via defined endpoints with one and another. This leads to the fact
that the layered software architecture pattern seems most relevant based on the needs of
this thesis.

Figure 6.1 shows the architecture of the performance evaluation infrastructure with all
its key components. The base of the performance evaluation architecture is built by
a virtualization layer (Layer 1). A virtualization layer is an additional layer (on top
of the operating system in which the virtualization layer runs) that manages access to
resources such as processing power and storage for the virtual machines (e.g. Docker
container), which are located inside this layer [55]. In this particular case, Docker1 is used.
It holds the different data storage solutions that are evaluated. This layer will be further
discussed in Section 6.1.4. The next layer in the architecture, on top of the virtualization
layer, is a Managing Component (Section 6.1.3) for each data store which implements
all its specific functions (e.g. setup and shutdown methods) as well as the use cases
defined in the Common API (Application Program Interface) (see Section 6.1.2) (Layer
2). The Common API defines all use cases (see Section 5.1) that were selected for the
execution of the performance evaluation (Layer 3). APIs provide only declarations of the
provided methods whereas implementations of the interface hold the actual functionality
(e.g. steps) needed to execute the provided methods. Furthermore, a data model which
represents the Automation Markup Language (AML) model in the form of Java classes
was designed (Section 6.1.1) (Layer 4). The data model component is designed by defining
the AML model interface which contains relevant AML elements (as shown in Section
2.2.3). In addition, an implementation of the AML model interface is required. The
performance benchmark is implemented in a separate component (5), orthogonal to the
layered architecture (see Section 6.2). It uses the Common API interface as well the
AML model classes to transparently communicate to the databases for the benchmark
execution.

The layered approach allows to exchange the underlying data storage solution and the
corresponding Managing Component with minimal effort in order to be able to benchmark
different data storage solutions. The following subsections describe the core components
in detail.

1Docker Virtualization Software: https://www.docker.com/

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Benchmark Evaluation Architecture

JMH Benchmark

Managing
Component Neo4J

Managing
Component BaseX

Common API Interface

AML Model Interface

AML Model Implementation

1

2

3

4

5

Figure 6.1: Architecture Overview of the Performance Evaluation Infrastructure

6.1.1 AutomationML Model

AML is a data exchange format used in the context of Multidisciplinary Engineering
(MDE) [18] and Production Systems Engineering (PSE) [8]. In addition, AML can also
be used as a model for engineering data as it is capable of representing engineering data
of, for example, a car production plant. In order to handle such an AML model in the
performance evaluation infrastructure, it requires a representation of the AML model in
the particular programming language used for the architecture implementation. In this
case, Java was used to implement the benchmark, therefore, requiring a representation
of the AML model in Java. Java is an object-oriented programming language which,
similarly to other languages of this type, allows to represent models of real-world entities
(e.g. machines) as Java object instances. A Java class can be seen as a blueprint of Java
instances containing all its variables, relationships as well as method definitions (e.g.
functions). Variables can act as containers which hold values in the form of defined data
types (such as String for literals) for the execution of a Java program. Relationships
in the context of a Java class are connections to other Java classes in the form of class
or object variables. For example, the connection between a car (as a Java class) and
its wheels (another Java class) can be seen as a relationship. Methods or functions
combine a collection of statements which perform a specific task (e.g. startEnigne of a
car). Therefore, the AML model concepts can be transferred to Java classes. For the
purpose of this thesis, an AML model interface–defined by Rosendahl et al. [47]–was

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

used containing all relevant AML model concepts. In addition to the interface, the actual
implementations of the interface were also provided. These implementations are used
throughout the whole performance evaluation infrastructure.

The execution of the performance benchmark uses an AML file in the Extensible Markup
Language (XML) format as input data. In order to bring this XML file into the format of
a the AML model interface (i.e. Java objects) a transformation is needed. Java provides
a solution for transforming XML files into Java objects: the Java Architecture for XML
Binding (JAXB) [22]. This framework maps XML data like AML files to Java objects. In
order to enable the transformation process, the Java classes are annotated which instructs
JAXB how to map the information stored in an XML file into a Java object. Listing 2
shows an example of a CAEXFile Java model class annotated with JAXB annotations.
The annotation @XMLType shown in Listing 2 line 1 states the type of the XML element
e.g. <CAEXFile></CAEXFile> in the XML file and @XMLRootElement (line 2) states
that this XML element can be a root element. XML documents have exactly one root
element which encapsulates all other elements. Therefore, it is the parent element to every
other element contained in the document. Furthermore, the @XMLElement annotation
(line 8) is used to map methods (e.g. getter and setter methods) or class fields to
according XML elements.

1 @XmlType(name = "CAEXFile")

2 @XmlRootElement(name = "CAEXFile")

3 public class CAEXFile extends CAEXBasicObject implements ICAEXFile {

4

5 //class fields

6

7

8 @XmlElement(name = "References", type = ExternalReference.class)

9 public List<IExternalReference> getExternalReferences() { ... }

10 }

Listing 2: Java XML Entity Annotation

The process of transforming XML files into Java objects is called unmarshalling or
deserialization [22]. Listing 3 shows the example code used to transform an AML file
provided with its file path into a CAEXFile. Due to the annotations in the Java classes and
their JAXB interpretation, all relationships (e.g. object variables) are also transformed.

JAXB annotations can be used for XML elments and are therefore useful for XML based
data stores. Nevertheless, other databases–such as Neo4J–need different annotations in
order to be able to store and handle entities directly. The standard framework which
implements persistence mappings (e.g. annotations) in Java is called Java Persistence
API (JPA)2 [11]. This framework allows to annotate model classes and makes them

2Java Persistence API
oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Benchmark Evaluation Architecture

1 JAXBContext jc = JAXBContext.newInstance(CAEXFile.class);

2 Unmarshaller unmarshaller = jc.createUnmarshaller();

3 File xml = new File(fileName);

4 CAEXFile file = (CAEXFile) unmarshaller.unmarshal(xml);

5

6 Marshaller marshaller = jc.createMarshaller();

7 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

8 marshaller.marshal(file, System.out);

9 return file;

Listing 3: Java XML Marshalling

usable for databases for which an Object Mapper exists. This Object Mapper provides the
main functionality for the conversion of either to and from data formats (such as XML) to
Java objects. In addition, internal structures of Java objects can be mapped to database
tables (Relational Database), documents (Non Structured Query Language (NoSQL)
Database) and graphs (Graph Database). Listing 4 shows an example AML model class
annotated using JPA annotations. @Entity states that this class is interpreted as an
entity, which can be stored in the database. @Id defines that the database generates an
(internal) ID for this entity and the @OneToMany annotation defines the relationships to
other entities. @OneToMany provides a relationship mapping where one row in a table
(represented by a Java object) is mapped to multiple rows in another Table (represented
by other Java objects).

1 @Entity

2 public class CAEXFile extends CAEXBasicObject implements ICAEXFile {

3 @Id

4 @GeneratedValue

5 @OneToMany(targetEntity = InstanceHierarchy.class, cascade =

CascadeType.ALL)→֒

6 protected List<IInstanceHierarchy> instanceHierarchies;

7

8 ...

9 }

Listing 4: Java JPA Entity Annotation

For the purpose of this thesis, a combination of JAXB and JPA annotations can be
used in order to support multiple database solutions. The main benefit for using two
different types of annotation in one data model is that an additional data model (i.e.
one data model for each specific data storage solution) is obsolete. This allows for an
easier handling in the prototypical design as no further transformation or mapping, like
Data Transfer Object (DTO), between two data model entities is required. Nevertheless,
mapping two different annotations is not always a viable solution, e.g., when two different

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

Java libraries try to inject additional functionality into the bytecode of a single class.

6.1.2 Common API

The Common API provides the interface definitions (see Section 6.1) of all use cases as
defined in 5.1. According to Meng et al. [38], an API (Application Program Interface)
provides a set of functionalities usually exposed in the form of methods or objects.
This interface is implemented by a Managing Component of an underlying data storage
solution. Due to the fact that different data storage paradigms and solutions use different
query languages and data base providers, it is necessary to implement the managing
component layer for every storage solution.

The methods contained in the Common API interface are listed in Table 6.1. As these
methods represent the use cases of this performance evaluation, the according use case
ID is also listed.

Create UC ID Read UC ID

createCAEXFile C-AML readCAEXFile R-AML

addInstanceHierarchy C-IH readInstanceHierarchy R-IH

addSystemUnitClassLib C-SUCL readSystemUnitClassLib R-SUCL

addRoleClassLib C-RCL readRoleClassLib R-RCL

addInterfaceClassLib C-ICL readInterfaceClassLib R-ICL

addInternalElement C-IE readInternalElement R-IE

addSystemUnitClass C-SUC readSystemUnitClass R-SUC

addRoleClass C-RC readRoleClass R-RC

addInterfaceClass C-IC readInterfaceClass R-IC

Update Delete

updateCAEXFile U-AML deleteCAEXFile D-AML

updateInstanceHierarchy U-IH deleteInstanceHierarchy D-IH

updateSystemUnitClassLib U-SUCL deleteSystemUnitClassLib D-SUCL

updateRoleClassLib U-RCL deleteRoleClassLib D-RCL

updateInterfaceClassLib U-ICL deleteInterfaceClassLib D-ICL

updateInternalElement U-IE deleteInternalElement D-IE

updateSystemUnitClass U-SUC deleteSystemUnitClass D-SUC

updateRoleClass U-RC deleteRoleClass D-RC

updateInterfaceClass U-IC deleteInterfaceClass D-IC

Table 6.1: Declared Methods of Common API Interface

In addition to the declared methods of the Common API interface (see Table 6.1), a
base interface is defined which holds relevant database methods such as setup, shutdown
and delete content of the database. These methods combine basic database operation
and configuration methods and are therefore defined in their own interface in order to

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Benchmark Evaluation Architecture

keep them separated from the Common APIs main interface definition which holds the
use case methods.

6.1.3 Managing Component

Use cases serve as a basis for the performance benchmark (see Section 5.1). In order to
use them in the performance benchmark, these use cases have to be defined in a machine-
readable format to be translated to a software program. This is done by implementing
the use cases stated in the Common API in a Managing Component. As all data storage
solutions differ in their ways of establishing the connection and data modification and
access, this common interface and the according Managing Component ensure that the
use cases can be used for a performance benchmark execution. Figure 6.2 shows the
implementations of the Common API used in the performance benchmark. The two data
storage solutions used are: BaseX as a representative of the semi-structured data storage
paradigm and Neo4J as a representative of the graph data store paradigm. Therefore,
the two Managing Components are named CommonAPIBaseX and CommonAPINeo4J.

Managing
Component Neo4J

Managing
Component BaseX

Common API Interface

Figure 6.2: Implementations of Common API

The following subsections describe these two implementations in detail.

CommonAPIBaseX

The CommonAPIBaseX is an implementation of the Common API interface and serves
as the Managing Component for BaseX. It includes BaseX specific source code such as
database access methods and implementations of the defined use cases. As stated in
Section 2.3.1, BaseX is a database with the main purpose of storing XML documents.
In order to manipulate data stored in a BaseX database, one can execute XML Query
Language (XQuery) queries which allow for an efficient manipulation of the data. In

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

general, a connection (e.g. a client) to a BaseX data base is needed for the execution
of the XQuery queries. As the programming language used for the implementation of
the performance evaluation is Java, a Java-based data base client is required. For this
purpose, BaseX provides a blueprint Java class (i.e. BaseXClient) to access a BaseX
instance3. This BaseXClient offers methods to execute XQuery queries on the data
store as well as default methods to add or remove complete XML files. Therefore, the
execution of the use cases does not always require a XQuery statement (e.g. creating
a AMLFile). The following subsections provide information about different data base
operations which are used during the execution of the evaluation use cases. Additionally,
XQuery examples for each proposed data base operation are shown.

Reading from a BaseX DB
The use case description of the Read use case R-IE from Section 5.2.2 shows that several
steps are required. For example, during the creation process of a RoleClass (use case
C-RC), the use case sequence requires two read operations from the data store (see Figure
5.1). In order to create a RoleClass, the according AMLFile and RoleClassLib have to be
loaded from the BaseX database by executing the XQuery statement which is shown in
Listing 5. The collection() call loads the BaseX database according to the given database
name (DBNAME) and queries the database for a CAEX File (AMLFile) with a given
file name (AMLFILE_NAME).

1 xquery collection('DBNAME')/CAEXFile[@FileName='AMLFILE_NAME']

Listing 5: XQuery: Read AMLFile

Similar to this XQuery method, other elements are also loaded from a BaseX database
by querying through the hierarchy of an AML file.

Updating Elements in a BaseX DB
In addition to reading elements from the database, it is also necessary to update el-
ements. The example use case in Section 5.1, use case U-SUCL, is the process of
updating a SystemUnitClassLib. As seen in Figure 5.3, this execution consists of a step
where the provided SystemUnitClassLib is updated in the data store. In order to do
this in the BaseX database that uses Java, the XQuery query shown in Listing 6 is
executed. The $node variable holds the System Unit Class Lib with the given name
(SYSTEMUNITCLASSLIBNAME) stored in the database (DBNAME) under an AML
file (AMLFILE_NAME). By calling the replace node function and replacing it with the
provided System Unit Class Lib (SYSTEMUNITCLASSLIB)–which is serialized back
from a Java object to an XML string–the $node is replaced with the new System Unit
Class Lib.

The same method structure is used for updating other AML model concepts.

3Java Examples - BaseX Documentation docs.basex.org/wiki/Java_Examples

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Benchmark Evaluation Architecture

1 xquery let $node := db:open('DBNAME')/CAEXFile[@FileName =

2 'AMLFILE_NAME']/SystemUnitClassLib[@Name='SYSTEMUNITCLASSLIBNAME']

3 return replace node $node with " +

4 serializeOutputStream(SystemUnitClassLib.class, SYSTEMUNITCLASSLIB)

Listing 6: XQuery - Update System Unit Class Lib

Deleting Elements in a BaseX DB
In order to delete elements in a BaseX data store, it is also necessary to execute XQuery
queries. For example, use case D-AML executes the deletion process of an AMLFile (see
Section 5.1). Figure 5.4 shows the execution steps where the last step is to delete the
AML file. The execution requires the XQuery query shown in Listing 7. It executes the
same open command used in the updating process to load the corresponding AML file
(AMLFILE_NAME) from the database (DBNAME). Deleting this element requires the
execution of the XQuery command delete node.

1 xquery delete node

2 db:open('DBNAME')/CAEXFile[@FileName = 'AMLFILE_NAME']

Listing 7: XQuery - Delete AML File

The deletion of other AML model concepts follows the same principle and uses similar
XQuery queries.

Adding Root Elements in a BaseX DB
The BaseX Java Client by BaseX4 provides different methods which allow for the execution
of XQuery queries as well as adding XML files directly to the database. The latter feature
is used to create the root element–an AML file–in the database as it is the root element
in the XML file and therefore it is possible to utilize this feature. Listing 8 shows the
method call where a Java object named CAEXFILE is added to the data base. The
add command requires a name of the XML file–in this case the CAEXFILE name is
used–and a string representation of the CAEXFILE. Therefore, the provided AML File
gets serialized before being passed on to the add method.

1 baseXClient.add(CAEXFILE.getFileName(),

2 serialize(CAEXFile.class, CAEXFILE));

Listing 8: Creation Process AML File

4Java Examples - BaseX Documentation docs.basex.org/wiki/Java_Examples

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

CommonAPINeo4J

The CommonAPINeo4J is an implementation of the Common API interface and repre-
sents the Managing Component for the Neo4J database. Similar to the CommonAPIBa-
seX, all Neo4J specific source code needed to execute the use cases is implemented in this
component of the performance evaluation. Neo4J itself provides several access methods
when using the Java programming language5[39]. One of the main goals of this prototype
design is to provide an extensible infrastructure which can easily support other data
storage solutions in the future to evaluate whether they are better suited to store AML
model data. Therefore, a common solution which can be used by several data storage
solutions is preferred. The selected implementation uses the Hibernate Object Graph
Mapping6(Hibernate OGM) framework which utilizes JPA annotated Java entities (e.g.
the implementations of the AML model concepts)[11]. As JPA annotated model entities
can be used by several other data storage solutions, it–in conjunction with Hibernate
as an object-relational mapping framework–is well suited for this implementation. The
process of how JPA annotations are used in this implementation is shown in Section
6.1.1.

In order to connect to the Neo4J data store, JPA and Hibernate use so-called persistence
units which hold important properties such as name and host of the database as well
as access credentials. This information is then used to establish a connection to the
database and instantiate relevant Hibernate components such as the EntityManager and
the TransactionManager. According to Biswas and Ort [11], the EntityManger is used to
manage states and life cycles of Java entities in the context of this persistence unit (e.g.
the database). Furthermore, the TransactionManager is used to handle transactions (e.g.
commits of data changes) issued to the data store.

Listing 9 shows a code snippet of the setup process that establishes a working connection
with the Neo4J data store through JPA and Hibernate.

1 public void setUp() {

2 emf = Persistence.createEntityManagerFactory("ogm-neo4j");

3 transactionManager = extractTransactionManager(emf);

4 transactionManager.begin();

5 entityManager = emf.createEntityManager();

6 }

Listing 9: Setup Process for JPA/Hibernate Neo4J

In order to be able to execute the use cases on the Neo4J data store, the two Hibernate
components EntityManager and TransactionManager are used. Furthermore, querying
the database is done by executing Cypher queries (see Section 2.3). The following

5Neo4J for Java neo4j.com/developer/java
6Hibernate Object Graph Mapping Framework: https://hibernate.org/

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Benchmark Evaluation Architecture

subsections provide examples of different operations on the database which are used in
the execution process of the different use cases.

Reading from a Neo4J DB
As stated in Section 6.1.3, reading data from the data store is relevant for the execution
of the use cases for the performance evaluation. In order to read data from the Neo4J
database, executing a Cypher query is necessary. Reading an AML file from the data
store is part of many use cases (e.g. use case C-IE) and therefore, Listing 10 shows the
Cypher query needed to retrieve an AML file from the database. This query returns
all CAEXFiles (e.g. AML files) which are a CAEXFile and have the provided file name
(AMLFILE_NAME).

1 MATCH (c:CAEXFile) WHERE c.fileName = 'AMLFILE_NAME' RETURN n;

Listing 10: Cypher - Read AML File

Similar to the Cypher query in Listing 10, it is possible to retrieve other AML model
elements stored in the database. Listing 11, for example, retrieves all SystemUnitClassLibs
with the provided name (SYSTEMUNITCLASSLIB_NAME) inside an AML file with
the appropriate name (AMLFILE_NAME). By mapping the CAEXFiles via their
relationships systemUnitClassLibs to the SystemUnitClassLib entities, it is possible to
solely filter for SystemUnitClassLibs that confirm to the provided WHERE statement.

1 MATCH (c:CAEXFile)-[r:systemUnitClassLibs]

2 ->(i:SystemUnitClassLib)

3 WHERE i.name = 'SYSTEMUNITCLASSLIB_NAME' and

4 c.fileName = 'AMLFILE_NAME' RETURN i;

Listing 11: Cypher - Read System Unit Class Lib

Creating & Updating Elements in a Neo4J DB

In contrast to reading from the data store, creating and updating does not in itself require
the execution of Cypher queries. Nevertheless, in order to create or update entities, a
read operation is required before the creation or updating process can be executed. In
case of a creation, the parent elements have to be loaded from the data store in order
to modify and persist the entities back to the data store (except for creating an AML
file which is a root element). In case of an update, after the to be updated entities are
retrieved from the database, the Java objects representing an AML model concept are
traversed until the part which will be updated is reached. The update is executed by
modifying the Java object itself. After the modification, the Java object (for both the
creation and the update) gets persisted by the EntityManager and in order to push the

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

update to the database, the TransactionManager ’s commit command will be executed.
This command brings the modification of the Java object back into the data store.

Deleting Elements in a Neo4J DB

In addition to reading data from a Neo4J data store, the deletion of data also requires the
execution of Cypher queries. Listing 12 shows the Cypher statement which is needed to
delete an AML file including all its sub elements. By executing the matching command as
shown in Listing 12, all CAEXFiles which match with the file name (AMLFILE_NAME)
will be returned. Calling DETACH DELETE will traverse through all connected entities
and delete the complete AML file including all sub elements.

1 MATCH (c:CAEXFile)

2 WHERE c.fileName = 'AMLFILE_NAME' DETACH DELETE c;

Listing 12: Cypher: Delete AML File

Similar to the process of deleting AML files using Cypher queries, other AML model
concepts can be deleted. Using detach delete always deletes all sub elements of the main
element.

6.1.4 Data Storage Solution

For the performance evaluation, the BaseX and Neo4J data stores have to be installed
and configured. By using docker, it is possible to easily setup and shutdown the data
stores on the local test machine and to separate the database engine from the respective
system that the benchmark is executed on. Docker itself is a virtualization software
for creating and running containers inside an operating system [13]. These containers
are instances of Docker images, i.e. software bundles in which the required software is
already installed. In order to avoid creating Docker images over and over again, Docker
Hub 7 is used. Docker Hub is a remote repository containing multiple predefined images.
Running a Neo4J instance and a BaseX instance in Docker requires the introduction
of a Dockerfile which provide human readable specifications of the necessary software
components [13]. Listing 13 shows the Dockerfile used to run a local Neo4J and BaseX
instance. The images pulled from the Docker Hub repository run in a local Docker
container. In the context of Docker, images are a set of layers, which can be defined by
the user, and containers are instances of the defined images [13]. By defining the ports
property, these network ports are exposed to the local machine and are subsequently
accessible under localhost.

The following two subsections define the specifics of the two data stores.

7Docker Image Hub: https://hub.docker.com/

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Benchmark Evaluation Architecture

1 version: '3'

2 services:

3 neo4j:

4 image: neo4j:3.5.7

5 restart: always

6 ports:

7 - "7474:7474"

8 - "7687:7687"

9 basex:

10 image: basex/basexhttp:9.2.3

11 restart: always

12 ports:

13 - "1984:1984"

Listing 13: Dockerfile for Neo4J and BaseX Data Store

BaseX

As the Dockerfile in Listing 13 shows, the basexhttp Docker image is pulled from the
Docker Hub repository. By defining the version of the image, it is possible to request
different versions of the BaseX data store. For the purpose of this thesis, Version 9.2.3
was used. Running this Dockerfile on the local machine exposes a BaseX database under
http://localhost:1984/. This database can then be accessed in the Managing
Component of BaseX (Section 6.1.3).

In addition to the data store server, accessing the database by using a graphical user
interface enables easier access and development. Therefore, BaseX provides the basexgui
which is a standalone user interface that can be used to visualize the data stored in
the database. Furthermore, database queries can be executed. As this user interface
is a standalone desktop program, it has to be started locally. This can be done by
downloading the BaseX source package from BaseX 8. This package includes several
binaries (e.g. basexhttp server) and the basexgui. When running this basexgui binary,
it opens a local desktop application which can be connected to the database that runs
on localhost. Figure 6.3 shows a screenshot of the user interface with different data
visualizations and the execution area for queries.

Neo4J

The Neo4J data store also runs in a Docker container. As shown in Listing 13, the Docker
image neo4j is loaded from the Docker Hub repository, pulling Version 3.5.7. By running
the Dockerfile, a Neo4J database that can be reached under http://localhost:7687/
is started. This running instance of a Neo4J database will be used by the Managing
Component for Neo4J. In addition to starting the data base, the neo4j container also

8BaseX Source Package: http://basex.org/download/

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

Figure 6.3: BaseX Graphical User Interface

starts the Neo4J Browser which is a user interface for the Neo4J database. Figure 6.4
shows the Neo4J browser which can be used to visualize data and execute queries.

Summary

Section 6.1 explained the actual software architecture used in the prototypical design.
Therefore, all core components such as the AML model, the Common API, the Managing
Components as well as the data storage solutions BaseX and Neo4J where discussed.

6.2 Benchmark Evaluation Design

The benchmark design is an important part of the prototypical solution, as it holds the
actual execution of the performance evaluation.

Figure 6.1 shows that the actual benchmarking part of the performance evaluation is
separated from all other components. It utilizes the Common API interface in order to
execute the performance evaluation (e.g. evaluating the use cases). In addition to all
other components of the performance evaluation infrastructure, the benchmark itself was
also implemented by using the Java programming language.

The aim of this section is to provide an overview on the design of this benchmark as well
as the technologies and frameworks used. In particular, the architectural overview of the

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Benchmark Evaluation Design

Figure 6.4: The Neo4J Browser

benchmark as well as the benchmarking framework and its problems will be explained.
Furthermore, the process of how input data is handled inside the benchmark and the
relevant performance indicators are described. Lastly, the format of the benchmark
output (e.g. the results) will be explained.

6.2.1 Benchmark Architecture Overview

The benchmark is structured by using four Java classes for BaseX and four for Neo4J
where each class contains benchmarks for one typical data storage operation such as
Create, Update, Read, and Delete. Table 6.2 shows all benchmark classes and benchmark
runners (benchmark executors) that form the benchmarking component. As shown
in Table 6.2, each benchmark class is assigned a specific use case ID, which maps the
benchmark to the use cases. In addition to the implementation classes, several relevant
input files are stored inside a resource directory, which are accessed during the execution
of the benchmark (see Section 6.2.3). The implementation itself is located inside the test
directory of the performance evaluation infrastructure project.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

Data Store Data Storage Operation Use Case ID

BaseX

BaseXCreateBenchmark Create
C-AML, C-IH, C-SUCL,

C-RCL, C-ICL, C-IE,
C-SUC, C-RC, C-IC

BaseXReadBenchmark Read
R-AML, R-IH, R-SUCL,

R-RCL, R-ICL, R-IE,
R-SUC, R-RC, R-IC

BaseXUpdateBenchmark Update
U-AML, U-IH, U-SUCL,

U-RCL, U-ICL, U-IE,
U-SUC, U-RC, U-IC

BaseXDeleteBenchmark Delete
D-AML, D-IH, D-SUCL,

D-RCL, D-ICL, D-IE,
D-SUC, D-RC, D-IC

BenchmarkRunnerBaseX -

Neo4J

Neo4JCreateBenchmark Create
C-AML, C-IH, C-SUCL,
C-RCL, C-ICL, C-IE,
C-SUC, C-RC, C-IC

Neo4JReadBenchmark Read
R-AML, R-IH, R-SUCL,
R-RCL, R-ICL, R-IE,
R-SUC, R-RC, R-IC

Neo4JUpdateBenchmark Update
U-AML, U-IH, U-SUCL,
U-RCL, U-ICL, U-IE,
U-SUC, U-RC, U-IC

Neo4JDeleteBenchmark Delete
D-AML, D-IH, D-SUCL,
D-RCL, D-ICL, D-IE,
D-SUC, D-RC, D-IC

BenchmarkRunnerNeo4J -

Table 6.2: Benchmark Structure Overview

6.2.2 Java Microbenchmark Harness

In order to measure the performance of the data storage solution, use cases are executed
on the data stores using the performance evaluation infrastructure shown in Figure 6.1.

These use cases are each implemented in separate methods and therefore, measuring
the performance of the data store can be achieved by measuring the execution time
of one of these use case methods. The JMH framework 9 provides a solution for the
execution of microbenchmarks on methods of Java components. According to Stefan

9Java Microbenchmark Harness: www.openjdk.java.net/projects/code-tools/jmh/

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Benchmark Evaluation Design

et al. [53], microbenchmarks are performance evaluations of small parts of a program (e.g.
methods) which are often executed and therefore, they potentially influence the overall
performance of a program. As stated in [53], JMH is the most commonly used Java
microbenchmark framework. Nevertheless, as shown by Gil et al. and Horký et al., Java
benchmarking itself is not trivial due to the Just In Time (JIT) compiler and the Garbage
Collector (GC) [23][33]. The JIT compiler is aimed at improving the performance of Java
programs because it compiles byte code into native machine code at run time [16]. The
GC is used to execute automatic memory management by finding unused objects in the
memory and deleting them which frees up memory space [17]. Therefore, the JIT compiler
could change the code during the execution which could lead to unwanted performance
execution results due to the time and resources the JIT compiler itself consumes. The
GC on the other hand could asynchronously consume processor execution cycles which
could lead to a performance reduction during the execution of the code. JMH itself aims
at providing a solution to these problems [46]. The main goal of the JMH framework is
to provide an efficient solution to execute benchmarks in the Java programming language.
JMH itself offers the possibility to execute microbenchmarks, meaning that it is able to
measure the performance of different components instead of measuring the performance
of a complete system. The use cases which are used to measure the performance of
different data stores are implemented inside the methods of the according Managing
Components of the data stores meaning that JMH’s microbenchmarking can be used for
the performance evaluation. JMH is able to analyze the performance and calculate the
execution time of methods in Java. These execution time calculations can be configured.
JMH offers the following time methods:

Throughput
As the name suggests, this benchmark mode measures the number of operations per
seconds e.g. how often the benchmark method can be executed per second.

Average Time
This benchmark mode measures the average execution time of the benchmark method
(one single execution).

Sample Time
This benchmark mode measures the time it takes for the benchmark method to execute;
additionally, the minimum and maximum execution time is measured.

Single Shot Time
This benchmark mode measures the time a single benchmark execution takes e.g. a cold
start.

All
Includes all of the above mentioned benchmark modes.

For the execution of the benchmark methods, the average time method was selected
as it provides the average execution time which can be used to compare different use

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

cases. In addition to these configurations, JMH executes the benchmark as defined by
the iterations property of the JMH runner class. Furthermore, warm up iterations are
added which aim at removing the overhead from the warm up phase of the Java Virtual
Machine (JVM). For the purpose of the benchmark execution, ten iterations and ten
warm up iterations where configured. JMH is annotation based which can be seen in the
code snippet of Listing 14. It shows an annotated Java class which can be executed as a
JMH benchmark. By annotating the Java class with @State(Scope.Benchmark), JMH
knows that this class holds a benchmark and it is therefore possible to add this class to
the JMH runner. In order to be able to provide initialized variables to the benchmark
method–which should not be initialized during the benchmark itself–JMH provides the
@State(Scope.Thread) annotation for inner classes where variables can be initialized. In
addition to that, setup @Setup(Level.Invocation) and tear down @Setup(Level.Invocation)
methods can be implemented which allow for executing code before and after each
benchmark method. The benchmarks themselves are implemented as Java methods
and are annotated with @Benchmark. Additionally, configuration annotations such as
@BenchmarkMode and @OutputTimeUnit are possible.

1 @State(Scope.Benchmark)

2 public class BaseXCreateBenchmark {

3

4 @State(Scope.Thread)

5 public static class MyState {

6 private CAEXFile caexFileNew = new CAEXFile();

7 private CommonAPIBaseX commonApi = new CommonAPIBaseX();

8

9 @Setup(Level.Invocation)

10 public void doSetup() { //init variables }

11

12 @TearDown(Level.Invocation)

13 public void doTearDown() { //close db connection etc. }

14 }

15

16 @Benchmark

17 @BenchmarkMode(Mode.AverageTime)

18 @OutputTimeUnit(TimeUnit.MILLISECONDS)

19 public void benchmarkCreateCAEXFile(MyState state) {

20 state.commonApi.createCAEXFile(state.caexFileNew);

21 }

22 }

Listing 14: JMH Microbenchmark Code Example

In addition to these benchmark classes, a BenchmarkRunner is needed, which starts
the execution and triggers the benchmark. This BenchmarkRunner provides the op-
tion to configure the benchmark by adding different arguments. Listing 15 shows the

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Benchmark Evaluation Design

BenchmarkRunner for BaseX stating all arguments used for the performance evaluation.

1 public class BenchmarkRunnerBaseX {

2 public static void main(String[] args) throws Exception {

3 DateTimeFormatter formatter =

4 DateTimeFormatter.ofPattern(Constants.PATTERN,

5 Locale.GERMAN);

6

7 Options opt =

8 new OptionsBuilder()

9 .include("BaseXUpdateBenchmarkHMI")

10 .shouldDoGC(true)

11 .resultFormat(ResultFormatType.CSV)

12 .result(String.format(

13 "%s%sBaseX-%s.csv", Constants.FOLDER,

14 File.separator,

15 LocalDateTime.now().format(formatter)))

16 .jvmArgsAppend("-Djmh.stack.period=1")

17 .warmupIterations(1)

18 .measurementIterations(10)

19 .forks(1)

20 .build();

21 new Runner(opt).run();

22 }

23 }

Listing 15: JMH Microbenchmark BenchmarkRunner Options

The following list provides an explanation about each benchmark option used:

include()
The include() option offers the possibility to state which benchmarks should be included
in the run of the performance evaluation. The input to this option method can be a
regular expression which maps to one or several benchmark class names which are used
in the execution run of the overall benchmark.

shouldDoGC()
This benchmark option can be used to configure whether Java’s garbage collection should
be executed in between benchmark iterations or not. Garbage collection is used for the
execution of automatic memory management by finding unused objects in the memory and
deleting them (see Section 6.2.2). This could potentially lead to unwanted performance
execution results. Therefore, this option is useful in order to avoid problems with the
Garbage Collector (GC) in Java.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

resultFormat() & result()
The resultFormat and result options can be used to configure which data format and
output file name should be used for the generation of the result file (e.g. Comma
Separated Values (CSV) format with the name basex.csv).

jvmArgsAppend()
This benchmark option can be used to append JVM arguments for the execution of the
benchmark. In particular, the arguments will be appended to the start command of the
JMH benchmark Java program. The JVM itself is configurable (e.g. how much heap
size it can allocate) via arguments and therefore changing them for the execution of a
benchmark could potentially influence the performance results.

warmupIterations()
Horký et al. state that one of the most well-known issue in the area of performance
evaluation is the warm up [33]. In particular, Java’s JIT compiler and the class loading
processes must be considered when executing Java benchmarks. Section 6.2.2 introduces
to the problems of the JIT compiler in terms of performance benchmarks. In order
to avoid the performance loss due to JIT compilation, warm up iteration can help to
minimize the compilation effort during the actual benchmark run-time. Class loading in
Java is executed class by class and on demand (i.e. first use). This results in the fact
that classes under benchmark should be loaded beforehand in order to avoid unwanted
performance results. Therefore, the warmupIterations option can be used to define how
many warm-up iterations are executed before the actual benchmark execution.

measurementIterations()
The actual number of measurement iterations can be configured using the measuremen-
tIterations option.

forks()
The JVM is able to optimize the execution of Java programs by rearranging unrelated
method calls. This could influence the benchmark execution. Therefore, the fork option
can be used to reset the optimization process of the JVM.

6.2.3 Input to Benchmark

As stated in Section 2.4, every performance benchmark needs some form of input data.
The performance evaluation of this work is based on different use cases which require
different input types. The following list provides an overview on all used input types:

AML File
Due to the fact that this benchmark is implemented specifically for the AML model, one
form of input data are AML files or sub-parts of AML files. As AML files are utilizing
the XML structure as a data format, a way to transform this kind of data into a usable
format for the performance evaluation is needed. Therefore, Java marshalling is used to
map the content of an XML (e.g. AML) file to data store entities (see Section 6.1.1).

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Benchmark Evaluation Design

This input type is needed for use cases which deal with creating and updating data in
the data store.

AML Element IDs
Not all use cases which are evaluated in the performance benchmark require a complete
AML file or sub-parts as input, another input type is required. In order to access data
from a data store, e.g. by reading an AML file, the identification of this AML file is
sufficient in order to query the data from the data store. The identification of AML model
concepts is the name of the concept. Therefore, this input type is a simple string input.
This input type is typically needed for use cases which deal with reading or deleting data
in the data store.

Depending on the input type, a JMH benchmark reads the required input data from a
file or from a class variable. In order to provide a structured benchmark environment, the
resource files are stored in a resource folder inside the test directory of the performance
evaluation infrastructure. In addition, property files which hold the value of the file name
and AML model concept identifications are used. This property file is accessed during
the execution of the benchmark.

6.2.4 Performance Indicators

For the investigation executed in this thesis, time was selected as the most relevant
performance indicator for the use cases. Further indicators might be relevant, however,
in order to utilize them for the performance evaluation process a deeper investigation
would be needed that goes beyond this thesis.

Therefore, the performance indicator for this performance evaluation is the duration of
the operation. The duration of the operation indicator is mapped to the actual result
of the performance execution. In this case, it is mapped to the average time a use case
execution takes (calculated by dividing the sum of all execution times of a use case by
the times of execution). The values for the indicator are derived from JMH’s Average
Time mode. The unit of this performance indicator is milliseconds per operation (ms/op).
This performance indicator can, for example, show that more complex operations are
more likely to take up more execution time than simpler ones.

6.2.5 Output of Benchmark

JMH benchmarks can have several options for the result format of the benchmark (see
Section 6.2.2). In particular, the following result formats are possible:

CSV: Results in a Comma Separated Value File where values are separated via commas.

JSON: Results in a simple JavaScript Object Notation (JSON) file containing relevant
result data.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Benchmark Evaluation Architecture and Design

TEXT: Results in a simple text file.

LATEX: Results in a basic latex source file which can be used to produce Portable
Document Format (PDF) reports.

SCSV: Results in a Semicolon Separated Value file where values are separated via
semicolons.

1 Benchmark;Mode;Cnt;Score;Error;Units

2 Neo4JCreateBenchmark.benchmarkAddInstanceHierarchy;avgt;12.414;ms/op

3 Neo4JCreateBenchmark.benchmarkAddInterfaceClass;avgt;4.565;ms/op

4 Neo4JCreateBenchmark.benchmarkAddInterfaceClassLib;avgt;8.218;ms/op

Listing 16: Neo4J Performance Benchmark Example Result File

The result type format of the benchmark execution process used in this work is a CSV
file. This type was chosen as it allows for easy data import to spreadsheet based tools
such as Microsoft Excel 10 which are later used to execute data analysis. Listing 16
shows an excerpt from a benchmark result containing the benchmark execution times of
several use cases on the Neo4J data store. The benchmark mode used in this benchmark
execution was Average Time as stated in the Mode column (avgt - Average Time) and
the time unit used to list the results was ms/op (Milliseconds per Operation).

10Microsoft Excel products.office.com/excel

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Evaluation Process and Results

As stated in the research approach in Chapter 4, the third step of this thesis is to execute
an evaluation, in particular to design and execute a controlled performance evaluation
experiment. Therefore, this chapter starts with defining the design of the performance
evaluation in Section 7.1. The process used in the performance evaluation will be
explained in Section 7.2. Lastly, Section 7.3 describes the execution of the performance
evaluation and analyzes the evaluation results.

7.1 Evaluation Experiment Design

The performance evaluation of the data storage solutions for storing and querying
Automation Markup Language (AML) model data is based on a controlled experiment
whose conditions have to be defined. In order to do this, an underlying process has to be
utilized which provides a design process framework which can be used in the performance
evaluation of this thesis. While Wohlin et al. [58] clearly differentiate between case
studies and experiments, Runeson and Höst [48] propose a case study design process for
software engineering research that provides valuable input for this work. The authors
introduce guidelines that provide checklists which can be followed when designing software
engineering related case studies. These guidelines can also be utilized as a foundation for
the design of this performance evaluation experiment.

7.1.1 Evaluation Guidelines

The guidelines proposed by Runeson and Höst [48] contain a set of questions which have
to be answered by the designer of the research case study. This set contains 50 different
questions in the areas of Case Study Design, Preparation for Data Collection, Analysis of
Collected Data and Reporting. As the process of this evaluation experiment should also
contain a data collection and analysis as well as a reporting section (e.g. discussion of
the results), these guidelines seem suitable for the evaluation experiment of this thesis.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation Process and Results

The scope of these 50 questions covers a wide variety in order to support a broad field of
software engineering related case studies. The performance evaluation of the two data
storage solutions of this thesis is a controlled experiment and not a typical case study.
However, nine questions were picked that seemed most relevant for this thesis, which
will be answered in the following. Table 7.1 lists the questions selected for the design of
this performance evaluation experiment. For the purpose of this thesis the categories are
defined as follows: evaluation experiment design, preparation for data collection, analysis
of collected data and reporting.

Evaluation Experiment Design

(1) What is the case and its units of analysis?
(2) Are clear objectives, preliminary research questions,
hypotheses (if any) defined in advance?
(3) Is the theoretical basis—relation to existing literature or other cases—defined?

Preparation for data collection

(4) Does the collected data provide ability to address the research question?
(5) Are measurement instruments and procedures well defined
(measurement definitions, interview questions)?

Analysis of collected data

(6) Are there clear conclusions from the analysis,
including recommendations for practice/further research?
(7) Is the analysis methodology defined, including roles and review procedures?

Reporting

(8) Are the case and its units of analysis adequately presented?
(9) Are the objective, the research questions and corresponding answers reported?

Table 7.1: Evaluation Experiment Design Questions based on [48]

Nine questions, based on Runeson and Höst [48], were selected and applied to the context
of this performance evaluation experiment (see Table 7.1). These questions are answered
in the paragraphs below.

Answer Question 1 The object of this experiment is the evaluation of two data storage
solutions–BaseX and Neo4J–in terms of their ability to store and query AML model
data efficiently. The goal is to determine which of the two data storage solutions is
better suited to store and query AML model data based on the proposed use cases
(see Chapter 5). This is done by executing defined use cases such as the creation
and deletion of InternalElements (see Chapter 5) and evaluating their performance

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.1. Evaluation Experiment Design

results. The units of analysis for this experiment are the results of the performance
evaluation. These results are average execution times of the use cases which are
executed using the software architecture proposed in Chapter 6.

Answer Question 2 The objectives, like finding an efficient data storage solution for
storing and querying AML model data which can be used as a central data store in
the context of Multidisciplinary Engineering (MDE), were defined in advance in
Section 1.2 and Section 1.3. Furthermore, preliminary research questions about a
well suited software architecture for storing and querying AML models and and a
performance evaluation method (i.e. evaluation experiment) were stated in advance
(see Chapter 3). The findings of this evaluation experiment should provide deeper
insight and will be used to answer the research questions. RQ1 raises the question
which data storage paradigms are well suited to store and query AML models
efficiently (see Section 3.1). The results of this evaluation experiment are further
used to for a data analysis process. The findings of this analysis can then be used
to answer these proposed research questions.

Answer Question 3 The theoretical basis of this performance evaluation process is
defined in Chapter 2, Related Work. In the said chapter, information and definitions
are proposed which are necessary for the evaluation experiment of this thesis.
Furthermore, an analysis is executed to determine relevant data storage solution
candidates for the performance evaluation process (see Section 2.3.7).

Answer Question 4 The collected data of this thesis is provided by researchers of the
Otto-von-Guericke University Magdeburg, Germany1 and comes directly from a
research project which examines a production system using AML [37]. Therefore,
as it is relevant data from the MDE domain, the provided data can be used to
answer the research questions in this chapter. This input data will be defined in
Section 7.3.1.

Answer Question 5 The measurement instruments and procedures for this evalua-
tion experiment include the prototypical software architecture design proposed in
Chapter 6. This design includes a benchmarking component–utilizing the Java
Microbenchmark Harness (JMH) framework–that is used for the execution of the
performance evaluation. This component also provides the actual performance
results which are the input of the data analysis process.

Answer Question 6 According to Runeson and Höst [48], the conclusions drawn from
the analysis must be clear and provide recommendations for further research. The
analysis is executed in Section 7.3.3 where the actual performance results are
analyzed. Based on this information, a discussion is executed in Chapter 8. The
obtained results form the analysis and discussion should provide deeper insight to
form recommendations for future research (see Chapter 9).

1University Magdeburg: uni-magdeburg.de

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation Process and Results

Answer Question 7 The data analysis methodology is defined in Section 7.2. In this
section, the approach is proposed stating that several graphical representations
and tables are generated using a spreadsheet tool. These representations are then
analyzed and used to propose deeper insight into the topic of this performance
evaluation experiment.

Answer Question 8 An adequate representation of the analysis and its units (i.e.
results) is needed. In order to provide such a representation, several tables and
graphs are presented and explained, providing a better overview of the actual
performance results (see Section 7.3.3). These representations make it easier for the
reader to understand the actual results of this performance evaluation experiment.

Answer Question 9 The research questions are stated in Chapter 3 and answered in
Chapter 8. Therefore, both the questions and the answers are reported.

The following sections explain the process of the performance evaluation experiment
which is based on the questions and answers provided above. The definition of the
benchmarking process and the execution of the performance evaluation are therefore
based on the case study design guidelines proposed by Runeson and Höst in [48].

7.2 Benchmarking Process

The evaluation process used to determine the performance of two data storage paradigms
for storing and querying AML models needs a defined execution path in order to be
reproducible for future evaluation executions and extensions (see Section 7.1). Therefore,
the performance evaluation experiment of this benchmarking process needs to be defined
including each benchmarking process step needed to generate the performance results.

The benchmark process consists of several steps which are executed by different actors.
There are two actors needed to perform the performance evaluation: the benchmark
executor (e.g. a researcher or a software engineer) and a computational device (e.g.
a laptop or a server). Figure 7.1 shows the steps needed to gather and analyze the
performance evaluation results.

The first step is to prepare the benchmark (1). The execution of the benchmark relies on
input data, as shown in Section 6.2.2 and Section 6.2.3. For this, the evaluation process
of this thesis requires that the following two steps are executed in advance: a preparation
of the input data and a connection of the input data to the benchmarks. Due to the fact
that the actual implementation of the data stores is running inside a Docker container,
starting the Docker containers on the computational device in advance is needed so that
the benchmark can access the data stores. After the benchmark executor has finished
these preparation steps, the benchmark is started on the computational device (e.g. a
laptop or server) (2). Depending on the computational device, the execution of this
benchmark, including evaluating all use cases against both data stores, requires up to
2.5 hours. The computational device used to execute this benchmark is described in

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Execution of Performance Evaluation

Result
Analysis

Benchmark
Execution

Benchmark
Preparation

excutes executesexecutes

Compute Device

Analyzed
Results

(e.g.
graphs)

Benchmark Executor Benchmark Executor

1 2 3

Figure 7.1: Benchmark Process of this Thesis

Appendix 9.2. After the benchmark execution is finished, the results are stored on the
execution device waiting to be analyzed. Therefore, the next step is again executed by
the benchmark executor and consists of an analysis of the provided result data (3). This
can be done by using several data analysis tools and solutions. This thesis however,
uses Microsoft Excel to generate result graphs which provide a graphical representation
of the data. Furthermore, easier data transformation processes for a better graphical
representation are executed using the spreadsheet tool. The result of this benchmarking
process is, on the one hand, the raw result data, e.g. the average execution time of each
use case, and on the other hand, the analyzed graphs. These artifacts can then be used
to gain deeper insight into which data storage solution is better suited to store and query
AML model data.

The benchmark execution itself is actually the evaluation execution running on the
computational machine. Figure 6.2 shows this process in detail. The input data is
accessed by the benchmarking class (see Section 6.2.2) and used to calculate a performance
result (e.g. an average execution time) for each use case.

7.3 Execution of Performance Evaluation

The following sections define the actual execution of the performance evaluation following
the defined evaluation experiment process of Section 7.1. The performance evaluation
process as defined in Section 7.2 is used, containing the use of input data (see Section
7.3.1) and performance indicators (see Section 2.4). All results of the executed benchmark
are provided in Section 7.3.2.

7.3.1 Evaluation Input Data

For the execution of the use cases–using the designed performance evaluation environment–
an AML file provided by researchers of the Otto-von-Guericke University Magdeburg,
Germany, was used. This AML file was created for the purpose of an academic demon-

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation Process and Results

Input

AML
File

Output

Benchmark

Result
File DB

Common API
Implementation

Figure 7.2: Benchmark Component Execution Process

stration and testing project with focus on a lab-sized production system [37]. According
to Mazak et al., this production system was used to evaluate their Run-Time Data
Collection approach–AML-RTDC–based on real world requirements. Figure 7.3 shows a
graphical representation of the AML file which consists of one single Instance Hierarchy
with 166 Internal Elements and seven Interface Class Libs with 27 Interface Classes, 14
Role Class Libs with 198 Role Classes and three System Unit Class Libs with 53 System
Unit Classes. In addition, the file itself contains 21618 lines of code and uses about 1.4
Megabytes of data.

The benchmark itself uses several input types (see Section 6.2.3). Therefore, the complete
example AML file and sub-parts of the file were used for this performance evaluation
process. These sub-parts contain sub-elements of an AML file e.g. an InstanceHierarchy.
For example, the use case ’C-ICL’ (see Table 5.1) consists of creating/adding a new
InterfaceClassLib to an AMLFile. It requires an InterfaceClassLib in the form of an
Extensible Markup Language (XML) file as input. For the execution of this evaluation
process, sub-element files are created by using copies of elements which are located inside
the complete AMLFile. These copies are altered in order to fit the requirements of the
use cases.

As the execution time of the performance evaluation on the used environment (see
Appendix 9.2) with the input file from Mazak et al. [37] is around one hour, several
smaller example files (see the example in Listing 1) were used to speed up the design and
development process. Nevertheless, the results presented in this thesis are gathered using
the complete example file provided by Mazak et al. in [37].

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Execution of Performance Evaluation

AMLFile

InstanceHierarchy InterfaceClassLib RoleClassLib SystemUnitClassLib

InternalElements InterfaceClass RoleClass SystemUnitClass

...

1 7 14 3

166 27 198 53

Figure 7.3: Example AML Input File

7.3.2 Performance Benchmarking Results

The execution of the performance evaluation benchmark creates two result files (see Section
6.2.5)–one for BaseX and one for Neo4J–containing the measured average execution times.
These raw data files provide the basis for a more detailed analysis which will be used to
draw further conclusions about the differences in performance between the two data stores.
For the purpose of this work, the analysis of the data requires the generation of graphical
representations like graphs and tables as well as the calculation of mathematical data
transformations. The generated graphs can be used for the analysis task due to the fact
that they provide a better overview as well as representation of the data. Furthermore,
tables provide a structured overview of the actual raw data. In addition, mathematical
data transformation can sometimes be useful for the representation of the data in graphs
in order to provide a suitable design. For the analysis executed in this thesis, several
different data graphs were generated including several different bar charts focusing on
one or multiple use cases of the performance evaluation. In order to do this, a software
tool has to be used which allows for generating graphs and tables as well as calculating
mathematical transformations. Therefore, a Microsoft Excel spreadsheet was used to
aggregate as well as transform the results into the required artifacts.

7.3.3 Result Analysis

In order to give a complete overview of all average execution times, the table shown in
Figure 7.4 lists the results. The table consists of five columns where the first column
lists each AML model concept. The other four columns are used to group the use cases

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation Process and Results

into four groups: create, read, update and delete. These groups represent the main use
case categories which are based on the fundamental data operations CRUD (Create,
Read, Update, Delete). For each of these categories, two further sub-columns are shown,
which structure the results into performance evaluation results of the two data stores, i.e.
Neo4J and BaseX. These sub-columns contain the actual performance results which are
generated by the JMH framework. The unit of the results is milliseconds per operation
(ms/op). For each AML model concept, a corresponding average execution time is listed;
mapped to the according data store as well as use case category. The results were
mathematically rounded to two decimal places.

Figure 7.5 shows a graphical representation of the data. As the results vary quite widely
in terms of execution times, providing a graphical representation requires some form of
data transformation. For example, the creating an AML file (Use Case C-AML) using
Neo4J as an underlying data store requires 73494,57 ms/op whereas BaseX requires only
102,60 ms/op. Therefore, Figure 7.5 is using a mathematical transformation in order
to fit the results into one single diagram. The following mathematical transformation
where x is the average execution time is used: log10(10 ∗ x). The diagram itself shows
eight groups of bars which represent the use case categories for each data store. For
example, the first group is called CreateNeo4J. It shows all transformed performance
results of all use cases executed on the Neo4J data store which deal with creating data
(e.g. Create an AMLFile). The colors of the bars represent one specific AML model
concept. The actual mapping is shown in the legend of the diagram. The height of the
bar itself represents the result of the use case transformed using the above mentioned
mathematical data transformation. Therefore, the y-axis shows the performance of a
use case. The bars allow for an easy comparison of the use cases, e.g. the creation use
cases of Neo4J (first block) took longer in comparison to the creation use cases of BaseX
(second block). This graphical representation can be used to provide a first overview of
the performance evaluation results of the two data stores.

Nevertheless, the overview table (Table 7.4) and the graphical overview of all result
data (Figure 7.5) does not provide further detailed information about the data store
performance. Therefore, further analysis is needed. This analysis is conducted by selecting
specific use cases and their according execution results which seem to provide interesting
result data. The following subsections analyze these results of use cases executed directly
on the AMLFile as well as other sub-elements of the AMLFile. The IDs of the use cases
are mentioned in the heading of the subsections (see Table 5.1).

Creating (C-AML)& Updating (U-AML) AMLFiles

BaseX is a data store specifically intended to store XML-based data. This is done by
directly storing XML files and altering them using XML Query Language (XQuery).
Therefore, storing (e.g. creating or updating) operations using this type of data store are
efficient for XML files. As AML is based on XML, storing AMLFiles in a BaseX data
store is substantially faster than using Neo4J. Neo4J needs to transform the AMLFile
into data store entities which are used during the storing process. Since the storing and

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Execution of Performance Evaluation

N
e
o
4
J

B
a
se
X

N
e
o
4
J

B
a
se
X

N
e
o
4
J

B
a
se
X

N
e
o
4
J

B
a
se
X

In
sta

n
ce
H
ie
ra
rch

y
1
1
2
5
8
,7
3

2
2
0
,1
5

8
,6
1

2
5
,6
1

1
0
8
1
1
,7
1

1
1
6
,3
7

6
,9
1

0
,9
2

In
te
rfa

ce
C
la
ss

2
8
6
,2
9

1
0
9
,7
9

1
0
,0
5

1
5
,8
8

2
6
5
,6
5

1
0
0
,4
9

7
,7
9

0
,9
6

In
te
rfa

ce
C
la
ssLib

5
5
7
,1
5

2
2
2
,2
8

1
1
,4
5

1
6
,2
1

4
0
9
,8
9

9
9
,4
5

9
,0
4

0
,9
3

In
te
rn
a
lE
le
m
e
n
t

1
1
9
6
0
,6
5

1
5
3
,9
1

3
,9
2

1
6
,1
1

1
0
4
2
6
,8
8

1
1
8
,4
8

5
,8
7

0
,3
5

R
o
le
C
la
ss

2
3
9
,1
6

1
1
0
,4
3

9
,5
8

1
6
,5
3

6
4
4
,8
6

1
0
4
,1
7

4
,9
9

0
,9
2

R
o
le
C
la
ssLib

4
1
8
,9
7

2
1
9
,0
6

1
2
,6
8

1
6
,7
6

8
4
2
,4
0

1
0
4
,5
2

7
,3
7

0
,9
3

S
yste

m
U
n
itC

la
ss

1
2
6
6
,8
5

1
6
4
,0
6

1
1
,7
1

2
1
,4
0

2
6
6
2
,1
3

1
0
4
,4
1

7
,0
9

0
,9
9

S
yste

m
U
n
itC

la
ssLib

2
0
9
5
5
,1
4

2
3
1
,5
6

1
3
,0
9

2
9
,0
9

3
7
4
5
7
,7
2

1
6
2
,4
2

7
,2
2

0
,8
9

A
M
LF
ile

7
3
4
9
4
,5
7

1
0
2
,6
0

2
7
,7
6

5
2
,9
5

9
0
9
8
0
,3
0

1
5
7
,7
7

7
,1
2

0
,8
6

R
e
a
d

C
re
a
te

U
p
d
a
te

D
e
le
te

F
igu

re
7.4:

P
erform

an
ce

B
en

ch
m

ark
R

esu
lts

for
B

aseX
an

d
N

eo4
J

in
m

s/
o
p

0 1 2 3 4 5 6 7

C
re

a
te

N
e

o
4

J
C

re
a

te
B

ase
X

R
e

ad
N

e
o

4
J

R
e

ad
B

a
se

X
U

p
d

a
te

N
e

o
4

J
U

p
d

a
te

B
ase

X
D

e
le

te
N

e
o

4
J

D
e

le
te

B
a

se
X

log10(10 * Average Execution Time

ms/op)

In
sta

n
ce

H
ie

ra
rch

y
In

te
rfa

c
e

C
la

ss
In

te
rfa

c
e

C
la

ssLib
In

te
rn

a
lE

le
m

e
n

t
R

o
le

C
la

ss
R

o
le

C
la

ssLib
S

yste
m

U
n

itC
la

ss
S

yste
m

U
n

itC
la

ssL
ib

A
M

LF
ile

F
igu

re
7.5:

P
erform

an
ce

B
en

ch
m

ark
D

iagram

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation Process and Results

handling of data store entities is not as optimized as directly storing an AMLFile (i.e.
XML file), Neo4J takes longer to store or update the data.

Figure 7.6 shows a comparison between the average execution time of storing an AMLFile
in a BaseX data store and a Neo4J data store (Use Case C-AML). Neo4J has an average
execution time of 73494,57ms/op and BaseX 102,60ms/op. Furthermore, Figure 7.7
shows the same comparison of the updating process (Use Case U-AML). For this use
case, Neo4J takes 90980,3ms/op and BaseX 157,77ms/op. Both figures show that for use
cases which mainly include create and update operations, BaseX provides substantially
better performance.

Neo4J

BaseX

Create AMLFile (C-AML)

Average Execution Time ms/op

103 ms

73495 ms

1ms/op 10ms/op 100ms/op 1000ms/op 10000ms/op 100000ms/op

Figure 7.6: Result Use Case C-AML: Creating an AMLFile

Neo4J

BaseX

Update AMLFile (U-AML)

Average Execution Time ms/op

158 ms

90980 ms

1ms/op 10ms/op 100ms/op 1000ms/op 10000ms/op 100000ms/op

Figure 7.7: Result Use Case U-AML: Updating an AMLFile

Reading AMLFiles (R-AML)

Once entities are stored inside a data store, accessing them is a common task which is
done quite frequently during the usage of a data store. Furthermore, update and create
operations also include read operation used for existence checks of data entities. As
Neo4J is optimized for efficient querying and accessing performance for linked data, it
provides a better performance than BaseX for reading use cases.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Execution of Performance Evaluation

Figure 7.8 shows the average execution time of use case R-AML which reads an AML-
File from the data store. Neo4J takes on average 27,76ms/op, whereas BaseX takes
52,95ms/op. Therefore, Neo4J offers approximately twice the performance for read use
cases (see Table 7.2).

Neo4J

BaseX

Read AMLFile (R-AML)

Average Execution Time ms/op

53 ms

28 ms

1ms/op 10ms/op 100ms/op 1000ms/op 10000ms/op 100000ms/op

Figure 7.8: Result Use Case R-AML: Reading an AMLFile

Deleting AMLFiles (D-AML)

For the purpose of deleting AMLFiles from the data store, BaseX provides a better
performance. This comes from the ability of simply deleting the XML file from the
data store. In comparison, Neo4J has to delete all data store entities and the links
between them. Figure 7.9 shows the resulting time difference of the example use case
D-AML–Neo4J takes 7,12ms/op, whereas BaseX takes less than 0,86ms/op. Therefore,
Neo4J takes approximately eight times longer than BaseX (see Table 7.2).

Neo4J

BaseX

Delete AMLFile (D-AML)

Average Execution Time ms/op

1 ms

7 ms

1ms/op 10ms/op 100ms/op 1000ms/op 10000ms/op 100000ms/op

Figure 7.9: Result Use Case D-AML: Deleting an AMLFile

Creating (C-IE) & Updating (U-IE) InternalElements

In comparison to use cases which deal with the handling of AMLFiles, creating and
updating InternalElements requires accessing a deeper hierarchical level in the data
store. Therefore, more steps are needed to execute the use cases (see Section 5.2). As

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation Process and Results

InternalElements are sub-elements of an AMLFile, the input file for this benchmark is an
InternalElement extracted (i.e. copied and edited) from the main input file (see Section
7.3.1). The actual average execution time of Use Case C-IE is shown in Figure 7.10 where
Neo4J took 11960,65ms/op and BaseX 153,91ms/op.

Neo4J

BaseX

Create InternalElement (C-IE)

Average Execution Time ms/op

154 ms

11961 ms

1ms/op 10ms/op 100ms/op 1000ms/op 10000ms/op 100000ms/op

Figure 7.10: Result Use Case C-IE: Creating an InternalElement

Reading SystemUnitClasses (R-SUC)

Reading sub-elements of an AMLFile, e.g. SystemUnitClasses, resulted in average
execution times, which are more or less the same as the average execution times of
reading AMLFiles. The fact that Neo4J is optimized for accessing complex data sets
which are linked in graph-like structures is fundamental in these use case executions.
This leads to the fact that Neo4J takes half the time than BaseX does for accessing (i.e.
reading) a SystemUnitClass from the data store. The actual execution times are shown
in Figure 7.11 where Neo4J executed the use cases on average at 11,71ms/op and BaseX
at 21,4ms/op.

Neo4J

BaseX

Read SystemUnitClass (R-SUC)

Average Execution Time ms/op

21 ms

12 ms

1ms/op 10ms/op 100ms/op 1000ms/op 10000ms/op 100000ms/op

Figure 7.11: Result Use Case R-SUC: Reading SystemUnitClasses

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Execution of Performance Evaluation

Deleting InstanceHierarchies (D-IH)

BaseX offers performance gains for use cases which deal with deleting files as it can directly
delete the underlying XML file (or structure in case of sub-elements). For the deletion
process of AMLFiles, BaseX provides in-built functionality which allows for deleting
complete XML documents. In order to delete sub-elements–such as InstanceHierarchies–
XML Query Language (XQuery) has to be used. Nevertheless, the average execution
times of the performance benchmark for deleting InstanceHierarchies does not widely
differ from the deletion process of AMLFiles. This results in an average execution time
of 0,92ms/op for BaseX and 6,91ms/op for Neo4J meaning that BaseX is approximately
seven times faster (see Figure 7.12).

Neo4J

BaseX

Delete InstanceHierarchy (D-IH)

Average Execution Time ms/op

1 ms

7 ms

1ms/op 10ms/op 100ms/op 1000ms/op 10000ms/op 100000ms/op

Figure 7.12: Result Use Case D-IH: Delete an InstanceHierarchy

Summary

Use Case BaseX Neo4J Ratio

C-AML 102,60ms/op 73494,57ms/op 716,32
R-AML 52,95ms/op 27,76ms/op 1,91
U-AML 157,77ms/op 90980,30ms/op 576,66
D-AML 0,86ms/op 7,12ms/op 8,27

C-IE 153,91ms/op 11960,65ms/op 77,71
R-SUC 21,40ms/op 11,71ms/op 1,83
D-IH 0,92ms/op 6,91ms/op 7,51

Table 7.2: Result Ratio Overview: Maximum Value / Minimum Value

The actual difference between the average execution times of the performance evaluation
results provides a good insight into the differences in terms of performance between
the two data stores. However, providing an additional comparison, a ratio between the
result values, would further improve the overall result analysis. Therefore, Table 7.2 lists
the performance results of the uses cases from the result graphs shown in Section 7.3.3
and adds an additional ratio column. This ratio value is calculated using the following

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Evaluation Process and Results

formula: x = MinimumV alue/MaximumV alue. The value of the ratio, i.e. x, states
that the slower execution time is x-times slower in comparison to the faster execution
time.

This chapter proposed the evaluation experiment on which the performance evaluation
benchmark is based. The benchmark execution process as well as relevant attributes
such as the input data and the performance indicators were discussed. Furthermore,
the actual performance data results were shown and an analysis was executed providing
several graphical representations of the performance results.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 8
Discussion & Limitations

This chapter discusses the results and findings of the performance evaluation as demon-
strated in Chapter 7, the software architecture defined in Chapter 6 and the performance
evaluation experiment process stated in Chapter 7. Therefore, Section 8.1 provides an
overview of the work executed in this thesis. Section 8.2, 8.3 and 8.4 will each provide
answers to the according research questions. Furthermore, the limitations of this work
are discussed in Section 8.5.

8.1 Discussion Performance Evaluation

In the area of Multidisciplinary Engineering (MDE) projects, planning data needs to be
exchanged between different engineers of the involved engineering domains (see Chapter
1). In order to provide a common data exchange format for this exchange process,
Automation Markup Language (AML) was developed. AML is an open data exchange
format for engineering planning data which can be used by different types of engineers–
such as mechanical, electrical or logical engineers–involved in the project (see Section
2.2). Using this common data exchange format in MDE projects improves the project
execution by eliminating the need of data transformations between different data formats.
However, the exchange process itself is hardly improved, as it is still required to have
some form of data exchange channel. In order to improve the data exchange process,
a central data store which holds the plan data (i.e. AML) can be introduced. This
data store would speed up the overall engineering process as all engineers from different
domains could access the centralized data. For this, an efficient data storage solution
for storing and querying AML models has to be found. Therefore, an evaluation based
on the actual performance (i.e. average execution times) of the data stores needs to be
executed.

This thesis compared two data storage solutions in order to find a well suited data store
which can be utilized as a central data storage solution for AML model data. In order to

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Discussion & Limitations

execute this comparison, several steps were executed. The first step was a selection of
data storage paradigms and solutions based on criteria provided by the AML data format
which resulted in two candidates for the actual data storage paradigms evaluation process
(see Section 6.1.4). In addition to that, a prototypical software architecture was designed
which can be used for efficient storing and querying of AML model data (see Chapter 6).
This software architecture is utilized during the execution of the performance evaluation
experiment. In addition to this software architecture design, a benchmarking component
was designed utilizing the Java Microbenchmark Harness (JMH) framework for Java code
benchmarking (see Section 6.2.2). This component was used in the performance evaluation
in order to determine the actual results. Furthermore, a performance evaluation process
was established which can be used to execute a performance evaluation experiment as
well as a performance result analysis. These performance results were then used to
gain deeper insight into the suitability of the two data storage solutions for storing and
querying AML model data efficiently (see Section 7.3.3). The results were presented using
various graphical representations, created with Microsoft Excel spreadsheet software.
These representations provided the foundation for the analysis process of this work. The
analysis resulted in a recommendation for which data storage solution is better suited to
store and query AML model data.

The results of the performance benchmark show that the performance for storing and
querying AML model data varies widely between the two tested data storage solutions
based on the underlying use case (see Chapter 7). The graphical representation of the
selected benchmarks provide further evidence that the results, i.e. the average execution
times, can be quite different. This leads to the fact that non of the two data storage
solution can be selected as better suited to store and query AML model data for all
use cases (see Chapter 5) evaluated in this work. Therefore, in order to provide a
recommendation for choosing a data storage solution to store and query AML model
data, the intended use case has to be considered. Depending on whether more accessing
(e.g. reading an InternalElement (R-IE)) or writing (e.g. creating an AMLFile (C-AML))
data operations are involved, one data storage solutions is better suited than the other.
This discussion can provide deeper insight into the topic of storing and querying AML
model data which in turn can be used to choose a data storage solution for an according
MDE project which is utilizing AML as a data exchange format. A recommendation for
all MDE projects using AML model data can not be provided because different projects
have different requirements.

The following two subsections provide a discussion about the results of the performance
evaluation and propose which of the two evaluated data storage solutions are better
suited for which specific use cases. Therefore, this discussion is based on the defined use
cases (see Chapter 5).

BaseX

The first data store selected for the performance evaluation was BaseX (see Section 2.3.1).
BaseX is an Extensible Markup Language (XML) data store based on the semi-structured

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.2. Discussion RQ1

data storage paradigm (see Section 2.3.1). This data storage solution was selected for
the performance evaluation due to the criteria to store XML data because AML is based
on XML. Generally speaking, BaseX offers a good performance for storing and querying
XML data. However, there are some drawbacks in terms of accessing (i.e. reading)
performance. BaseX is not optimized to query complex data and therefore, other data
storage solutions which are aimed at querying complex (i.e. interlinked) data offer better
performance. Nevertheless, creating, updating or deleting data using BaseX provides
substantially better performance than the other evaluated data store (Neo4J). As a lot
of use cases depend on accessing data beforehand (e.g. checking if something exists
or querying something from the data store in order to alter it) using BaseX can be a
drawback. This reading performance drawback can be seen in the benchmark result
shown in Figure 7.8 which shows the performance difference between BaseX and Neo4J
when accessing an AMLFile from the data store. The results show that BaseX needs
approximately twice the time to access the data. However, if the use cases of the MDE
project do not include accessing complex data and rather focuses on data manipulating
operations, BaseX can be an efficient choice as a data storage solution for AML model
data. Data manipulations, i.e. create, update or delete data, were executed in several use
cases during the performance benchmark. For example, Figure 7.3.3 shows that BaseX is
substantially faster than Neo4J in the creation process of an InternalElement.

Neo4J

The second data store selected for the performance evaluation was Neo4J (see Section
2.3.4). Neo4J is a data storage solution which follows the graph data paradigm (see
Section 2.3.4) which utilizes a graph as the underlying data structure. As Neo4J is
graph-based, it focuses on the connections between the stored data. This allows for
providing good accessing performance for complex interlinked data (such as AML). AML
is not only XML based but is also interlinked between the modelling concepts which
makes it a graph-like data structure. Therefore, accessing (i.e. reading) AML model
data stored in a Neo4J data store is more efficient than data stored in BaseX (see Figure
7.8). Use cases that require lots of data access operations are therefore more efficient if
the underlying data storage solution is Neo4J in contrast to BaseX (such as Use Cases
R-AML, R-SUC). Use cases that execute create, update or delete operations (e.g. Use
Cases C-AML, U-AML or D-AML) are therefore not as efficient as BaseX and offer worse
performance.

8.2 Discussion RQ1

Which data storage paradigms are well suited to store and query models of
Multidisciplinary Engineering (MDE), such as Automation Markup Language
(AML)?

By analyzing common data storage paradigms in the area of software engineering, a list

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Discussion & Limitations

which provides the foundation for the selection of a well suited data storage paradigm for
MDE model data was created. Based on the MDE model AML and its criteria, such as
interconnected data and XML as the data structure format, data storage paradigms had
been selected. The selected data storage paradigms and its according implementation
are well suited to store either XML data (e.g. BaseX) or cyclic graph-like interlinked
structures (e.g. Neo4J). Therefore, the selected data storage paradigms were the graph
data paradigm (see Section 2.3.4) and the semi-structured data paradigm (see Section
2.3.1). The according data storage implementations for these two paradigms were selected
based on widespread usage in the domain of software engineering. BaseX was the selected
implementation of the semi-structured data paradigm and Neo4J as a representative of
the graph data paradigm. These two candidates were analyzed and evaluated using a
performance benchmark based on the benchmarking process defined in Section 7.2. The
results of this performance evaluation benchmark (see Table 7.4) were analyzed which
results in deeper insight of the data store and query performance for both evaluation
candidates.

As this question deals with the suitability of data storage paradigms to store and query
models of AML, the answer is that it depends on the actual use case. Both BaseX and
Neo4J are well suited to store and query AML data but they offer drawbacks in certain
data store operations (see Section 8.1). Overall, BaseX offers better performance for use
cases involving creating, updating and deleting data. Neo4J however is better suited for
use cases which focus on accessing (i.e. reading) lots of data.

8.3 Discussion RQ2

Which software architecture is well suited for storing and querying MDE
models, such as AML models, independently from the implementation of a
data storage paradigm?

In order to answer this research question, a prototypical software architecture was
designed and created. This software architecture is able to store MDE model data
efficiently and independently from the underlying storage technology (see Chapter 6). A
traditional layered software architecture approach was used in order to provide a software
architecture which is independent from the implementation of the actual data storage
paradigm. This layered approach includes several abstraction layers (through interfaces)
including (from bottom to top) a data storage layer, a Managing Component for the data
store, a Common API (which is accessed by the benchmark component) and AML model
interfaces and according implementation. The data storage layer contains the actual
implementation of the data storage paradigm, running inside a virtualization layer using
Docker (see Section 6.1.4). For each data store in the prototypical software architecture,
a managing component is needed which implements all data store specific functionalities
(see Section 6.1.3). The Common API layer holds the declarations of the data store
operations (in this case the use cases) which are implemented in the Managing Component

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.4. Discussion RQ3

of each data store (see Section 6.1.2). The AML model interface and implementation
hold interface descriptions as well as implementations of the AML model concepts (see
Section 6.1.1) which are used throughout the whole software architecture.

This question deals with finding a software architecture for storing and querying AML
models which is independent from the implementation of the data storage paradigm.
Therefore, the proposed software architecture utilizes a virtualization layer for the data
storage solutions and requires a managing component for each data store. In order to
exchange or add additional data store, the actual data store instance has to be added
to the virtualization layer and an according data store Managing Component has to be
designed. This allows for an independent software architecture for storing and querying
AML models.

8.4 Discussion RQ3

How can a standard database performance evaluation method be adapted to
measure the performance of storing and querying MDE models, such as AML
models?

This question can be answered by providing a process description of a database per-
formance evaluation method for storing and querying AML models. In this work, the
performance evaluation process was defined by following the guidelines defined by Rune-
son and Höst [48]. Runeson and Höst propose guidelines for the definition and execution
of case studies in the field of software engineering. As the performance evaluation process
of this thesis can be seen as a case study, these proposed guidelines seem suitable. The
guideline itself consists of a checklist with 50 different questions. Runeson and Höst state
that by answering these questions a structured case study process can be defined. For
this thesis, selected questions of the guideline’s checklist were answered. The questions
and answers provided the basis for defining a performance evaluation process (see Section
7.1 and 7.2). The process of the performance evaluation itself consists of a benchmark
preparation step (input data analysis and preparation), a benchmark execution (i.e.
running the performance evaluation) and a performance result analysis. The process
of this performance evaluation is shown in Figure 7.1. For the benchmark execution,
the software architecture–proposed in Chapter 6–and the JMH framework were used.
The last step of the performance evaluation–the result analysis–is the part in which the
performance results are discussed. This discussion leads to a better understanding of
the suitability of the two selected data storage solutions for storing and querying AML
model data (see Section 7.3.3). This insight can then be used to select an efficient data
storage solution for future MDE projects which utilize AML as a data exchange format.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Discussion & Limitations

8.5 Limitations

The limitations of this work can be structured into two types: artifact and evaluation
limitations. The following subsections provide information about the shortcomings of
this work. These limitations cannot be dealt with in this work and are therefore subject
to future work.

8.5.1 Artifact Limitations

Artifact limitations are limitations of the designed artifacts of this thesis. Therefore, the
artifact limitations are the limitations of the design prototype which was used for the
performance benchmark (see Chapter 6).

Benchmark Programming Language The programming language used for the per-
formance evaluation architecture was Java. Java itself is not particularly suitable for the
execution of a performance evaluation due to the lack of providing good benchmarking
support (see Section 6.2.2). Due to the fact that Java runs inside a virtual machine–the
Java Virtual Machine (JVM)–it is not a hardware focused programming language which
limits the execution of the performance evaluation (e.g. the artifact). Programming
languages which are more hardware focused, e.g. C1, could provide more suitable perfor-
mance results of data storage paradigms for storing and querying MDE model data due
to the missing overhead of running inside a virtual machine.

Algorithm Performance The goal of this work was to design a prototypical artifact
without the goal of looking at algorithm performance. In particular, the queries used for
the execution of the use cases (e.g. Cypher or XML Query Language (XQuery)) could
have been optimized. Therefore, one limitation to this artifact is that it could be better
if less complex software algorithms or queries were implemented.

8.5.2 Evaluation Limitations

Limitations regarding the evaluation process of this work are listed below. This type of
limitations deals with the shortcomings of the evaluation process executed in this thesis
(see Chapter 7).

Limited Input Data The input data used for this thesis was provided by researchers
of the Otto-von-Guericke University Magdeburg, Germany2, and consists of AML data
from one of their research projects [37]. As this input data represents a research project,
limitations occur due to the limited informative value and scope in terms of real world
usage. More complex and real-world-focused input data would have provided a more
precise result of the performance.

1GCC Compiler gcc.gnu.org
2University Magdeburg: uni-magdeburg.de

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.5. Limitations

Real-World Use Cases As the focus of the proposed use cases (see Chapter 5) in the
performance evaluation of this thesis are common data storage operations, providing
real-world use cases such as checking the consistency and filtering the data would improve
the evaluation process. Therefore, using only data storage operation focused use cases is
another limitation of this thesis.

Limited Performance Indicators The performance indicator used in the performance
evaluation of this thesis is the average execution time of each use case. Utilizing additional
performance indicators (see Table 2.3) in the evaluation process could improve the results
and findings of the evaluation process. Therefore, relying solely on the average execution
time as a performance indicator is an additional limitation of this performance evaluation.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 9
Conclusion and Future Work

This chapter concludes the work conducted in this thesis in Section 9.1 by considering
the problems of finding an efficient solution for the process of sharing data among
different engineers in Multidisciplinary Engineering (MDE) processes (see Section 1.2).
Furthermore, issues for future work are raised in Section 9.2 considering the gained
insight during the writing and execution of this thesis.

9.1 Conclusion

In the area of MDE, engineers from various domains such as mechanical, electrical or
logical engineering work together in one common project (e.g. a car manufacturing plant).
These projects typically involve the exchange of data. In order to avoid the overhead
of having different data models in each engineering domain, using a standardized data
model offers many benefits such as utilizing common concepts [42] and terminology as
well as a reduction in engineering tool integration effort. Furthermore, in the domain of
MDE, a standardized data model can bridge the gap between the various engineering
disciplines by being exchangeable between engineers involved in the production process
[7]. Nevertheless, due to the lack of integrated tool chains, even standardized MDE
artifacts have their limitations such as the need for exchanging the artifacts via common
communication channels, e.g. email. By providing a central data storage solution that
acts as a mediator between the engineering disciplines and their entities, the overhead of
exchanging data manually is eliminated. In order to find a sufficient data storage solution,
several steps were executed. Data storage paradigms were analyzed (Section 2.3) and
two data storage solutions were selected as candidates for further investigation (Section
6.1.4). In order to efficiently store and query MDE model data (e.g. Automation Markup
Language (AML)) a prototypical software architecture was created based on a layered
architecture pattern approach (Chapter 6). Furthermore, a performance evaluation
process was established which proposes a suitable approach to evaluate the performance

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

9. Conclusion and Future Work

of a data storage solution in terms of storing and querying performance of MDE model
data (Section 7.2). The produced results of this performance evaluation experiment can
be used to evaluate which data storage solution is better suited to store and query MDE
models (Section 7.3.3).

For this work, the used model data is AML as it is a data exchange format developed
by different companies and researchers in order to improve the data exchange process
for MDE projects (see Section 2.2). The data storage solutions evaluated in this work
are Neo4J and BaseX. They were selected based on criteria coming from the model data
format AML (see Section 2.3.7). In conclusion, this work shows that BaseX performs
better for use cases which involve create, update and delete operations and Neo4J
performs better for use cases involving read operations.

9.1.1 Improvements for Stakeholders

As the findings of this thesis are aimed at providing a benefit to MDE projects and the
engineers involved in these projects, the following list provides an overview of the insights
gained for the different stakeholders.

Engineers Using a central data storage solution can reduce the effort of exchanging
MDE plan data manually via common data exchange channels such as email. This
results into less errors during data exchange and provides less overhead in terms of
data synchronization. Therefore, the findings of this thesis can be used to introduce
a data storage solution for MDE, e.g. AML, model data in MDE projects based on
its requirements.

Tool Developers The findings of this thesis provide insight whether BaseX (i.e. the
semi-structured data paradigm) or Neo4J (i.e. the graph data paradigm) is better
suited to store and query AML. Based on the performance evaluation executed
using the proposed use cases, a tool developer could use these findings to determine
which data storage solution can be suitable for their next software tool project in
the area of data exchange solution for AML model data.

Project Managers The findings of this thesis can be used for project managers to more
effectively analyze and evaluate the performance of data storage solutions which
could be used in MDE project as a central data store for, e.g., AML model data.
The project managers gain deeper insight into the performance of the evaluated
data storage solution, based on the performance evaluation and the proposed use
cases, and can use the performance results to determine an efficient solution for
the needs of their project.

Researchers & Domain Experts As this thesis includes the design of a prototypical
performance evaluation infrastructure, which allows for efficient storing and querying
of AML model data, as well as the design of a performance evaluation process,
researchers and domain experts can utilizes these artifacts in order to reason about

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

9.2. Future Work

additional further data storage solutions. These artifacts can provide a basis for
other evaluation processes in the domain of MDE model data. Therefore, the
artifacts of this thesis can be used to execute further research.

9.2 Future Work

During the writing of this thesis, the following ideas were gathered which could potentially
be interesting for future work.

Additional Data Storage Solution This work focused on the performance evaluation
of two data storage solutions which were chosen based on their relevancy to the
format of the AML data model. Adding further data storage solutions such as
relational data bases (e.g. PostgresSQL), hybrid databases (e.g. ArrangoDB) or
document stores (e.g. MongoDB) to the performance evaluation infrastructure
would provide more results and lead to a more complete basis for arguing which
data storage solution is best suited for storing AML model data.

Extend Model Data Concepts As the performance evaluation is focused on basic
AML model data concepts, extending to more advanced model data concepts would
lead to a more refined result. This improved result could be used to reason in a
more detailed manner about the performance of a particular data storage paradigm.

Additional Input Data By using more complex or bigger example input data, the
result could change as the performance results are based on one example AML
project (provided by Otto-von-Guericke Univeristy Magdeburg, Germany).

Additional MDE Model Data Formats As with the data storage solutions, this
work was solely focused on evaluating the performance of storing AML model data.
Using another MDE model data format such as the Formalised Process Description
[1] or Product-Process-Resource [49] models would broaden the test results.

Additional Use Cases By using additional use cases in the performance evaluation
execution, a more refined result could be established. As the use cases in this
work are focused on common data storage operations such as create, read, update
or delete, adding more complex use cases such as checking the consistency of the
stored data would provide a better basis for analyzing whether one data storage
solution is better suited for managing AML model data.

Storage Optimization The performance of the selected data storage solution could be
improved by optimizing the process of storing elements in the data stores. Currently,
elements can be stored in more than one place in the data store. For example,
for two InstanceHierachies with the same sub-element, the sub-element would be
stored twice in the data store.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

9. Conclusion and Future Work

Execution on Server The performance evaluation of this work was executed on a
local machine (see Appendix 9.2). By bringing the execution of the performance
evaluation as well as the data store instances to a server environment which provides
more computing power, the results of the performance evaluation could improve.

Distributed Solution As the performance evaluation infrastructure is focused on one
single data store with one single client (e.g. the benchmarking component), designing
a distributed solution could alter the results. Therefore, bringing the benchmark
and data stores into a distributed environment would be worth looking into.

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

1.1 Engineering Process with Central Data Storage 3

2.1 Production Systems Engineering (PSE) Process 6
2.2 AML modelling concepts in its relationship structure 11

4.1 Design Science Approach Framework by Hevner et al. [31] 28
4.2 Design Science Approach of this Thesis based on [31] 30

5.1 Creation of a RoleClass . 34
5.2 Read InternalElement . 35
5.3 Update SystemUnitClassLib . 36
5.4 Delete AMLFile . 36

6.1 Architecture Overview of the Performance Evaluation Infrastructure 41
6.2 Implementations of Common API . 45
6.3 BaseX Graphical User Interface . 52
6.4 The Neo4J Browser . 53

7.1 Benchmark Process of this Thesis . 65
7.2 Benchmark Component Execution Process 66
7.3 Example AML Input File . 67
7.4 Performance Benchmark Results for BaseX and Neo4J in ms/op 69
7.5 Performance Benchmark Diagram . 69
7.6 Result Use Case C-AML: Creating an AMLFile 70
7.7 Result Use Case U-AML: Updating an AMLFile 70
7.8 Result Use Case R-AML: Reading an AMLFile 71
7.9 Result Use Case D-AML: Deleting an AMLFile 71
7.10 Result Use Case C-IE: Creating an InternalElement 72
7.11 Result Use Case R-SUC: Reading SystemUnitClasses 72
7.12 Result Use Case D-IH: Delete an InstanceHierarchy 73

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acronyms

AML Automation Markup Language. xi, xiii, 1–5, 7–13, 19, 20, 23, 24, 29–31, 34, 37,
40–43, 46–50, 52, 58, 59, 61–68, 75–80, 83–85, 87

AQL ArangoDB Query Language. 18

CAEX Computer Aided Engineering Exchange. 8, 9

COLLADA Collaborative Design Activity. 9

CPPS Cyber-Physical Production System. 5, 6

CSV Comma Separated Values. 58

DTO Data Transfer Object. 43

fUML Foundational UML. 33

GC Garbage Collector. 55, 57

JAXB Java Architecture for XML Binding. 42, 43

JIT Just In Time. 55, 58

JMH Java Microbenchmark Harness. 39, 54–56, 58, 59, 63, 68, 76, 79

JPA Java Persistence API. 42, 43, 48

JSON JavaScript Object Notation. 13, 16, 59

JVM Java Virtual Machine. 56, 58, 80

MDE Multidisciplinary Engineering. xi, xiii, 1–7, 12–14, 19–21, 23, 24, 29, 31, 41, 63,
75–80, 83–85

NoSQL Non Structured Query Language. 14, 16, 18, 43

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

PDF Portable Document Format. 60

PSE Production Systems Engineering. 6, 7, 32, 41, 87

RDBMS Relational Database Management System. 16

SPARQL SPARQL Protocol And RDF Query Language. 18

SQL Structured Query Language. 14–16, 18

UML Unified Modeling Language. 33

W3C World Wide Web Consortium. 14, 18

XML Extensible Markup Language. xi, xiii, 1, 2, 7–9, 13, 14, 16, 20, 32, 42, 43, 46, 47,
58, 66, 68, 70, 71, 73, 76–78

XQuery XML Query Language. 68

XQuery XML Query Language. 14, 45–47, 73, 80

XSD XML Schema Definition. 8

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] VDI/VDE 3682: Formalised Process Descriptions. Beuth Verlag, 2005.

[2] R. Angles. A Comparison of Current Graph Database Models. In 2012 IEEE 28th
International Conference on Data Engineering Workshops, pages 171–177, 2012.

[3] Renzo Angles and Claudio Gutierrez. Survey of Graph Database Models. ACM
Comput. Surv., 40(1):1:1–1:39, February 2008.

[4] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan.
LinkBench: A Database Benchmark Based on the Facebook Social Graph. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, pages 1185–1196. ACM, 2013.

[5] Remi Arnaud and Mark C Barnes. COLLADA: sailing the gulf of 3D digital content
creation. AK Peters/CRC Press, 2006.

[6] Kyle Banker. MongoDB in action. Manning Publications Co., 2011.

[7] Luca Berardinelli, Alexandra Mazak, Oliver Alt, Manuel Wimmer, and Gerti Kappel.
Model-driven systems engineering: Principles and application in the CPPS domain.
In Multi-Disciplinary Engineering for Cyber-Physical Production Systems, pages
261–299. Springer, 2017.

[8] Stefan Biffl and Marta Sabou. Semantic Web Technologies for Intelligent Engineering
Applications. 2016.

[9] Stefan Biffl and Alexander Schatten. A platform for service-oriented integration of
software engineering environments. Frontiers in Artificial Intelligence and Applica-
tions, 199(1):75–92, 2009.

[10] Stefan Biffl, Arndt Lüder, and Detlef Gerhard. Multi-Disciplinary Engineering for
Cyber-Physical Production Systems. 2017.

[11] Rahul Biswas and Ed Ort. The java persistence api-a simpler programming model
for entity persistence. Sun, May, 2006.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[12] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked Data
on the Web (LDOW2008). In Proceedings of the 17th International Conference on
World Wide Web, pages 1265–1266. ACM, 2008.

[13] Carl Boettiger. An introduction to Docker for reproducible research. SIGOPS Oper.
Syst. Rev., 49:71–79, 2015.

[14] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (XML). World Wide Web Journal, 2(4):27–66,
1997.

[15] Peter Buneman. Semistructured Data. In Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, PODS ’97, pages
117–121. ACM, 1997.

[16] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger, Robert Wilson,
and Mario Wolczko. Compiling Java just in time. IEEE Micro, 17(3):36–43, 1997.

[17] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Eliot E. Salant, Katherine
Barabash, Itai Lahan, Yossi Levanoni, Erez Petrank, and Igor Yanorer. Imple-
menting an On-the-fly Garbage Collector for Java. SIGPLAN Not., 36(1):155–166,
2000.

[18] Rainer Drath. Datenaustausch in der Anlagenplanung mit AutomationML: Integra-
tion von CAEX, PLCopen XML und COLLADA. 2010.

[19] Rainer Drath, Lüder Arndt, Jörn Peschke, and Lorenz Hundt. AutomationML - the
glue for seamless automation engineering. In 2008 IEEE International Conference
on Emerging Technologies and Factory Automation, pages 616–623, 2008.

[20] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems. Addison-
Wesley Publishing Company, 6th edition, 2010.

[21] Sebastian Faltinski, Oliver Niggemann, Natalia Moriz, and André Mankowski. Au-
tomationML: From data exchange to system planning and simulation. In Proc. IEEE
Int. Conf. Ind. Technol., pages 378–383, 2012.

[22] Joseph Fialli and Sekhar Vajjhala. The Java architecture for XML binding (JAXB).
JSR Specification, January, 2003.

[23] Joseph Yossi Gil, Keren Lenz, and Yuval Shimron. A microbenchmark case study
and lessons learned. 2012.

[24] Saumya Goyal, Pragati Prakash Srivastava, and Anil Kumar. An overview of hybrid
databases. In 2015 International Conference on Green Computing and Internet of
Things (ICGCIoT), pages 285–288. IEEE, 2015.

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[25] Olaf Graeser, Lorenz Hundt, Michael John, Gerald Lobermeier, Arndt Lüder, Stefan
Mülhens, Nikolaus Ondracek, Mario Thron, and Josef Schmelter. Whitepaper:
AutomationML and eCl@ss Integration. 2017.

[26] Christian Grün. Pushing XML Main Memory Databases to their Limits. In
Grundlagen von Datenbanken, pages 60–64, 2006.

[27] Christian Grün. Storing and querying large XML instances. PhD thesis, 2010.

[28] Christian Grün, Alexander Holupirek, and Marc H. Scholl. Visually Exploring
and Querying XML with BaseX. In Alfons Kemper, editor, Datenbanksysteme
in Business, Technologie und Web (BTW) : 7. - 9.3.2007 in Aachen, number 12
in Gesellschaft für Informatik...Fachtagung des GI-Fachbereichs Datenbanken und
Informationssysteme (DBIS), pages 629–632. GI, 2007.

[29] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on NoSQL database. In
Pervasive computing and applications (ICPCA), pages 363–366. IEEE, 2011.

[30] Olaf Hartig and Jorge Pérez. An initial analysis of Facebook’s GraphQL language.
In AMW 2017 11th Alberto Mendelzon International Workshop on Foundations of
Data Management and the Web, Montevideo, Uruguay, June 7-9, 2017., volume
1912. Juan Reutter, Divesh Srivastava, 2017.

[31] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Q., 28(1):75–105, 2004.

[32] Florian Holzschuher and René Peinl. Performance of Graph Query Languages:
Comparison of Cypher, Gremlin and Native Access in Neo4J. In Proceedings of the
Joint EDBT/ICDT 2013 Workshops, EDBT ’13, pages 195–204. ACM, 2013.

[33] Vojtěch Horký, Peter Libič, Antonin Steinhauser, and Petr Tůma. DOs and
DON’Ts of Conducting Performance Measurements in Java. In Proceedings of
the 6th ACM/SPEC International Conference on Performance Engineering, ICPE
’15, pages 337–340. ACM, 2015.

[34] Yishan Li and Sathiamoorthy Manoharan. A performance comparison of SQL and
NoSQL databases. IEEE Pacific RIM Conference on Communications, Computers,
and Signal Processing - Proceedings, pages 15–19, 2013.

[35] S. Makris and K. Alexopoulos. AutomationML server - A prototype data management
system for multi disciplinary production engineering. Procedia CIRP, 2012.

[36] Tanja Mayerhofer, Philip Langer, and Gerti Kappel. A Runtime Model for fUML.
In Proceedings of the 7th Workshop on Models@Run.Time, MRT ’12, pages 53–58.
ACM, 2012.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[37] Alexandra Mazak, Arndt Lüder, Sabine Wolny, Manuel Wimmer, Dietmar Winkler,
Konstantin Kirchheim, Ronald Rosendahl, Hessamedin Bayanifar, and Stefan Biffl.
Model-based generation of run-time data collection systems exploiting Automa-
tionML. at-Automatisierungstechnik, 66(10):819–833, 2018.

[38] Michael Meng, Stephanie Steinhardt, and Andreas Schubert. Application Program-
ming Interface Documentation: What Do Software Developers Want? Journal of
Technical Writing and Communication, 48:295–330, 07 2018.

[39] Justin J Miller. Graph database applications and concepts with Neo4J. In Proceedings
of the Southern Association for Information Systems Conference, Atlanta, GA, USA,
volume 2324, page 36, 2013.

[40] Schleipen Miriam and Rainer Drath. Three-view-concept for modeling process or
manufacturing plants with AutomationML. In 2009 IEEE Conference on Emerging
Technologies Factory Automation, pages 1–4, Sept 2009.

[41] László Monostori. Cyber-physical production systems: Roots, expectations and
R&D challenges. Procedia CIRP, 17(October):9–13, 2014.

[42] Thomas Moser and Stefan Biffl. Semantic Integration of Software and Systems
Engineering Environments. Trans. Sys. Man Cyber Part C, 42(1):38–50, January
2012.

[43] Thomas Moser, Stefan Biffl, Wikan Danar Sunindyo, and Dietmar Winkler. Inte-
grating Production Automation Expert Knowledge Across Engineering Stakeholder
Domains, 2010.

[44] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity of
SPARQL. In International semantic web conference, pages 30–43. Springer, 2006.

[45] Mark Richards. Software architecture patterns. O’Reilly Media, Inc., 2015.

[46] Marcelino Rodriguez-Cancio, Benoit Combemale, and Benoit Baudry. Automatic
microbenchmark generation to prevent dead code elimination and constant folding.
2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 132–143, 2016.

[47] Ronald Rosendahl, Konstantin Kirchheim, and Josef Prinz. Implementing reference
APIs for AutomationML - A Java based walkthrough. In Conf. Proc. of the 5th
AutomationML user Conf. in Gothenburg/Sweden, 2018.

[48] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131, Dec
2008.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[49] Miriam Schleipen, Arndt Lüder, Olaf Sauer, Holger Flatt, and Jürgen Jasperneite.
Requirements and concept for Plug-and-Work. at-Automatisierungstechnik, 63(10):
801–820, 2015.

[50] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J Carey, Ioana Manolescu,
and Ralph Busse. XMark: A benchmark for XML data management. In VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases, pages
974–985. Elsevier, 2002.

[51] Estefania Serral, Richard Mordinyi, Olga Kovalenko, Dietmar Winkler, and Stefan
Biffl. Evaluation of semantic data storages for integrating heterogeneous disciplines
in automation systems engineering. In IECON 2013 - 39th Annual Conference of
the IEEE Industrial Electronics Society, pages 6858–6865, Nov 2013.

[52] Monique Snoeck, Stephan Poelmans, and Guido Dedene. A Layered Software
Specification Architecture. volume 1920, pages 454–469, 10 2000.

[53] Petr Stefan, Vojtech Horky, Lubomir Bulej, and Petr Tuma. Unit Testing Perfor-
mance in Java Projects. pages 401–412, 2017.

[54] Igor Tatarinov, Stratis D Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eugene
Shekita, and Chun Zhang. Storing and querying ordered XML using a relational
database system. In Proceedings of the 2002 ACM SIGMOD international conference
on Management of data, pages 204–215. ACM, 2002.

[55] James Turnbull. The Docker Book: Containerization is the new virtualization. James
Turnbull, 2014.

[56] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and
Dawn Wilkins. A Comparison of a Graph Database and a Relational Database: A
Data Provenance Perspective. In Proceedings of the 48th Annual Southeast Regional
Conference, ACM SE ’10, pages 42:1–42:6. ACM, 2010.

[57] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[58] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical research methods
in software engineering. In Empirical methods and studies in software engineering.
Springer, 2003.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Used Technologies

This chapter provides an overview of all technologies and their according versions used
during the creation of this thesis allowing for easier reproduction of the presented results
in the future.

Tool Version Info

AutomationML 2.15 Data Exchange Format

BaseX 9.2.3 XML Database

draw.io 12.1.0 Diagram Software

Git 2.21.0 Version Control System

Hibernate 5.3.1.Final Object Relational Mapping Framework

Java 1.8.0 191 Programming Language

Java Microbenchmark Harness 1.21 Benchmark Framework

JUnit 4.12 Unit Testing Framework

IntelliJ IDEA (Ultimate Edition) 2019.1.4 Integrated Development Environment

Maven 3.6.0 Build Management Tool

Microsoft Excel 16.30 Spreadsheet Software

Neo4J 3.5.7 Graph Database

Table 1: Used Software & Tools

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Test Environment

This Chapter introduces to the environment used to execute and create the artifacts
of this thesis. All implementations and performance evaluation were executed on the
following compute machine:

• MacBook Pro 15 2018

• OS: MacOS Mojave 10.14.6

• CPU: Intel Core i7 8th Gen 2.6 GHz

• GPU: Radeon Pro 560X 4GB

• RAM: 16 GB

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Expected Results
	Thesis Structure

	Related Work
	Multidisciplinary Engineering
	Automation Markup Language
	Data Storage Paradigms
	Data Storage Performance Benchmarking

	Research Questions
	RQ1 - Data Storage Paradigms for Multidisciplinary Engineering
	RQ2 - Software Architecture for Storing and Querying Multidisciplinary Engineering Models
	RQ3 - Performance Evaluation Method

	Research Approach
	Design Science Research Approach
	Adapted Design Science Research Approach

	Evaluation Use Cases
	Use Case Definitions
	Use Case Execution Workflows

	Benchmark Evaluation Architecture and Design
	Benchmark Evaluation Architecture
	Benchmark Evaluation Design

	Evaluation Process and Results
	Evaluation Experiment Design
	Benchmarking Process
	Execution of Performance Evaluation

	Discussion & Limitations
	Discussion Performance Evaluation
	Discussion RQ1
	Discussion RQ2
	Discussion RQ3
	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Algorithms
	Acronyms
	Bibliography
	Used Technologies
	Test Environment

