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Abstract

Context: Software testing has long been one of the major pillars of software engineering,
as it ensures that the solution produces a correct result, reaches an appropriate outcome, or
behaves as intended. Advancements made in cloud computing and DevOps have paved the
path for new ways of automating the testing process. Given the inevitability of software
testing, automating the process can ease the process making it less tedious by removing
manual intervention from the process. Cloud computing allows on-demand access to
hardware resources which can be utilized to temporarily create a virtual environment
where tests can be performed. Infrastructure as code allows automation of infrastructure
deployment to the cloud, and software configuration of the same infrastructure. In
combination we can create a virtual environment in the cloud, perform tests, and perform
a cleanup leaving no residue in terms of resources, all without human intervention.

Motivation: This can prove useful when the development team needs to ensure that
the solution will behave correctly in the deployed environment on the client side. We
can simulate the client environment by spawning virtual machines, networks, routers,
and perform all the needed software configuration by specifying it through code. The
execution of this code can be automated in a CI/CD pipeline that will be triggered when
changes to the software solution have been introduced, to ensure that those changes will
not negatively impact the solution itself.

Goals and methodologies: Open-source community has made this possible and
accessible by providing many technologies that are being used by companies around the
world that don’t want to be constrained by licenses that introduce entry costs. We aim
to cover and explain various practices and tools in the open-source community that have
enabled testing in the cloud by performing a literature review. To cover the current tools
and practices we will perform various interviews with experts that will give insight in to
the topic and the tools. As our goal is to also demonstrate the use of these technologies,
we will implement a pipeline prototype following the above described scenario of testing
in the cloud, which will be applied to a real life use case in order to evaluate this approach.
In conclusion we will provide a better understanding of cloud testing capabilities, while
outlining benefits and challenges.

Results: We successfully developed a prototype and applied it to both a fictional use
case (server-client communication) as well as a real life use case (Hitachi Rail, Moving
Block System) in order to evaluate it. We found that automatic cloud tests improve upon
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various areas (e.g. lower testing effort, test usage accessibility, etc.), however they also
introduce both a setup complexity overhead as well as a higher bar of entry in terms of
both knowledge and additional hardware resources. Most importantly, we outline benefits
such as much lower effort needed to use previously manual tests that can be automated,
as well as idempotency that can be ensured by always redeploying and destroying the
infrastructure needed for testing.

Conclusion: Migration to the cloud offers many benefits (e.g. arbitrary amount of
concurrent testing environments) but also drawbacks (e.g. knowledge and resources needed
for hosting the cloud) that have to be considered when deciding on it. Despite this,
performing tests in the cloud offers much potential and opens door to more possibilities
of automating the testing process as well as test environment simulation.

Takeaway: Cloud testing deserves consideration when looking for ways to automate
the testing process, but the migration process and resources needed must be taken into
account when deciding for this approach.

Keywords: software testing, cloud computing, infrastructure as code, CI/CD, open-
source



Kurzfassung

Zusammenhang: Softwaretests sind seit langem eine der wichtigsten Säulen der Softwa-
reentwicklung, da sie sicherstellen, dass die Lösung ein korrektes Ergebnis liefert und sich
wie beabsichtigt verhält. Fortschritte im Cloud Computing und DevOps haben den Weg
für neue Möglichkeiten zur Automatisierung des Testprozesses geebnet. Angesichts der
Unvermeidlichkeit von Softwaretests kann durch Automatisierung der Prozess erleichtert
und weniger mühsam gemacht werden, indem manuelle Eingriffe aus dem Prozess entfernt
werden. Cloud Computing ermöglicht On-Demand-Zugriff auf Hardwareressourcen, die
genutzt werden können, um vorübergehend eine virtuelle Umgebung zu erstellen, in der
Tests durchgeführt werden können. Infrastruktur als Code ermöglicht die Automatisierung
der Infrastrukturbereitstellung in der Cloud und der Softwarekonfiguration derselben
Infrastruktur. In Kombination können wir eine virtuelle Umgebung in der Cloud erstellen,
Tests durchführen und eine Bereinigung durchführen, die keine Ressourcenrückstände
hinterlässt, und das alles ohne menschliches Eingreifen.

Motivation: Dies kann sich als nützlich erweisen, wenn das Entwicklungsteam sicher-
stellen muss, dass sich die Lösung in der bereitgestellten Umgebung auf der Clientseite
korrekt verhält. Wir können die Clientumgebung simulieren, indem wir virtuelle Ma-
schinen, Netzwerke und Router erstellen und alle erforderlichen Softwarekonfigurationen
durchführen, indem wir sie durch Code angeben. Die Ausführung dieses Codes kann in
einer CI/CD-Pipeline automatisiert werden, die ausgelöst wird, wenn Änderungen an
der Softwarelösung vorgenommen wurden, um sicherzustellen, dass diese Änderungen die
Lösung selbst nicht negativ beeinflussen.

Ziele und Methodiken: Die Open-Source-Community hat dies möglich und zugänglich
gemacht, indem sie viele Technologien bereitstellt, die von Unternehmen auf der gan-
zen Welt ohne Einstiegskosten und Lizenzen verwendet werden können. Wir möchten
verschiedene Praktiken und Tools in der Open-Source-Community abdecken und erklä-
ren, die Tests in der Cloud ermöglicht haben. Um die aktuellen Tools und Praktiken
abzudecken, werden wir verschiedene Interviews mit Experten durchführen, die Einblicke
in das Thema und die Tools geben. Da es unser Ziel ist, auch die Verwendung dieser
Technologien zu demonstrieren, werden wir einen Pipeline-Prototyp gemäß dem oben
beschriebenen Szenario des Testens in der Cloud implementieren, der auf einen realen
Anwendungsfall angewendet wird, um diesen Ansatz zu bewerten. Abschließend werden
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wir ein besseres Verständnis der Cloud-Testfunktionen vermitteln und gleichzeitig Vorteile
und Herausforderungen skizzieren.

Ergebnisse: Wir haben erfolgreich einen Prototyp entwickelt und ihn sowohl auf einen
fiktiven (Server-Client-Kommunikation) als auch auf einen realen Anwendungsfall (Hitachi
Rail, Moving Block System) angewendet, um ihn zu bewerten. Wir haben festgestellt,
dass automatische Cloud-Tests in verschiedenen Bereichen Verbesserungen bringen (z.
B. geringerer Testaufwand, Zugänglichkeit der Testnutzung usw.), jedoch auch einen
höheren Aufwand bei der Einrichtung sowie höhere Einstiegshürden in Bezug auf Wissen
und zusätzliche Hardwareressourcen mit sich bringen. Am wichtigsten sind die Vorteile,
die wir skizzieren, wie den viel geringeren Aufwand bei der Verwendung zuvor manueller
Tests, die automatisiert werden können, sowie die Idempotenz, die durch die ständige
Neubereitstellung und Zerstörung der für Tests erforderlichen Infrastruktur sichergestellt
werden kann.

Fazit: Die Migration in die Cloud bietet viele Vorteile (z. B. beliebige Anzahl gleichzeitiger
Testumgebungen), aber auch Nachteile (z. B. Wissen und Ressourcen, die zum Hosten
der Cloud erforderlich sind), die bei der Entscheidung darüber berücksichtigt werden
müssen. Trotzdem bietet die Durchführung von Tests in der Cloud viel Potenzial und
öffnet die Tür zu mehr Möglichkeiten der Automatisierung des Testprozesses sowie der
Simulation von Testumgebungen.

Takeaway: Cloud-Tests verdienen Beachtung, wenn nach Möglichkeiten zur Automati-
sierung des Testprozesses gesucht wird. Bei der Entscheidung für diesen Ansatz müssen
jedoch der Migrationsprozess und die benötigten Ressourcen berücksichtigt werden.

Schlüsselwörter: Softwaretests, Cloud Computing, Infrastruktur als Code, CI/CD,
Open-Source
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CHAPTER 1
Introduction

1.1 Motivation
In the domain of software development, testing is one of the ways of uncovering errors
in the software solution [73]. This, often done in the developer environment, on the
developer’s machine, sometimes leads to problems when the solution behaves differently
in the client environment, client’s machine, where previously passing tests start to fail,
or the solution fails to run. If the client configuration is known, one can simulate said
environment by configuring all the required software and using all the required hardware
resources used by the client. This means that further costs are introduced in the form of
physical hardware needed but also additional time needed to setup and maintain this
environment.

Any changes made in the client configurations would have to be reflected on the simulated
physical one used for testing. This can prove tedious and costly depending on how dynamic
the client configuration is. Instead of physically trying to imitate an environment, one
could create a virtual one in the cloud, perform tests and report back the results. This
can be achieved through an automatic pipeline where we could through code specify the
client configuration. We can achieve this through the concept of Infrastructure as Code
(IaC).

IaC along with Continuous Integration/Continuous Deployment (CI/CD) have spawned
many new technologies that allow us to make a fully automatic end-to-end pipeline that
ensures the quality and consistency of the software solution from build to deployment
without the need for manual intervention. By testing in the cloud one can utilize both
a privately hosted in-house cloud or use an on-demand public cloud to leverage the
pay-per-use model.

In their work [70] Mittal et. al. argue for cloud testing as the future of software testing
by outlining the types of existing cloud testing techniques as well as their needs and
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1. Introduction

benefits in form of scalability, adaptability and cost. By simulating the client environment
in various cases and performing various tests, the goal is to improve efficiency of the
testing process by avoiding manual setup and configuration, and avoiding costs of physical
machines by utilizing the cloud which can be in-house or remote using pay-per-use model.
By automatizing this testing process through the use of a CI/CD pipeline, less time is
needed to adapt to client changes resulting in better client satisfaction.

1.2 Problem statement
Let us assume a team of developers are working on developing a software solution that
will be delivered to a client (Figure 1.1). This client has clearly specified the resources
(e.g. amount of RAM) and the software (e.g. operating system) of the machine on top of
which the software solution will run. The developers are tasked with ensuring that the
developed software solution runs correctly on the client machine. Unfortunately they do
not have access to the client environment/machine, nor do they posses the resources nor
the software used by the client.

The developers’ and the client’s environment are in no way similar. One approach that
the team takes is they order the specific hardware components for a physical machine
that they will maintain manually in- house. Following this, they install the required
operating system, and dependent software/libraries which are needed for the solution.
The testers connect to this machine, manually install the software and perform all the
needed tests themselves. Once all tests pass, the client receives the software solution.

1.2.1 Stakeholders
The following stakeholders and their goals can be identified:

- The developer wants to immediately know if the changes they have performed on
the software solution cause any problems should the software solution be run on
the client machine, and be provided with exact results on which test passes or fails.

- The tester wants to be able to describe the client environment through the use of
IaC configuration files that specify hardware resources and the software needed,
and write tests that will be performed on the previously described environment
every time changes are made to the software solution.

- The client wants the software solution to run correctly on their machine/envi-
ronment, and wants to be able to change his hardware resources and software,
communicate it to the developers, and be quickly insured that changes on the client
side will not affect software solution correctness.

- The DevOps engineer wants to adapt the devops lifecycle so that any and all
client configuration changes are quickly adapted to.

2



1.2. Problem statement

Figure 1.1: High-level overview of the example problem

1.2.2 Challenges

By analyzing this example we can identify the following challenges that may arise during
the development cycle:

- Challenge 1: Adapting to changes. The client has changed the software (e.g.
operating system) on top of which the software solution will run, and/or they
have increased or decreased hardware resources available for running the software
solution. The software solution needs to be tested against these changes which
requires manual maintenance of the testing environment (acquiring/installing new
software, adjusting hardware resources, etc.) to exactly match the client setting.

- Challenge 2: Ensuring test idempotency. Between each test, the test environ-
ment must be identical, and must not be affected through successful or unsuccessful
test runs, which should insure test idempotency.

- Challenge 3: Enabling concurrent test environment usage. For concurrent
usage of the test environment, every tester needs to have their own environment
which in the case of physical machines requires a machine (or machines) per each
person, introducing further costs.

- Challenge 4: Simulating the end users. In case of a software solution that
interacts with other users, these users also have to be simulated, and their interaction
with the solution.

3



1. Introduction

- Challenge 5: Maintaining the test machine. Manually maintaining and
configuring a physical machine to match that of the client, requires additional
effort.

- Challenge 6: Removing human intervention. Human intervention is needed
throughout the testing process which could be avoided through automation based
on CI/CD principles, the cloud and IaC technologies.

Ideally, should resources not be a limitation, having a dedicated developer who, given the
exact client machine/environment specification, creates a physical machine with exact
hardware and software, would prove to be the most physically accurate representation
of the client side. However, as the configuration process is manual, any and all changes
have to me manually tended to, which slows down the process of adapting to changes.
Should more than one machine be required, the network of the machines has to also be
physically identical.

By utilizing IaC and the cloud, we can create a virtual environment for various types of
tests tailored specifically for each of them, where hardware resources and software can be
configured through code, avoiding any manual installation, while also allowing to create
many virtual environments suited for various different client specifications.

1.3 Goals
The objective of this work is to explore, research, and apply various open-source technolo-
gies, while providing a hands-on approach to implementing a general purpose end-to-end
testing pipeline. This work aims to leverage cloud for the purposes of creating test
environments in order to provide idempotent and replicable virtual environments for
solution testing. The aim is to assess the current capabilities of various open-source
technologies and their interaction in order to support CI/CD principles and ensure
thorough testing in the cloud.

We will outline the importance of DevOps practices such as Infrastructure as Code,
and Continuous Integration/Continuous Deployment, followed by an analysis of various
open-source technologies that support them such as Gitlab CI, Ansible, Chef, Terraform
and similar. We will then take a look at how we can use cloud computing to our benefit
in order to emulate various components of the client environment such as hardware setup
and various hardware components.

Following this, we will clearly define a set of requirements that the pipeline needs to
fulfill to achieve our goal of testing in the cloud using simulated environments. In order
to decide between the technologies, besides the requirements, we will conduct interviews
with various DevOps, infrastructure and cloud computing experts which will serve as
basis for deciding on a technology stack that will practically demonstrate the pipeline.

This will serve as the foundation for building our prototype that will later be applied to
a use case through which we will evaluate the approach, by performing a cost benefit
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1.4. Structure

evaluation. We will compare the benefits of each approach (cloud testing and traditional
testing) and compare the resources needed for each approach in terms of both effort and
time.

The main objective of the work is to utilize open-source CI/CD technologies
to automate the testing process by developing a pipeline that will utilize
open-source IaC technologies to perform tests in the cloud.

Above described goals can be summarized through the following list:

• G.1 (Literature review): Research, understand and explain state-of-the-art
technologies and approaches that exist, and how they enable cloud testing.

• G.2 (Pipeline requirements elicitation): Understand and define what the
pipeline needs to do, while addressing all the challenges defined in Section 1.2.2.

• G.3 (Experts’ insight): Elicit knowledge and insight from experts and practi-
tioners to better understand how to implement the pipeline and what potential
benefits and challenges cloud testing offers.

• G.4 (Implement pipeline prototype): Implement the pipeline using a defined
technology stack of state-of-the-art open source technologies.

• G.5 (Benefits, challenges, drawbacks): Understand what benefits cloud testing
provides in comparison to the traditional testing methods. Outline challenges and
drawbacks of cloud testing.

1.4 Structure
The work follows the following structure:

Chapter 2 provides background knowledge needed for understanding the context of the
work, like DevOps, CI/CD, cloud computing and IaC. An overview of state-of-the-art
technologies is provided, followed by a literature review of related work.

Chapter 3 introduces the research questions that address the goals defined in the previous
Section 1.3. An explanation is provided as to how each research question will be addressed.

Chapter 4 provides a comprehensive list of requirements that the pipeline needs to fulfill
based on user stories and challenges introduced in the Subsection 1.2.2. This will serve
as the basis for the pipeline implementation.

In Chapter 5 we conduct interviews with various experts and practitioners in order to
gather insight and knowledge in to what open-source technologies to utilize during the
implementation. Through the interviews we also get a better understanding of benefits,
drawbacks of testing in the clouds, as well as types of tests worth exploring. At the end
of the chapter we provide our findings

5



1. Introduction

Chapter 6 covers the implementation of the pipeline prototype, explaining in detail how
each technology comes in to play in order to achieve automation. We introduce an
example problem, followed by an explanation of what type of test we want to simulate in
the cloud and then implement it by deploying a simulated environment through the use
of the pipeline.

Chapter 7 applies and adapts the prototype pipeline to a real life use case. The use case
will be in the railway domain applied to a project at Hitachi Rail. We will take a look at
what improvements the pipeline makes by analyzing and comparing resources in terms of
time and effort needed for both approaches.

In Chapter 8 we will provide and discuss the answers to the research questions. This will
be followed by a discussion on limitations and challenges.

Finally, Chapter 9 will conclude the work by summarizing the results of the work and
provide avenues for future work.
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CHAPTER 2
Related work

2.1 Software engineering best practices
Unit tests are one of the most well established testing methodologies for testing the
components of the software solution in isolation [77]. Integration tests on the other hand
aim to test the interaction between many components [67]. Unlike unit tests, integration
tests are sometimes harder to define through code, so in some cases developers choose
to perform them manually by running all the necessary components, simulating a use
case and acting as the test oracle. This can be automated through various tools, but
the solution components run in the developer’s environment limited by the developer’s
machine. We will now take a look at various methodologies and tools that have been
developed, which will help us move the testing process (e.g. integration tests) to the
cloud, decoupling tests from the developers environment.

We will take a look at various practices and methodologies that aim to improve some
aspect of the software development cycle. We will take a look at DevOps, followed by
various DevOps practices and tools, more concretely CI/CD and IaC. We will conclude
the best practices by covering cloud computing, which is an important aspect of this
work. This will be followed by a literature review that will present various papers that
cover the topic relevant to this work.

2.1.1 DevOps
DevOps, a name resulting from the combination of two words, development and operations,
has seen many definitions over the years. It is an integration of both worlds through
the use of automated development, deployment, and infrastructure monitoring [56].
DevOps can also be defined as effort to automate continuous delivery while guaranteeing
correctness [66]. Regardless of how one defines it, what DevOps aims to be is a bridge
between development and operations while facilitating communication. DevOps also
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2. Related work

encompasses various tools and practices that aim to aid and improve the synergy between
the two worlds. We will now take a closer look at one of the major pillars of the DevOps
practices.

2.2 Continuous Integration and Continuous
Delivery/Deployment

As software development matured, and the need for faster integration of changes to the
software solution grew, so have various methodologies and principles that aim to speed
up the development cycle.

Continuous Integration, as defined by Fowler in their work [57], represents a software
development practice that aims to speed up integration of new work, where an automated
build verifies it. They go on to introduce various practices of CI, amongst others, build
automation, self-testing builds and production environment clone testing. They outline
virtualization as the key to assembling a test environment that, to a certain extent,
mimics that of the client. Much of what they described, like single source repository,
would now be considered standard practice, as more and more projects reap the benefits
of CI, which has spawned various tools that aim to support its practices. Although the
concept of CI, has existed before the publishing of Fowler’s work, it certainly sparked
interest in CI practices. In hopes of shedding new light on benefits of CI, Hilton et al.
[63] perform a study on the usage of CI in open-source projects, and have found that CI
does actually facilitate more frequent releases.

Continuous delivery continues this automation quest where after code changes have been
tested, the solution itself is deployed to some non-production environment for testing or
staging [44], in order to ensure that it can always be reliably released [52]. Although not
always possible, by also automating the deployment to the production environment, we
would be practicing continuous deployment, often confused with continuous delivery as
they are commonly abbreviated as just CD and used as synonyms [78]. In result we have
CI/CD as the umbrella term that groups together the automation principles from code
development to deployment.

All three phases have their own set of benefits and challenges [57, 52, 78], but provide
guidelines for encouraging automation of the development cycle, while spawning many
tools that utilize CI/CD.
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2.2.1 Gitlab CI
In 2015 Gitlab CI got integrated into Gitlab [64], while existing before as a standalone
application. It represents an automation tool that enables implementation of various
CI/CD principles. Gitlab CI (CI/CD)[12] allows development of a pipeline within a code
repository on Gitlab. Using YAML syntax, a pipeline is described in .gitlab-ci.yml
file (or several files). A Gitlab CI pipeline consists of stages that group together jobs
that perform certain actions on the code in the repository. A usual workflow consists of
building the code, testing, and deploying. Gitlab Runner [14] is a separate application
hosted independently which runs the jobs in the pipeline. Following is an example of a
simple pipeline that performs the above described workflow:

1 stages:
2 - build
3 - test
4 - deploy
5
6 build:
7 stage: build
8 script:
9 - mvn build

10
11 test:
12 stage: test
13 script:
14 - mvn test
15
16 deploy:
17 stage: deploy
18 script:
19 - mvn deploy

Listing 2.1: Gitlab CI pipeline example

2.2.2 Jenkins
Released in 2011, Jenkins [20] is an automation platform that aims to automate various
parts of the development cycle. Unlike Gitlab CI, it supports many other functionalities
besides pipeline definition, and is not tied to any concrete repository manager. Jenkins
agents (similarly to Gitlab runners) perform tasks from the Jenkins controller which is
the Jenkin service itself [42].
Jenkins allows the definition of the pipeline in two ways usually stored as Jenkinsfile,
declarative pipeline and scripted pipeline, with scripted pipeline providing more freedom,
but having a steeper learning curve compared to more user friendly declarative pipeline.
The scripted pipeline definition uses a limited Groovy syntax [28], while the declarative
pipeline offers a higher level syntax that abstracts away some details. An example of a
declarative pipeline is as follows:
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1 pipeline {
2 agent any
3
4 stages {
5 stage(’Build’) {
6 steps {
7 sh ’mvn build’
8 }
9 }

10
11 stage(’Test’) {
12 steps {
13 sh ’mvn test’
14 }
15 }
16
17 stage(’Deploy’) {
18 steps {
19 sh ’mvn deploy’
20 }
21 }
22 }
23 }

Listing 2.2: Jenkins pipeline example

One of the most popular Jenkins features is the ability to introduce add-ons to Jenkins
through the concept of Jenkins plugins, but introduces maintenance overhead as these
plugins are developed separately from the Jenkins.

2.3 Infrastructure as Code
The need for constant manual setup, configuration and upkeep of machines, virtual
or physical, has paved the road for tools that would automate this process, especially
needed in situations of a large number of machines. Infrastructure as code (IaC) aims to
eliminate manual infrastructure management through automation, which supports the
principles of CI/CD (Section 2.2) and subsequently DevOps (Section 2.1.1).

2.3.1 Configuration management
IaC tools have been in development for a long time, and can be traced back to CFEngine
developed by Mark Burgess in 1993 for the University of Oslo. In their work [50], they
describe a high level description language for machine setup and configuration. Through
classes and actions per class one can define the needed steps to be performed on the
configured machine. In essence CFEngine represents a prime example of configuration
management tool where through a program file one can configure several machines (install
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software, run services, etc.). This would later inspire other emerging tools to improve
upon the foundation that CFEngine laid, such as Puppet (2005), Chef (2009), and Ansible
(2012), with each improving some aspect over the previous.

2.3.2 Puppet
Developed by Puppet Inc. in 2005, Puppet [33] is a configuration management tool for
automation of server configuration, and is one of the earliest examples of of widely adopted
configuration management through IaC. It uses its own declarative style language to
define some desired state of the client, using a concept of Catalogs [34]. Using Resources
[34] the developer can describe some requirements (e.g. ensure package curl is present
Listing 2.3), that can be grouped in to Classes [34], all contained within a file called
Manifest [34] (similar to Ansible playbook, or Chef recipe). It follows a server-client
approach, requiring the managed client to have an agent installed. For example, a
Resource that ensures the presence of package curl, and installs it otherwise is presented
as follows:

1 package { ’curl’:
2 ensure => installed,
3 }

Listing 2.3: Puppet IaC example

2.3.3 Chef
Chef [5] (also known as Progress Chef), and more precisely Chef Infra as one of Chef
tools, is a configuration management framework developed by Adam Jacob and released
in 2009. Chef architecture [4] follows an agent-based approach where each managed node
(machine) needs to have Chef Infra Client installed which pulls any changes that need
to take place from the Chef Infra Server running separately. The developer uses Chef
Workstation to describe the configuration through Ruby code in units called recipes [2]
grouped together into cookbooks [1] that are pushed to the Chef Infra Server. Chef does
offer a serverless approach, but it still requires client installation. A simple recipe that
ensures that curl is installed can be written as follows:

1 package ’curl’ do
2 action :install
3 end

Listing 2.4: Chef IaC example

2.3.4 Ansible
Developed by Michael DeHaan in 2012 [65], Ansible [15] is a IaC tool for configuration
management. It enables developers to, through code, specify the desired state of the
machine in terms of software and configuration with Ansible ensuring the target machine
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achieves it. The machine running Ansible is considered the control node and the target
machine(s) is considered the managed node(s)[45]. Ansible uses the concept of a playbook
to decleratively define tasks that have to be performed on the target machine. These
tasks contain modules [3] that perform actual commands on the controlled node. For
example an Ansible playbook containing one task that ensures that curl is installed, and
if not installs it:

1 - name: Setup server
2 hosts: server
3 gather_facts: no
4 become: true
5 tasks:
6 - name: Ensure curl is installed
7 apt:
8 name: curl
9 state: present

Listing 2.5: Ansible playbook example

Ansible manages nodes by grouping them into an inventory [16] that can be specified by
the user as a file supporting INI and YAML syntax. A network containing two managed
nodes along login credentials would be configured as:

1 [network1]
2 server ansible_host=1.1.1.11 ansible_user=ubuntu

ansible_private_key_file=~/.ssh/id_rsa/id_rsa
3 client ansible_host=1.1.1.10 ansible_user=ubuntu

ansible_private_key_file=~/.ssh/id_rsa/id_rsa

Listing 2.6: Ansible inventory example

What makes Ansible stand out compared to the Chef and Puppet is its agentless approach.
However, Ansible does impose requirements on the managed nodes, requiring them to
support SSH and have Python installed. Ansible is attributed with easy readability as
execution of task is performed in step-by-step manner described using YAML syntax.

2.3.5 Provisioning
Provisioning can be defined as one step before configuration management, tasked with the
actual creation of the infrastructure, whereas configuration management is tasked with
installing and configuring software on already existing infrastructure. Robust IaC tools
often carry the ability of both configuration and provisioning (e.g. Ansible os_server
module [26]), which sometimes blurs the line between the two. Usually IaC tools tend
to be specialized for either provisioning or configuration management resulting in two
tools working in tandem. One of the most popular examples would be Terraform [39]
introduced in 2014 by HashiCorp, where one can define all the needed infrastructure
(virtual machines, subnets, routers, etc.) through a Terraform defined language, where
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the interaction with the cloud is abstracted away through a concept of providers [29]. The
importance of provisioning has motivated the introduction of various other provisioning
tools like Pulumi (2017), Crossplane (2018), and OpenTofu (2023). Provisioning could
be categorized based on the type of infrastructure that is being provisioned, but for the
purposes of this work we will focus on cloud provisioning of cloud infrastructure.

2.3.6 Terraform
Developed by HashiCorp in 2014, Terraform [39] is a IaC tool for infrastructure pro-
visioning specified through code in declerative fashion using Hashicorp Configuration
Language [38]. Terraform abstracts the interaction with the cloud through the use of
providers [29], that are separately developed for each cloud provider, allowing the user to
more easily change their cloud provider while maintaining the same provisioning tool.

Using the OpenStack provider [40] one can define a virtual machine attached to a
network, specify the hardware through the concept of flavors, and the image for running
the machine. The following defines a virtual machine with 1 virtual cpu, 1GB of RAM,
and 5GB of storage running Ubuntu 24.04 image:

1 resource "openstack_compute_instance_v2" "vm" {
2 name = "vm"
3 image_name = "Ubuntu 24.04 LTS"
4 flavor_name = "general-1C-1G-5GB"
5 key_pair = "id_rsa"
6 security_groups = ["all-icmp", "ssh+https"]
7
8 network {
9 uuid = "aaa-bbb-ccc"

10 }
11 }

Listing 2.7: Instance definition using Terraform

Terraform also allows previewing the changes that will be made in the cloud through
the concept of planning [8], before applying [6] the changes. Terraform keeps track of
the infrastructure state [37] stored as a file that binds the configuration to the deployed
infrastructure. Using this state, Terraform can very easily cleanup and destroy [7] the
spawned infrastructure, which would prove very useful when idempotency is a must.

2.3.7 Is Terraform open-source?
On 10th of August 2023 HashiCorp announced a change in their license [53] as HashiCorp
would switch from the Mozilla Public License (MPL) v2.0 to Business Source License
(BSL/BUSL) v1.1. MPL v2.0 [22] is a copyleft license and is an open source license,
and as such encourages the use of code for any purpose, in contrast to BSL v1.1 which
puts additional restrictions on what use is considered appropriate use within the license.
Hashicorp states better management of commercial use of their source code as the reason
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for this change, and using BSL v1.1 defines "competitive offering" of their code as in
breach of the license [62]. However, HashiCorp-built providers for Terraform are still
under MPL 2.0 license, and the acquisition of HashiCorp by IBM may also provide hope
of HashiCorp returning back to MPL v2.0 [59].

This effectively means that Terraform is no longer open-source despite the source code
being freely accessible [13], a lot is left ambiguous as to who may be considered competition
in the eyes of HashiCorp. With no guarantees that Terraform won’t restrict the license
even further, and with the focus of this work being on open-source technologies, Terraform
will not be considered as one of the open-source technologies for the development of the
pipeline.

2.3.8 OpenTofu
As a solution to this we may consider an open-source Terraform-based alternative.
OpenTofu [21] is a fork of the last MPL licensed Terraform repository, backed and
maintained by the Linux Foundation, which aims to offer an open-source alternative to
Terraform. This means that from this point on Terraform and OpenTofu will diverge,
however since the fork has happened rather recently, coupled with the fact that Terraform
providers are still open-source, the transition from Terraform and OpenTofu at this point
in time is almost seamless. Another approach would be to only use Terraform versions
that are older than August of 2023, but this doesn’t align with the goal of this work to
explore the state-of-the-art technologies.

2.3.9 Pulumi
Pulumi [30], developed by the company of the same name by Joe Duffy and Eric Rudder
in 2017 [49], is an IaC tool for cloud provisioning automation. It allows its user to define
the infrastructure through various programming languages, such as Python or Go, while
still offering the use of markup languages such as YAML. Using one of them, the user
writes Pulumi programs and describes the desired infrastructure through the concept
of resource object [9]. Pulumi programs are grouped together in a project. Similarly to
Terraform, Pulumi allows a preview of changes that will take place by calling Pulumi
preview [31], followed by Pulumi up [32] that will instantiate the project as a stack [36].

1 resources:
2 vm:
3 type: openstack:compute:Instance
4 properties:
5 name: "vm"
6 imageName: "Ubuntu 24.04 LTS"
7 flavorName: "general-1C-1G-5GB"
8 keyPair: "id_rsa"
9 securityGroups:

10 - "all-icmp"
11 - "ssh+https"

14



2.4. Cloud computing

12 networks:
13 - uuid: "aaa-bbb-ccc"

Listing 2.8: Instance definition using Pulumi

2.4 Cloud computing
Similarly to DevOps, the term cloud computing envelops many different definitions that
have been proposed throughout the years [85]. At its core, cloud computing represents a
way of distributing computing resources (hardware, services) to the user in an on-demand
manner. From the perspective of the user, these resources are abstracted and virtualized
which enables the user to request and pay for resources as needed. This of course shifts
the responsibility of maintenance to the cloud provider who may be public, or a private
on-premise cloud, but a combination of both is possible. Depending on what resources
are provided as a service, different cloud computing models have been developed [43]:

• IaaS (Infrastructure as a Service) for on demand servers, storage, and networking

• PaaS (Platform as a Service) for on demand platform/environment

• SaaS (Software as a service) on demand applications

DevOps and cloud computing in combination offer many capabilities of automatizing
different aspects of the development cycle. This integration of practices and technologies
has found its ways in various real world applications due to its ability to streamline
application delivery [55], arguing for its future potential to influence a shift toward a
more automatized development cycles.

2.4.1 OpenStack
OpenStack [24], developed by Rackspace and Anso Labs in 2010 [19], is an open-source
cloud computing platform for management of compute, storage and network resources.
OpenStack pools together hardware resources and makes them available to the user in
an API driven way. OpenStack is modular in the sense that functionalities are extracted
in to services that interact with eachother through public APIs. In essence, this means
that an administrator may choose a subset of services that they actually need. Of most
relevance to the work are the following services:

• Horizon brings the functionality of a dashboard, or in other words a GUI for a more
visual interaction with OpenStack. It is however not required and OpenStackClient
[25] can be used for a CLI interface.

• Keystone implements OpenStack’s Identity API [17], and is used for authentication
and authorization.
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• Nova offers the ability to provision compute instances, like spawning of virtual
machines. It allows configuration of hardware resources through the concept of
flavors (vCPUs, RAM, storage).

• Glance manages virtual machine images.

• Neutron implements the OpenStack Networking API [23] and provides network
capabilities like provisioning of networks, routers, subnets, and more. It enables
the concept of software defined networks.

2.5 Related projects and publications
A systematic mapping study of infrastructure as code research [76] at the time showed
that most research in IaC focused on implementing the practice of IaC, with the most
used tool being Chef. It also outlines the importance of the topic for the field of software
engineering while also identifying various potential research avenues that could be explored
like what the challenges in learning and implementing IaC are.

In their work [70] Mittal et. al. argue for cloud testing as the future of software testing by
outlining the types of existing cloud testing techniques as well as their needs and benefits
in form of scalability, adaptability and cost. In the work by Thatikonda [83], CI/CD
best practices and principles are explored and two IaC tools are outlined, Terraform for
its platform-agnostic nature and Ansible for its configuration management capability. A
systematic review on Cloud Testing [47] showed that a lot of interest is placed on testing
in the cloud, and analyzed six areas of cloud testing research, one of them being test
execution where most works presented cloud testing tools but only a few discuss specific
testbed setups in cloud environments.

The use of a virtual environment to avoid testing on actual hardware has found it use
in various applications. In automotive industry when hardware isn’t available virtual
environments can be employed to perform tests and diagnostics [86, 48]. When testing
mobile applications, one can utilize the cloud to test with real network traffic and to test
multiple portable devices in a single system [68, 46]. The work by Mitesh [82] provides a
proof of concept on how end-to-end automation could be implemented in the cloud in
the insurance industry. An exploration of open-source cloud platforms is provided by
Bashir et al. [71], with a proof of concept of a cloud lab for testing and experiments
using OpenStack.

In their work, Vogel et al. [84] performed a comparative analysis of various cloud tools
like OpenNebula, CloudStack and Openstack. They found OpenStack to be the system
most adaptable to changes and failures in order to maintain availability, and in their
performance evaluation found workloads running on OpenStack instances to be the
most stable. Another paper achieves a similar goal, where Jaison et al. [72] conduct a
comparative study between OpenStack and Cloudstack, outlining OpenStack’s stability
and performance as its benefit, however it also comes with a difficult installation process
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compared to CloudStack. Paradowski et al. [75] conducted a performance benchmark
between OpenStack and CloudStack on various metrics and concluded that despite both
being developed by Citrix, OpenStack outperforms CloudStack in every benchmark
criteria.

Gupta et al. [61] practically demonstrated how one can automate the process of Hadoop
cluster deployment to AWS cloud using Ansible for configuration management and
Terraform for provisioning, with the goal of cluster setup automation without human
intervention. While arguing for Terraform, Abbas et al. [69] show how Terraforms usage
has risen highly compared to the number of users/organizations, and they emphasize
how Terraform demonstrates convenience and consistency when deploying apps on AWS
cloud.

A. Dhanapal et al. [54] demonstrated practically how OpenStack can be used for HTTP
flooding attack evaluations, by simulating real-time attacks using a cloud environment,
resulting in a tesbed framework. In a paper by Sicoe et al. [79], it is examined how one
can automate deployment of a network topology using Openstack cloud and Terraform
for provisioning. They configure virtual machines on the cloud using Ansible in order to
run Cisco routers on top of them.

Singh et al. [80] in their work performed a comparison between Gitlab CI and Jenkins
for deployment to AWS cloud, and concluded that it becomes difficult to manage Jenkins
in case of many plugin, in contrast to Gitlab CI that configures the pipeline through one
YAML file regardless of project size. Using Jenkins and Ansible one can also achieve
pipeline automation following CI/CD principles, as explained by Sriniketan et al. [74],
where they use Jenkins due to its plugins (e.g. Jenkins Ansible). They also argue for
Ansible over Chef and Puppet, due to its agentless approach to configuration management.

Deployment using a fully automated CI/CD pipeline is explored by Singh et al. [81]
using Jenkins, Ansible, Kubernetes and AWS, arguing for, amongst other advantages,
complete automation and time efficiency. Cepuc et al. [51] take a similar approach by
using the same set of technologies to achieve an automatic pipeline for Java-based web
application deployment.

In comparison to the aforementioned related work we aim to close the research gap in the
domain of open-source by providing a state-of-the-art overview, accompanied by insight
from experts, and applied to the railway domain. We aim to provide a hands-on approach
to IaC and CI/CD in order to argue for its use for testing in the cloud, and demonstrate
its influence when applied to a real-life use case. The goal is to also provide a guide
in the form of pipeline requirements and a technology stack derived from interviewing
practitioners well versed in CI/CD, IaC, and cloud computing.
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CHAPTER 3
Research questions

We will begin by performing a literature review, and researching state-of-the-art tech-
nologies, as this will be our first research question RQ1. We will also cover software
engineering practices and principles and technologies that enable them. Following this
we will perform requirements elicitation to define pipeline requirements as part of RQ2.
RQ3 will answer the question of what technology stack to use for the implementation
upon which we will perform an evaluation that will answer RQ4.

Figure 3.1: Research questions visually represented
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In Section 1.3 we defined the goals we aim to achieve in this work, and from these we
can derive the following research questions and how we plan to address them:

• RQ.1: What are the state-of-the-art open-source IaC and CI/CD tech-
nologies for enabling testing in the cloud using simulated environments?
As defined in goal G.1 we want to provide an overview of technologies and approaches
that enable us to perform testing in the cloud using simulated environments. We
aim to also explain the background behind them to better understand their role in
achieving cloud testing. To address this goal we define RQ.1 that aims to answer
this, which requires us to perform a literature review of state-of-the-art IaC, CI/CD,
and Cloud computing technologies, and related scientific literature that will give
us insight in to various usage of these technologies. Answering these two research
questions will also help us better understand what the requirements for the pipeline
are, by understanding the capabilities of current CI/CD, IaC, and Cloud computing
technologies, which is the main goal of G.2.

• RQ.2: What are the requirements of a fully automated pipeline for
testing in the cloud using simulated environments?
Addressing goal G.4 and answering this research question, requires understanding
the criteria for the pipeline implementation. We’ve previously defined in Section
1.2.2 challenges we are trying to address, and stakeholders in Section 1.2.1, which
will serve as the foundation for requirements elicitation that will provide as with a
requirements specification that we will implement.

• RQ.3: What is the architecture for a fully automated pipeline for testing
in the cloud using simulated environments?
In goal G.3 we aim to elicit knowledge and recommendations from experienced
experts which will serve as the foundation to answering this research question. To
do so, we will perform interviews with a selection of experts and practitioners that
will answer various questions related to their experience and knowledge of IaC,
CI/CD, and cloud computing technologies. Once concluded, we will be able to
recommend a technology stack for achieving the automated pipeline, and as such
will directly answer RQ.3. As goal G.5 is to also provide insight into benefits and
challenges, one part of the interview will be dedicated to addressing this goal.

• RQ.4: What are the benefits and drawbacks of testing in the cloud using
simulated environments compared to the traditional testing methods?
After finalizing the pipeline prototype (goal G.4), we will better understand obstacles
and difficulties one might face during the implementation. By addressing goal G.3
as described above, we will also be informed of advantages and disadvantages of
cloud testing. Moreover, by performing a use case study, by applying the pipeline
prototype to a real-life use case, we will perform a cost benefit evaluation through
a comparison applied to this use case directly addressing G.5.
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CHAPTER 4
Requirements analysis

4.1 Requirements elicitation
The following chapter aims to clarify and define the exact requirements the pipeline needs
to fulfill without focusing on any concrete technology, in essence we present a technology
agnostic description of all the needed tasks the pipeline should fulfill. We will define the
pipeline requirements with the regards to the actual design of the pipeline. Following this,
we will outline the pipeline requirements related to the cloud tests that will be performed
in the pipeline. In the end, we will also define requirements for the technologies that will
be used for purposes of configuration management and provisioning.

Figure 4.1: Research questions visually represented
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The requirements will be divided into four section. We will consider requirements
regarding the pipeline design itself, and will be label as R1. This will be followed by
requirements that address the structure of tests and will be labeled as R2. In the end we
will also define requirements for tools that will be used for configuration management (R3)
and provisioning (R4). The classes were created as a way of organizing the requirements
as they group together relevant requirements.

In order to elicit the requirements, we will define user stories from a perspective of
one of the stakeholders defined in Subsection 1.2.1. Each story will be followed by a
requirement derived from it, and should the requirement address a specific challenge
defined in Subsection 1.2.2 it will be noted next to the name of the requirement.

Figure 4.2: Requirements elicitation process

We have already defined a scenario in the introduction (Figure 1.1). This is the first step
of the elicitation process, and once defined, we can derive the stakeholders. Moreover,
from the perspective of the relevant stakeholders we define user stories that describe their
goals (as a X, I want to Y, so that Z). By analyzing the scenario we can also outline
challenges that we wish to address, which alongside the user stories will then be used to
derive the requirements. Each user story results in a requirement, and should a challenge
not be addressed we define a user story for it.
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4.2 Pipeline requirements - R1
For the purposes of pipeline workflow design, the following requirements need to be
fulfilled:

• R1-1: Pipeline stimulus (Challenge 6):

– User story: As a developer, I want the pipeline to begin running every time
I introduce code changes, so that I don’t have to manually run it.

– Requirement: The pipeline needs to able to define a trigger event that will
initiate pipeline execution. A pipeline should only be executed under certain
conditions whose definition the pipeline needs to support.

• R1-2: Pipeline segmentation:

– User story: As a DevOps engineer, I want to be able to divide the pipeline
in to several stages, so that I can increase the readability and maintainability
of pipeline code.

– Requirement: The pipeline needs to be able to group together actions that
aim to achieve a similar goal in to logical units. The pipeline also needs to
support dependencies between each logical unit to ensure logical execution
order.

• R1-3: Pipeline autonomy (Challenge 6):

– User story: As a developer, I want the pipeline to autonomously execute
test, so that I don’t spend time interacting with the pipeline.

– Requirement: Once the pipeline is triggered, it needs to support the execution
of the entire pipeline without any human intervention.

• R1-4: Pipeline feedback:

– User story: As a developer, I want to be informed of the current state of the
pipeline execution, so that I can follow the pipeline execution.

– Requirement: The pipeline needs to support reporting of the current state
of the pipeline execution back to the user.

• R1-5: Pipeline concurrency:

– User story: As a DevOps engineer, I want to support multiple pipelines
running in parallel, so that I can enable testing for various developers concur-
rently.

– Requirement: The pipeline needs to be able to run in parallel with an
arbitrary number of other pipelines, and should only be limited by hardware
resources.
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• R1-6: Pipeline isolation (Challenge 3):

– User story: As a developer, I want my pipeline to run in isolation from other
pipelines, so that pipelines triggered by me are not affected by other pipelines
running concurrently.

– Requirement: The execution of the pipeline should not affect the execution
of other pipeline running in parallel. Execution result of one pipeline must
not influence the execution result of the other pipelines running concurrently.

• R1-7: Pipeline idempotency (Challenge 2):

– User story: As a DevOps engineer, I want to ensure no residue is left from a
pipeline execution, to ensure consistency and idempotency between pipeline
executions.

– Requirement: Subsequent runs of the pipeline on the same code base should
result in the same result.

• R1-8: Pipeline termination:

– User story: As a DevOps engineer, I want the pipeline to stop or continue
execution if a part of the pipeline fails, to ensure no resources are wasted or
resources are properly cleaned up respectively.

– Requirement: The pipeline needs to provide a mechanism for aborting the
execution of the rest of the pipeline, should one part of the pipeline fail. The
pipeline also needs to provide a mechanism for continuing the execution of the
rest of the pipeline in explicitly defined cases when one part of the pipeline
fails.

• R1-9: Pipeline runtime environment specification:

– User story: As a DevOps engineer, I want to customize the pipeline execution
environment, so that I can ensure proper dependencies are present and isolation
is insured.

– Requirement: The pipeline needs to support the ability to specify the
environment that will be used for pipeline execution.

• R1-10: Pipeline artifact persistence:

– User story: As a DevOps engineer, I want to extend the life-cycle of specified
files beyond the pipeline stage or pipeline execution, so that these can be
utilized in other stages or used for delivery/debugging respectively.

– Requirement: The pipeline needs to support persistence of explicitly defined
files between logical units of the pipeline, as well as explicit file persistence
after pipeline execution.
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4.3 Test structure requirements - R2
In order to insure that we can achieve all the needed cloud tests, the following list defines
the requirements for the pipeline pertaining to cloud-tests:

• R2-1: Test idempotency (Challenge 2):

– User story: As a tester, I want the cloud test execution to not affect future
execution results, so that I can ensure consistency and idempotency of cloud-
tests.

– Requirement: The pipeline needs to ensure that between consecutive cloud
test no residue is left, meaning that running a same cloud test for the same
code base results in the same test outcome. This also means that no state
must be kept between the cloud tests, which means that the pipeline also
needs to perform deployment and destruction of infrastructure for each test.

• R2-2: Test concurrency (Challenge 3):

– User story: As a tester, I want to run several cloud-tests concurrently, so
that I can enable parallelization of cloud-tests.

– Requirement: The pipeline needs to support running of arbitrary amount of
cloud tests in parallel, and should only be limited by hardware resources.

• R2-3: Test isolation (Challenge 3):

– User story: As a tester, I want to ensure cloud-test isolation, so that cloud-
test do not interfere with each other.

– Requirement: The pipeline needs to ensure that each cloud test is performed
in its own environment in order to ensure test isolation and prevent interference
between tests. A cloud test’s outcome must not influence the execution of
other cloud tests.

• R2-4: Test autonomy (Challenge 6):

– User story: As a developer, I want the cloud-tests running in the pipeline to
execute autonomously, so that I do not have to invest time interacting with
cloud-tests.

– Requirement: The pipeline needs to enable execution of cloud tests without
requiring any human intervention, in order to ensure automation of the test
execution.

• R2-5: Test feedback:

– User story: As a developer, I want to be informed about the state of cloud-test
execution, so that I can overseer cloud test outcome.

– Requirement: The pipeline needs to be able to report the result of each
cloud test to the user, regardless of the cloud test outcome.
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4.4 (Cloud) Provisioning requirements - R3
In this section we will address technology specific requirements that the provisioning tool
used needs to fulfill. All the following requirements solve the challenges 1, 4 & 5. These
requirements also dictate the requirements for the cloud provider as the provisioning can
only happen on resources that the cloud provider supports.

• R3-1: Test environment definition:

– User story: As a tester, I want to be able to define resources through code in
terms of network components, to be able to simulate the client environment.

– Requirement: Specified through code, the provisioning tool needs to be able
to provision the following resources:

∗ Network
∗ Virtual machine
∗ Router

• R3-2: Virtual machine hardware definition :

– User story: As a tester, I want to be able to define hardware resources of a
virtual machine, so that I can more accurately simulate the client environment.

– Requirement: Specified through code, the provisioning tool needs to be able
to define the following resources:

∗ vCPU
∗ RAM
∗ Storage memory

• R3-3: Virtual machine software definition:

– User story: As a tester, I want to be able to define software configuration of
the virtual machine in terms of the operating system running on the virtual
machine, to more accurately simulate the client environment.

– Requirement: Specified through code, the provisioning tool needs to be able
to define the operating system that will run on top of this virtual machine.
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4.5 Configuration management requirements - R4
In this section we will address technology specific requirements that the configuration
management tool used needs to fulfill.

• R4-1: Test step definition (Challenge 4):

– User story: As a tester, I want to manipulate the state of the virtual machine
through code, so that I can define its behavior in a cloud test.

– Requirement: Specified through code, the configuration management tool
needs to enable definition of steps that need to be performed in the test that
are directly executed on the virtual machine.

• R4-2: Test oracle (Challenge 6):

– User story: As a tester, I want to define a passing or failing test through
code, so that I do not have to manually check if a test passed or failed.

– Requirement: The configuration management tool needs to be able to witness
a test as passing or failing, where passing constitutes successful execution of
all test steps, otherwise the test is considered as failing.

• R4-3: Test autonomy (Challenge 6):

– User story: As a tester, I want to define the cloud test workflow through
code, so that I do not have to manually interact with the test execution.

– Requirement: The configuration management tools needs to support execu-
tion of every test step without manual intervention of any kind.
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CHAPTER 5
Expert interview and technology

choice

5.1 Interview design
Before we begin with the implementation, we first have to decide what open-source
technology stack to utilize to achieve the requirements described in Chapter 4. To answer
this question we conducted interviews with various experts/practitioners at Hitachi
Rail. The interviews were held in a 1-on-1 setting so as to not let the answers of other
interviewees influence the others. All the interviews were recorded and performed in
oral form, with the most noteworthy information summarized in the following section.
The interview also follows a structured interview form [58] where the questions were
predefined and followed a strict sequential order. Before each interview, we explained
the topic to the interviewee, and what the goal of this work is, so as to not overburden
each question with explanations and unnecessarily prolong the interview itself. The
interviewees also agreed on being recorded for the scientific purposes of this work.

5.1.1 Interview structure
The interview is structured in to three logical sections that group together questions
with a similar goal. The first section serves as the introduction that gathers relevant
information about the interviewee that prove their competency in the matter. By the
end of this section, we should be well versed with the background of the interviewee. The
section consists of the two following questions:

• Q.1: Please introduce yourself, what is your role in the company and
how many years of experience do you have?
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• Q.2: What is your experience with Infrastructure as Code, DevOps, and
Cloud computing?

In the second section, we aim to gather guidelines from the experts as to which technology
stack they deem recommended and appropriate to achieve an automatic pipeline for
the purposes of this work. By the end of this section, the interviewee should have
recommended a technology stack as well as an alternative approach to offer guidance in
case a different approach needs to be explored. The two following questions make up
this section:

• Q.3: What would you recommend as the open-source technology stack
for the previously described pipeline?

• Q.4: What alternative approach/technology stack would you also recom-
mend?

The third, and also the last section, gathers insight from the interviewee about what
benefits and challenges/drawbacks one might encounter by taking the approach
of testing in the cloud. It also explores the types of tests the experts might deem
noteworthy of exploration. It closes off with a very open question that leaves the freedom
to the interviewee to add anything they want at the end. The four questions of this
sections are:

• Q.5: What benefits can one expect by taking this approach (testing
in the cloud, test environment simulation in the cloud) compared to
traditional testing methods?

• Q.6: What challenges would one encounter by taking this approach
(testing in the cloud, test environment simulation in the cloud) compared
to traditional testing methods?

• Q.7: What type of tests should/could one explore by testing in the
cloud?

• Q.8: Would you like to add anything at the end?

5.2 Interview results
5.2.1 Interviewee demographic
Five candidates where chosen and interviewed based on their experience, competence and
expertise with the topic of IaC, CI/CD and Cloud computing. All relevant interviewee
information is summarized in the following table 5.1. The experience column represents a
non-exhaustive list of various different experiences the interviewee has had in the domain
of IaC, CI/CD, and Cloud computing.
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Int. num. Role Years of experience Experience

1 Senior Software Engineer 40+ In-house development of auto-
matic unit tests, Development
of code quality tools, Develop-
ment of CI strategies

2 Chief DevOps Engineer,
Platform Architect,
DevOps Engineer Expert

20+ Development of cloud native
common stack, Assisting adop-
tion of new technologies, De-
velopment of private cloud sys-
tem using OpenStack

3 Senior System Engineer 20+
(6+ with cloud comput-
ing)

VMware infrastructure,
Environment automation us-
ing Ansible and Openstack

4 Cloud Architect 18+
(6+ with OpenStack)

Project infrastructure devel-
opment, High availability
configuration, Containeriza-
tion, Configuration/Main-
tenance/Deployment of
OpenStack, Test environment
automation

5 DevOps Engineer 4+ Networking architecture, Cre-
ation and setup of an air
gapped cloud system, Bare
metal provisioning

Table 5.1: The demographic of the interviewees/experts

5.2.2 Interview discussion
Let us first outline some major keypoints made by each expert. Summarized overview
can be found in the Table 5.2 and Table 5.3, but some main talking points are presented
as follows.

• Interviewee/Expert #1
When comparing technologies, the expert emphasizes the API driven nature of
OpenStack, while also recommending it as an optimal choice. They compare it
to Proxmox, and consider it less capable for automation, but consider it a quick
way of setting up infrastructure. Jenkins is mentioned as more flexible CI tool
compared to Gitlab CI but they recommend Gitlab CI when starting from scratch.
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Expert states that while Ansible, Puppet and Chef are all used in the company in
some shape or form, they still rate Ansible as the better option for good readable
configuration. For licensing reason OpenTofu is recommended. When asked for an
alternative approach, they recommend using OpenTofu for both provisioning and
configuration to avoid complexity. They also consider no alternative to Ansible. In
case something else besides OpenTofu wants to be used, Pulumi is recommended.
The main benefit they point out is the automation of the whole process. They also
point out how a big challenge in this approach is the complexity of the setup which
usually requires a specialist in the team. When giving examples of appropriate
tests, they recommend tests with arbitrary networks, smaller and bigger ones, and
also showing how unit tests can be done upfront and integration tests in the cloud.

• Interviewee/Expert #2
When discussing technologies, the expert suggested OpenTofu as the easier approach
compared to Pulumi, explaining how they have big projects in the company using
Terraform/OpenTofu. They state how Kubernetes might be a good approach in case
of much bigger environments but introduces more complexity. In case of greenfield
deployment Gitlab is given as a starting point for CI/CD purposes. Ansible is given
as an example of how provisioning is done in the company, where virtual machines
are run on top of OpenStack. Terraform/OpenTofu is praised as a good tandem
with OpenStack. The expert also suggests Crossplane in case of Kubernetes as
it is really tied to it. As an alternative approach, the experts suggests reducing
the complexity by removing layers from the technology stack, with one example
being the removal of the virtualization layer. Automation is highlighted as the
major benefit of this approach, and the immediate feedback of automatic cloud
tests. Again, the expert brings up complexity and non-triviality as one drawback
requiring a lot of knowledge for both development and debugging. When asked
about the types of test to be explored, they highlight functional tests, performance
tests, and resilience testing, giving chaos engineering as an example.

• Interviewee/Expert #3
In the beginning of the interview, the expert brought to attention that his experience
is mostly with licensed software. Despite this they gave input regarding some open-
source technologies, but abstained from answering in some cases like the alternative
technology stack. They emphasized that their recent experience was with deploying
fully automated environments with Ansible and OpenStack. When discussing IaC
they emphasize how they’ve used Puppet quite a lot but would still recommend
Ansible, stating that they prefer the way Ansible works over Puppet. The expert
also points out that although he had previously used Terraform, their job is usually
done by the time Terraform can even run. When discussing benefits and challenges,
they stress how automation removes errors when deployment is done by hand, but
they prefer to use licensed tools because of easier troubleshooting and debugging.
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• Interviewee/Expert #4

When asked about the optimal technology stack, the expert states that they use
Terraform, and despite its ability to also do configuration management they prefer
using it in tandem with Ansible. They explain how Ansible takes over immediately
after infrastructure creation by Terraform. As a drop-in replacement for Terraform,
OpenTofu is suggested. Notably, Jenkins is praised as more powerful compared to
Gitlab CI, while introducing more complexity. Despite this they view Gitlab as the
better solution, stating that they haven’t encountered a problem that they couldn’t
solve with Gitlab. They emphasize the versatility of OpenStack for its ability of
choosing what type of services one needs (e.g. DNS as a service). When comparing
the learning curve, they admit that Proxmox does have a less steep learning curve
compared to OpenStack, but that it also comes with less capabilities. They state
how the use case plays an important role when deciding between the two, and
that for a smaller company OpenStack may prove to be superfluous. Puppet was
brought up as having a steep learning curve, where Ansible comes as a better option
due to its readability and better understanding of what is actually happening in the
background, as it simply executes tasks from beginning to the end. When arguing
for the benefits of testing in the cloud, the expert brings up an example of a static
environment used for testing in the company that became hard to maintain due to
its age, and lack of reproducibility, highlighting automation as the key solution in
case of virtual environments. The last example given was a testing scenario that
would be possible to achieve in the cloud where the solution the expert has worked
on needs to be tested for over 150 clients, which could be achieved with virtual
machines for each of them.

• Interviewee/Expert #5

During the technology stack discussion, Gitlab was praised for providing many
different services all in one place, like offering registry storage, code storage and
CI/CD capabilities at the same time. Grafana was also suggested as a monitoring
tool but is noted that they don’t deem it mandatory. Although they outline
OpenTofu/Terraform and Ansible as the choice for the technology stack, the expert
emphasizes the similarity between a lot of technologies mostly using the same
approach but different names and implementations, so their recommendations most
likely stem from experience of using those technologies like OpenStack. They
mention how Terraform/OpenTofu and Ansible can fill in for the other and both
can provision and manage configuration as something worth considering when
taking an alternative approach. When arguing for the benefits they bring up how
in the past testing was usually done on a server that was physically maintained
and required physical presence for configuration. Everything had to be manually
connected and configured. They emphasize the ability to simulate a real physical
network with actual hops, instead of just testing using loop back network interface
to simulate communication.
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Int. num. Q.3 (Optimal tech. stack) Q.4 (Alternative stack)

1 Openstack
Ansible
OpenTofu
Gitlab CI

Proxmox
OpenTofu/Pulumi
Jenkins

2 OpenStack
OpenTofu
Kubernetes (depending on use
case)
Ansible
Gitlab CI

(Reduce complexity)
Kuberenetes
Crossplane

3 OpenStack
Kayobe (Kolla Ansible)
Ansible
Gitlab with Jenkins

(no alternative recommended)

4 OpenStack
Ansible
OpenTofu
Gitlab CI

Proxmox
Ansible
OpenTofu
Jenkins

5 OpenStack
Ansible
OpenTofu
Gitlab CI

Ansible only or OpenTofu only
Proxmox
Jenkins

Table 5.2: Tabular overview of the interviewee/expert answers to Q.3, and Q.4
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Int. num. Q.5 (Benefits) Q.6 (Challenges) Q.7 (Tests)

1 Automatic rollout,
Parallelized testing,
No need to buy services,
Network emulation

Mismatch between virtual and
client environment,
Concrete hardware simulation,
Complex setup

Arbitrary configuration
(arbitrary networks),
Integration tests

2 End-to-end automation,
Testing at any point in time,
Immediate feedback on
changes

Solution complexity,
Non-triviality

Functional tests,
Performance tests,
Resilience tests

3 No need for manual mainte-
nance,
Scalability, reusability, flexibil-
ity
Automation

Open-source being developed
by a lot of different people (in-
consistency),
Different applications from dif-
ferent people

Reliability tests,
Ensuring proper cleanup
between tests

4 Reproducibility of the test-
s/test environment,
Ability to scale up an down

System complexity,
Knowledge of underlying in-
frastructure

Rollout testing, Perfor-
mance/Stress tests, Scal-
ability tests

5 No need for manual mainte-
nance,
Every user has their own envi-
ronment ,
Environment definition
through code

Steep learning curve,
Synergizing different technolo-
gies

Validation of network
communication,
Performance/Stress
tests,
Chaos engineering

Table 5.3: Tabular overview of the interviewee/expert answers to Q.5, Q.6, and Q.7

5.3 Technology choice

The goal of the interviews was to utilize the experience and expertise of the interviewees to
draw conclusions on what the recommended technology stack would be. By analyzing the
answers, we can see a clear preference towards the same technologies, showing unanimous
support towards the following technology stack as the recommended one:
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Objective Technology

Cloud computing OpenStack

Provisioning OpenTofu

Configuration management Ansible

Continuous Integration (pipeline) Gitlab CI

Table 5.4: Recommended technology stack

Figure 5.1: Bar chart showing vote distribution across technologies mentioned by the
experts (non-technology-specific recommendations are not shown)

Our goal is to also recommend an alternative approach, and by analyzing the answers
of the experts we can see mixed answers as to what constitutes as an alternative to the
main stack (5.5). Still, looking at Figure 5.1 we can see that the majority agrees on the
following:

Objective Technology

Cloud computing Proxmox

Provisioning OpenTofu

Configuration management Ansible

Continuous Integration (pipeline) Jenkins

Table 5.5: Alternative technology stack
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CHAPTER 6
Architecture and implementation

6.1 Architecture
6.1.1 Problem description
Let us consider a practical use case scenario. A simple endpoint written in Python
that serves GET requests for adding two numbers together. The goal is to perform an
integration test in the cloud, where we will simulate a user sending a request over the
network and expecting a correct result.

Figure 6.1: Interaction of the endpoint

6.1.2 Pipeline description
The pipeline will be divided into the following stages:

• Build: The objective of this stage is to build the solution from the source code.
However, should it fail doing so, it stops the rest of the pipeline.

• Unit-test: The goal of this stage is to perform unit tests that will validate the
correctness of the implementation, in order to prevent unnecessary running of
cloud-tests.

• Cloud-test: This stage performs the actual cloud testing and is divided in to three
jobs:
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– Cloud-deploy: In this job we will start provisioning our cloud infrastructure
by deploying our virtual environment to the cloud.

– Test: The goal of this job is to perform the actual tests once the deployment
of the environment is done

– Cloud-cleanup: The objective of this job is to destroy and cleanup the
previously deployed cloud infrastructure while ensuring no residue

• Deploy: This stage is tasked with deploying the actual solution in case all other
tests pass.

6.1.3 Cloud test description
We will describe the required test environment configuration that we wish to virtualize
and deploy to our cloud. The environment requires the following components:

• VM 1: Server
• VM 2: Client
• Network 1: Network containing VM1
• Network 2: Network containing VM2
• Router: Connecting the two networks

Figure 6.2: Cloud test environment configuration

Now we can describe the workflow of the test with the following steps:

• Step 1: Server begins serving the addition endpoint
• Step 2: Client sends a GET request to the server
• Step 3: Client validates a successful connection
• Step 4: [If step 3 succeeds] Client validates the correctness of the result

A successfully passing test requires both a successful connection and a correct result.
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6.1.4 Architecture

Let us take an overview of the pipeline architecture. Using the technology stack derived
in 5.3 we can derive the following diagram (Figure 6.3) of technology interaction. The
diagram also describes an example workflow of the pipeline divided in to several stages.

Figure 6.3: Pipeline infrastructure diagram
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6.2 Setup and configuration
Before we begin with the actual implementation we need to perform the necessary setup
steps. We assume the worst case scenario, that the entire infrastructure will be self-hosted
on premise and as such we have to demonstrate all the needed configuration steps one
would need to perform which serve as the prerequisite of the implementation. We begin
by setting up our Gitlab and Gitlab Runners that will run the actual pipeline. Due to
the scope of this work, OpenStack setup is not covered.

6.2.1 Gitlab
As we will be hosting our own Gitlab we need to cover the setup of Gitlab itself before we
can use Gitlab CI. Gitlab supports various ways of installation which offers us flexibility
when choosing which approach to take [10]. We may install it as a Linux package, deploy
it over Kubernetes, or run it within a Docker container. To ensure maximum isolation
from the rest of the components, we will use OpenStack Horizon to manually spawn an
Openstack Compute instance, and run Gitlab within a Docker container. This in essence
means that will have our own virtual machine with the sole purpose of hosting Gitlab.
According to the minimum requirements for Gitlab, the underlying machine needs to
have at least 4GBs of RAM. To ensure this, we spawn an instance with the following
flavor:

Resource Amount

VCPUs 2

RAM 8GB

Size 40GB

Table 6.1: Gitlab instance flavor

1 sudo -E docker run --detach \
2 --hostname gitlab.masterthesis.cloud.at.gts \
3 --env GITLAB_OMNIBUS_CONFIG="external_url ’http://gitlab.

masterthesis.cloud.at.gts’" \
4 --publish 443:443 \
5 --publish 80:80 \
6 --publish 22:22 \
7 --name gitlab \
8 --restart always \
9 --volume /home/ubuntu/gitlab/config:/etc/gitlab \

10 --volume /home/ubuntu/gitlab/logs:/var/log/gitlab \
11 --volume /home/ubuntu/gitlab/data:/var/opt/gitlab \
12 --shm-size 256m gitlab/gitlab-ce:latest

Listing 6.1: Docker command to run GitLab
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It should be noted that the instance upon which Gitlab is running, needs to be added to
a security group that allows ingress for ports 22 (SSH), 80 (HTTP), 443 (HTTPS). Since
we are also going to customize the runtime environment of the pipeline, we will build our
own Docker image and upload it to our own registry. Note: for simplicity we are going
to use HTTP for our internal cloud, as HTTPS would require additionally certificates.

1 gitlab_rails[’registry_enabled’] = true
2 gitlab_rails[’registry_host’] = "gitlab.masterthesis.cloud.at.gts"
3 gitlab_rails[’registry_port’] = "443"
4 registry[’enable’] = true
5 registry[’registry_http_addr’] = "0.0.0.0:443"

Listing 6.2: Gitlab registry configuration

6.2.2 Gitlab Runner
As is the case with Gitlab, the actual pipeline runner (Gitlab Runner), can also be
installed in various ways [18], but for consistency we will also install it as a Docker
container, running on a separate virtual machine. We will use the same flavor as the
Gitlab virtual machine. To run the Gitlab Runner as a container:

1 docker run -d --name gitlab-runner --restart always -v /srv/gitlab-
runner/config:/etc/gitlab-runner -v /var/run/docker.sock:/var/
run/docker.sock gitlab/gitlab-runner:latest

Listing 6.3: Docker command to run GitLab Runner

For the runner to be able to execute pipeline jobs, we need to register it to Gitlab:
1 docker run --rm -it -v /srv/gitlab-runner/config:/etc/gitlab-runner

gitlab/gitlab-runner register

Listing 6.4: Docker command to register the runner

The registration process is interactive but the runner can still be configured manually:
1 [[runners]]
2 name = "gitlab-runner-new"
3 url = "http://gitlab.masterthesis.cloud.at.gts"
4 id = 4
5 token = "aaa-bbb-ccc"
6 token_obtained_at = 2024-09-23T11:46:26Z
7 token_expires_at = 0001-01-01T00:00:00Z
8 executor = "docker"
9 [runners.custom_build_dir]

10 [runners.cache]
11 MaxUploadedArchiveSize = 0
12 [runners.cache.s3]
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13 [runners.cache.gcs]
14 [runners.cache.azure]
15 [runners.docker]
16 tls_verify = false
17 image = "ubuntu:latest"
18 privileged = true
19 disable_entrypoint_overwrite = false
20 oom_kill_disable = false
21 disable_cache = false
22 volumes = ["/cache", "/var/run/docker.sock:/var/run/docker.sock"]
23 shm_size = 0
24 network_mtu = 0

Listing 6.5: Runner configuration

We are going to use Docker as the executor for the pipeline, with the default image being
Ubuntu. We will overwrite this in the pipeline and select our own image for the execution
of the pipeline. Furthermore we will build that image (Appendix A.4), and for that we
need to enable privileged access.

6.2.3 Sample program implementation
As described in problem description (Subsection 6.1.1) we define a use case that will
demonstrate the capabilities of the pipeline, where we have a typical case of communication
between a server and a client. We can achieve this in Python in the following way:

1 from flask import Flask, request, jsonify
2
3 app = Flask(__name__)
4
5 @app.route(’/add’, methods=[’GET’])
6 def add_numbers():
7 return jsonify({"result": (request.args.get(’num1’, type=float)+

request.args.get(’num2’, type=float))})
8
9 if __name__ == ’__main__’:

10 app.run(debug=True)

Listing 6.6: Sample program implementation

To make the Unit-test stage meaningful we also define a simple unit test:
1 import unittest
2 import json
3 from addition_endpoint import app
4
5 class AddTwoNumbersTestCase(unittest.TestCase):
6 def testGet(self):
7 self.endpoint = app.test_client()

42



6.3. Pipeline implementation

8 self.endpoint.testing = True
9 response = self.endpoint.get(’/add’, query_string={’num1’: ’1

’, ’num2’: ’20’})
10 self.assertEqual(response.status_code,200)
11 self.assertEqual(json.loads(response.data)[’result’],21.0)
12
13 if __name__ == ’__main__’:
14 unittest.main()

Listing 6.7: Sample program test implementation

6.3 Pipeline implementation
Now we will take a look at how we implemented the actual pipeline that will serve as the
backbone for both OpenTofu and Ansible. The goal is to divide the pipeline into stages.
We will implement the pipeline stage by stage and as such we will begin with the first
stage two stages.

1 stages:
2 - build
3 - unit-test
4 - cloud-test
5 - deploy

Listing 6.8: Pipeline stages

6.3.1 Build and Unit-test
As these two stages are short we will cover both of them in this subsection. Build stage
usually requires building and compiling the solution, as Python doesn’t require compiling
we will just package it using Python’s package builder [27]. Unit-test stage will run a
simple unit test designed to test if the enpdoint produces the correct result.

1 build:
2 stage: build
3 before_script:
4 - cd poc/python
5 script:
6 - python3 -m build
7
8 unit-test:
9 stage: unit-test

10 before_script:
11 - cd poc/python
12 script: python3 -m unittest discover -s tests

Listing 6.9: Build nad Unit-test stages
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6.3.2 Cloud-test
To make the pipeline code more readable we will divide cloud-test stage in to multiple
jobs. The first job, cloud-deploy, will be tasked with deploying the actual infrastracture
and for that we will use OpenTofu. Let us define main resources that we will need to
provision. We will start with the top down approach, and define the two networks needed.

1
2 resource "openstack_networking_network_v2" "server_network" {
3 name = "server_network"
4 }
5
6 resource "openstack_networking_network_v2" "client_network" {
7 name = "client_network"
8 }
9

10 resource "openstack_networking_subnet_v2" "server_subnet" {
11 name = "server_subnet"
12 network_id = openstack_networking_network_v2.server_network.id
13 cidr = "21.21.0.0/24"
14 ip_version = 4
15 }
16
17 resource "openstack_networking_subnet_v2" "client_subnet" {
18 name = "client_subnet"
19 network_id = openstack_networking_network_v2.client_network.id
20 cidr = "56.56.0.0/24"
21 ip_version = 4
22 }

Listing 6.10: Network and subnet creation

Here we’ve chosen arbitrary values for the subnet and their values do not play an
important role. Following the definition of the networks we need to provision a router
connecting these two networks. For that we will define a router and add two interfaces
to it, each connected to a network.

1 resource "openstack_networking_router_v2" "router" {
2 name = "router"
3 external_network_id = data.openstack_networking_network_v2.

lab_teddy.id
4 }
5
6 resource "openstack_networking_router_interface_v2" "

router_interface_server_network" {
7 router_id = openstack_networking_router_v2.router.id
8 subnet_id = openstack_networking_subnet_v2.server_subnet.id
9 }

10
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11 resource "openstack_networking_router_interface_v2" "
router_interface_client_network" {

12 router_id = openstack_networking_router_v2.router.id
13 subnet_id = openstack_networking_subnet_v2.client_subnet.id
14 }

Listing 6.11: Router and interface

Now we are ready to spawn the virtual machines that will serve the roles of the server
and the client.

1 resource "openstack_compute_instance_v2" "server" {
2 name = "server"
3 image_name = "Ubuntu 24.04 LTS AT.GTS Docker 2024-08-05"
4 flavor_name = "general-1C-1G-5GB"
5 key_pair = "id_rsa"
6 security_groups = ["all-icmp", "rdp-ubuntu", "ssh+https", "flask"]
7
8 network {
9 uuid = openstack_networking_network_v2.network1.id

10 }
11 }
12
13 resource "openstack_compute_instance_v2" "client" {
14 name = "client"
15 image_name = "Ubuntu 24.04 LTS AT.GTS Docker 2024-08-05"
16 flavor_name = "general-1C-1G-5GB"
17 key_pair = "id_rsa"
18 security_groups = ["all-icmp", "rdp-ubuntu", "ssh+https"]
19
20 network {
21 uuid = openstack_networking_network_v2.network2.id
22 }
23 }

Listing 6.12: Instance creation

The last step is exposing these virtual machines using the concept of floating IPs in order
for Ansible to be able to access them and perform the tests. Floating IPs are taken
from the network to which Ansible has access to (external network), in our case this is a
network named outside_network.

1 data "openstack_networking_network_v2" "outside_network" {
2 name = "outside_network"
3 }
4
5 resource "openstack_networking_floatingip_v2" "server_floating_ip" {
6 pool = "lab_teddy"
7 }
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8
9 resource "openstack_networking_floatingip_v2" "client_floating_ip" {

10 pool = "lab_teddy"
11 }
12
13 resource "openstack_compute_floatingip_associate_v2" "

fip_server_association" {
14 floating_ip = openstack_networking_floatingip_v2.server_floating_ip

.address
15 instance_id = openstack_compute_instance_v2.server.id
16 }
17
18 resource "openstack_compute_floatingip_associate_v2" "

fip_client_association" {
19 floating_ip = openstack_networking_floatingip_v2.client_floating_ip
20 .address
21 instance_id = openstack_compute_instance_v2.client.id
22 }

Listing 6.13: Floating IP definition and association to instances

Now we can define the actual job and how it deploys the cloud infrastructure as above
described through code.

1 cloud-deploy:
2 stage: cloud-test
3 variables:
4 TF_CLI_CONFIG_FILE: "${CI_PROJECT_DIR}/poc/opentofu/.tofurc"
5 before_script:
6 - echo "$CLOUDS_YAML_64" | base64 -d > poc/opentofu/clouds.yaml
7 - cd poc/opentofu
8 script:
9 - tofu init

10 - tofu plan
11 - tofu apply -auto-approve
12 artifacts:
13 paths:
14 - poc/opentofu/terraform.tfstate
15 - poc/ansible/inventory

Listing 6.14: Pipeline cloud-test stage, cloud-deploy job

Before we begin deploying we have to setup cloud.yaml (Appendix A.1) in order to
enable OpenTofu to connect to OpenStack. Followed by this, we enter the necessary
directory and initalize OpenTofu. We can preview what changes will take place after de-
ploying the infrastructure which can be done with tofu plan. This serves as additional
information to the reader of the pipeline who observes its execution. We apply the plan
and the deployment begins. As OpenTofu keeps information about the infrastructure
which will be needed in the cleanup job, we need to persist this file which we do using
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artifacts keyword. We also persist the inventory file that will be explained in the
following section.

Bridging OpenTofu and Ansible

Once OpenTofu is done deploying the infrastructure, the next stage of the cloud-test
begins, which is the actual test that is going to be performed. Actual execution of the
test is performed by Ansible but in order to connect to the virtual machines, Ansible
needs to know their respective floating IPs. As explained in Section 2.3.4 Ansible keeps
track of all hosts in its inventory, so for this purpose we will utilize template_file
provider and using a template file manually create the inventory file needed for Ansible.
OpenTofu also supports Ansible as a provider but since we do not want to run Ansible
immediately, but rather extract it into its own job, this approach won’t be considered.
In OpenTofu we have to define various outputs that will be inserted into the template,
we begin by extracting the most important data:

1 output "server_internal_ip" {
2 value = openstack_compute_instance_v2.server.access_ip_v4
3 }
4
5 output "client_internal_ip" {
6 value = openstack_compute_instance_v2.client.access_ip_v4
7 }
8
9 output "server_floating_ip" {

10 value = openstack_networking_floatingip_v2.server_floating_ip.
address

11 }
12
13 output "client_floating_ip" {
14 value = openstack_networking_floatingip_v2.client_floating_ip.

address
15 }
16
17 data "template_file" "ansible_inventory" {
18 template = file("../ansible/inventory.tpl")
19 vars = {
20 server_floating_ip = openstack_networking_floatingip_v2.

server_floating_ip.address
21 server_internal_ip = openstack_compute_instance_v2.server.

access_ip_v4
22 client_floating_ip = openstack_networking_floatingip_v2.

client_floating_ip.address
23 client_internal_ip = openstack_compute_instance_v2.client.

access_ip_v4
24 }
25 }
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Listing 6.15: Exporting IP addresses to Ansible inventory using a template file

Now we define the template file that will be instantiated after deployment:
1 [network1]
2 server ansible_host=${server_floating_ip} internal_ip=${

server_internal_ip} ansible_user=ubuntu ansible_private_key_file
=~/.ssh/id_rsa/id_rsa ansible_ssh_common_args=’-o
StrictHostKeyChecking=no’

3
4 [network2]
5 client ansible_host=${client_floating_ip} internal_ip=${

client_internal_ip} ansible_user=ubuntu ansible_private_key_file
=~/.ssh/id_rsa/id_rsa ansible_ssh_common_args=’-o
StrictHostKeyChecking=no’

Listing 6.16: Inventory template

Once deployment to the cloud is done we begin the execution of the test. In Ansible we
can define tasks to be executed in a playbook. We can write a playbook that will define
step by step how the test is to be executed. We begin by considering the server side, and
make sure that virtual machine is booted up and necessary dependencies are installed.

1 - name: Setup server
2 hosts: server
3 gather_facts: no
4 become: true
5 tasks:
6 - name: ssh wait
7 wait_for:
8 host: "{{ hostvars[’first_vm’].ansible_host }}"
9 port: 22

10 timeout: 300
11 state: started
12 delegate_to: localhost
13
14 - name: Ensure Python is installed
15 apt:
16 name: python3
17 state: present
18 retries: 10
19 delay: 5
20
21 - name: Ensure pip is installed
22 apt:
23 name: python3-pip
24 state: present
25 retries: 20
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26 delay: 3
27
28 - name: Ensure flask is installed
29 apt:
30 name: python3-flask
31 state: present

Listing 6.17: Ansible task for server setup

Now we copy the solution to the server machine and run it. This will conclude the
responsibilities of the server side.

1 - name: Copy Python Flask application to the target machine
2 copy:
3 src: ../python/addition_endpoint.py
4 dest: ./addition_endpoint.py
5 mode: ’0755’
6
7 - name: Run python program
8 shell: "nohup flask --app addition_endpoint run --host=0.0.0.0 > /

var/log/flask.log 2>&1 &"

Listing 6.18: Ansible server setup: solution setup

Now we consider the client side, we wait for the server side to start listening and serving
on port 5000 (Flask port), followed by sending a request and validating it.

1 - name: Setup client and send a request to the server
2 hosts: client
3 gather_facts: no
4 tasks:
5 - name: Wait for Flask app to be up and running on first_vam
6 wait_for:
7 host: "{{ hostvars[’first_vm’].internal_ip}}"
8 port: 5000
9 delay: 5

10 timeout: 60
11
12 - name: Send GET request to /add on the Flask app
13 uri:
14 url: "http://{{ hostvars[’first_vm’].internal_ip }}:5000/add?

num1=1&num2=20"
15 method: GET
16 register: response
17
18 - name: Fail if response isnt OK (200)
19 fail:
20 msg: "Server responded with status {{ result.status }}"
21 when: response.status != 200
22
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23 - name: Fail if the result is not correct
24 fail:
25 msg: "Server responded with result = {{ response.json.result

}}"
26 when: response.json.result != 21.0
27
28 - name: Display the response from the Server app
29 debug:
30 msg: "The result of adding num1=1 and num2=20 is {{ response.

json.result }}"

Listing 6.19: Ansible task for client setup and testing

Now we define the job in the pipeline. We need to make the job dependent on deployment
as testing can only take place on a successful deployment task. For that we use the
needs keyword. We print the contents of the inventory as additional debug information.
As Ansible connects using SSH we also have to setup a private and a public key for this
as done in the before_script part.

1 test:
2 stage: cloud-test
3 before_script:
4 - mkdir -p ~/.ssh/id_rsa/
5 - chmod 700 ~/.ssh
6 - echo "$SSH_PUBLIC" | base64 -d > ~/.ssh/id_rsa/id_rsa.pub
7 - echo "$SSH_PRIVATE" | base64 -d > ~/.ssh/id_rsa/id_rsa
8 - chmod 600 ~/.ssh/id_rsa/id_rsa
9 - cd poc/ansible

10 script:
11 - ansible-inventory -i inventory --list
12 - ansible-playbook -v -i inventory ping.yml
13 needs:
14 - cloud-deploy

Listing 6.20: Pipeline cloud-test stage, test job

To conclude the cloud-test stage we are only missing the cleanup part. The biggest
obstacle to solve here is persisting the tfstate file from the deploy job which we have
already done, and ensuring that this job is performed regardless of the result of test itself.
This can be done by specifying a condition in when to always. OpenTofu destroy uses
tfstate to destroy everything deployed in the deploy job.

1 cloud-cleanup:
2 stage: cloud-test
3 variables:
4 TF_CLI_CONFIG_FILE: "${CI_PROJECT_DIR}/poc/terraform/.tofurc"
5 before_script:
6 - echo "$CLOUDS_YAML_64" | base64 -d > poc/terraform/clouds.yaml
7 - cd poc/terraform
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8 script:
9 - tofu init

10 - tofu destroy -auto-approve
11 needs:
12 - [cloud-deploy, test]
13 when: always

Listing 6.21: Pipeline cloud-test stage, cloud-cleanup job

The last stage, deployment, is covered in detail in Appendix A.3. Gitlab offers a graphical
user interface for interacting with the pipeline in order to see exact results of each job
and stage. A successful pipeline execution in our case would like Figure 6.4.

Figure 6.4: Gitlab GUI presenting the result of the pipeline execution
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CHAPTER 7
Evaluation

7.1 Hitachi Rail use case
At Hitachi Rail, the innovation team is developing a moving block system (MBS) for
railway signaling. In a fixed block system, the train tracks are divided into fixed segments
that can be occupied by a train. Information about block occupancy is transmitted
through visual signals that indicate whether or not the train behind in previous blocks
should proceed or stop. In an MBS these blocks are dynamically calculated in real time
(following the train) and they ensure that enough track space is left in front and behind
the train. In case of the innovation team, the MBS consists of various components, while
the most important ones, and the ones relevant to our use case are the following:

• Advanced Protection System (APS)

• Plan execution (PE)

Another component relevant to us for testing is the simulator that simulates actual trains,
and track objects. This simulator is used for testing the functionalities of the MBS but
is not considered a deliverable (is not delivered to the client). The innovation team
has some tests that are automated, like unit tests and acceptance tests, but currently
the solution is tested manually by running the above mentioned three components and
performing actions through a simulator. The simulator allows for a web UI that visually
depicts tracks and trains.

Our goal is to take the current testing approach of manual testing where test
outcome is determined by visual inspection, and automate it by deploying
the needed infrastructure to the cloud and performing the tests, automated
through a use of a pipeline.

53



7. Evaluation

7.1.1 Solution approach
In the current setup there exists a solution repository that contains the code and a
simple pipeline that builds the code, and runs the automated unit and acceptance tests
in the process. In order not to overburden the solution repository we will create a testing
repository with its own pipeline that will be triggered by the solution repository pipeline
and will report back the result to it. That way, the users of the solution repository
pipeline will see that there is a new cloud test stage but it will only be a trigger for
the other testing pipeline. In Gitlab CI this concept is called multi-project pipeline [11].
Since we will be testing the distributed deployment of the components, we will create a
virtual machine for each, all contained within one network. In order to deploy the solution
to each virtual machine we will containerize each component. For simplicity, we will only
cover building, containerization and the actual cloud testing, with the focus on the test,
as the infrastructure follows a very similar approach to the prototype implementation.

7.1.2 Workflow
Let us describe the workflow of the cloud testing process for our use case. We will cover
the workflow step by step. Figure 7.1 illustrates the workflow.

• Step #1: Each component is built.

• Step #2: Each component is containerized and pushed to the Gitlab container
registry

• Step #3: Cloud tests begin

• Step #4: The cloud testing pipeline is triggered by the solution pipeline and
begins execution

• Step #5: Deploy stage uses OpenTofu to deploy the infrastructure to the cloud

• Step #6: Cloud testing begins

– Step #6.1: Ansible pulls the container images from the registry of the
solution repository

– Step #6.2: Ansible installs the solution on each three machines
– Step #6.3: Ansible begins testing by sending various commands to the

simulator

• Step #7: Cleanup job begins and using OpenTofu destroys deployed infrastructure

• Step #8: Testing pipeline finishes and reports back to the Cloud tests job of the
solution repository ending the workflow
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Figure 7.1: Hitachi Rail use case workflow diagram

7.1.3 Building and containerization

In order to test the interaction of all three components, each has to be containerized
using Docker along with their respective dependencies in the form of configurations. For
this purpose we define a Dockerfile as a recipe to building the actual image, and a script
that runs the solution which will serve as the entry point to the solution. We now present
how the simulator component is containerized. For simplicity we only cover the simulator
as the rest of the components follow the same approach.

1 FROM gitlab:5005/tat/maxd/ubuntu-graal-docker:jdk21
2
3 EXPOSE 8080
4 EXPOSE 22004
5
6 ENV JAVA_HOME=/root/.sdkman/candidates/java/current
7 ENV PATH="$JAVA_HOME/bin:$PATH"
8
9 RUN mkdir -p /config/sachsen

10 COPY data/sachsen/config.properties /config/sachsen/config.properties
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11
12 COPY source/simulator/target/max-simulator-1.0.0.jar .
13 COPY source/simulator/start.sh .
14
15 ENTRYPOINT ["./start.sh"]

Listing 7.1: Dockerfile for building the simulator

We start by specifying a base image containing Java runtime to run our built solution
as a .jar file. We declare what ports need to be exposed to the host network, but
we will see later that this serves only documentation purpose. We perform some setup
like specifying environment variables needed for running, and then copy needed the
configuration. Lastly we copy the actual solution and the script for running it. The
script simply calls the following command.

1 java -Xmx384m -Xdebug \
2 -Dspring.config.additional-location=file:config_cluster/ \
3 -Dcluster-map.ownId=10 \
4 -jar max-simulator-1.0.0.jar \
5 --simulator.configBase=config --simulator.configs=sachsen,claro

Listing 7.2: Java command for running the solution (the arguments are less important,
but most importantly we specify configuration folders)

The reason why we extract the startup in to a script is so that in case someone wants
manually run the solution they only need to run the script. We automate this process
through a deploy stage job for each component that builds the Docker image and pushes
it to the container registry of the solution repository.

1 deploy-container-simulator:
2 stage: deploy
3 image: gitlab:5005/tat/maxd/ubuntu-graal-docker:jdk21
4 services:
5 - name: docker:24.0.5-dind
6 alias: docker
7 variables:
8 DOCKER_TLS_CERTDIR: "/certs"
9 tags:

10 - docker-runner
11 before_script:
12 - docker info
13 - docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD

$CI_REGISTRY
14 script:
15 - ’cd $SOURCE_MAVEN_PROJECT_DIR’
16 - cd ..
17 - docker build -t $SIMULATOR_IMAGE_TAG -f source/simulator/

Dockerfile .
18 - docker push $SIMULATOR_IMAGE_TAG
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19 needs: [ jar-maxd-core ]

Listing 7.3: Deploy simulator container job as part of the deploy stage

Since we are now using HTTPS, we also have to specify the location of the certificates
needed for Docker. We begin by moving to the directory containing the source code,
after which we build the actual image and push it. This job relies on a previous job
that simply builds the whole project and persists only the needed target files needed for
containerization.

7.1.4 Cloud testing
As we’ve defined previously, all the cloud tests will be located in a separate repository
with its own pipeline. To trigger that pipeline from another project (solution repository)
we must add another job that will just trigger the pipeline and whose result depends on
the execution of the other pipeline.

1 cloud-test-pipeline:
2 stage: cloud-test
3 trigger:
4 project: cloud/cloud-tests
5 branch: "main"
6 strategy: depend

Listing 7.4: Dockerfile for building the simulator

The cloud test pipeline follows a similar structure as the prototype pipeline we developed.
The difference is that in this case the cloud test will only perform tests, without any
building or deployment. We reuse the testing workflow of the prototype pipeline by
having a cloud-deploy, test, and cloud-cleanup jobs. Because of this, we will focus only
the actual test defined in the Ansible playbook. For provisioning we used OpenTofu and
spawn the following components:

• VM 1: Advanced Protection System

• VM 2: Plan Execution

• VM 3: Simulator

• Network 1: Network containing all VMs

• Router: Connecting the network to the external network (for Ansible to access)

In Ansible we make sure that all virtual machines contain the needed dependencies for
running the solution. This includes Docker and other configuration files that depend
on IP addresses of the virtual machines which we create using template file provider in
OpenTofu.
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1 - name: Setup
2 hosts: all
3 become: yes
4 gather_facts: no
5 tasks:
6 - name: Wait for the vms to boot
7 pause:
8 seconds: 45
9

10 - name: SSH wait
11 wait_for:
12 port: 22
13 timeout: 300
14 state: started
15 retries: 20
16 delay: 5
17
18 - name: Create the config cluster directory
19 file:
20 path: /config_cluster
21 state: directory
22 mode: ’0755’
23
24 - name: Copy the configuration
25 copy:
26 src: "{{ playbook_dir }}/config_cluster/application.yml"
27 dest: "/config_cluster/application.yml"
28 mode: ’0755’
29
30 ...
31
32 - name: Install Docker packages
33 package:
34 name: docker-ce
35 state: present
36
37 - name: Ensure Docker service is enabled and running
38 service:
39 name: docker
40 state: started
41 enabled: yes

Listing 7.5: Ansible task for machine setup

We await a certain period of time to ensure that all the infrastructure is up and running,
but despite this we make sure that SSH is running (and retrying in case the virtual
machine is still not running). We create all the needed directories and then copy the
configuration. application.yml contains information of all the components and their
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information (IP address, ports they listen on). opPlan-relative.json is a file that
contains operational plans (train travel path) needed for the simulator for testing. By
specifying hosts to all we instruct Ansible to run the job on all the instances in the
inventory. The ommited part marked with three dots contains some preparation for the
Docker installation.

1 - name: Run sim
2 hosts: sim_vm
3 become: yes
4 gather_facts: no
5 vars:
6 registry_url: "{{ lookup(’env’, ’CI_REGISTRY’) }}"
7 registry_username: "{{ lookup(’env’, ’CI_REGISTRY_USER’) }}"
8 registry_password: "{{ lookup(’env’, ’CI_REGISTRY_PASSWORD’) }}"
9 tasks:

10 - name: Login to registry
11 docker_login:
12 registry_url: "{{ registry_url }}"
13 username: "{{ registry_username }}"
14 password: "{{ registry_password }}"
15
16 - name: pull image
17 docker_image:
18 name: "gitlab:5005/tat/maxd/simulator-pipeline:latest"
19 source: pull
20
21 - name: run simulator
22 docker_container:
23 name: simulator
24 image: "gitlab:5005/tat/maxd/simulator-pipeline:latest"
25 env:
26 REDIS_HOST: "{{ hostvars[’aps_vm’].internal_ip }}"
27 published_ports:
28 - "8080:8080"
29 - "22004:22004"
30 network_mode: host
31 detach:
32 true
33 volumes:
34 - "/config_cluster:/config_cluster"
35 state: started
36
37 - name: wait for the container
38 pause:
39 seconds: 15

Listing 7.6: Ansible task for running the simulator

Since we will pull the Docker images to create the containers of each component, we need
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to define various registry variables by accessing environment variables of the pipeline.
After this we login to the registry, we pull the image for the simulator and then run
it as a container. As previously mentioned exposing ports is only beneficial when the
container isn’t running in host network mode. However, we decided to still keep it as it
serves documentation purposes, as each virtual machine needs to have a security group
created containing all the ports that need to be exposed. We let the solution run for 15
seconds and then we print out the Docker logs, after which the container keeps running
in the background as we detached it. Once started up we can perform the tests.

1 - name: Perform test
2 hosts: sim_vm
3 become: yes
4 gather_facts: no
5 tasks:
6 - name: Start listening to aps events
7 shell: "nohup curl -N http://{{ hostvars[’aps_vm’].internal_ip

}}:8081/os/events-stream > /tmp/aps-events &"
8 async: 0
9 poll: 0

10
11 - name: Start listening to pe events
12 shell: "nohup curl -N http://{{ hostvars[’pe_vm’].internal_ip

}}:8085/planExec/events> /tmp/pe-events &"
13 async: 0
14 poll: 0
15
16 - name: Start the simulation in normal speed
17 uri:
18 url: "http://{{ hostvars[’sim_vm’].internal_ip }}:8080/

simulator/run"
19 method: POST
20 headers:
21 Content-Type: "application/json"
22 body: ’{"speed": "NORMAL"}’
23 body_format: json
24
25 - name: Load operational plan
26 shell: "curl -X POST -d ’@/claro/opPlan-relative.json’ -H ’

Content-Type: application/json’ ’http://{{ hostvars[’sim_vm
’].internal_ip }}:8080/tmsSimu/loadOpPlan’"

27 async: 60
28 poll: 0
29
30 - name: Wait for the simulation to finish
31 pause:
32 minutes: 35

Listing 7.7: Ansible task for performing the test
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As previously mentioned, we interact with the simulator to perform the tests. We start
listening to PE events and APS events which will later serve for debugging and test
outcome definition. We redirect all the events to files we will later expose as artifacts
to the pipeline. We start by specifying the speed to NORMAL which starts the simulator
(time begins passing). This is followed by sending the operational plan which will create
a train and define a travel path for it. As currently only NORMAL speed is implemented
in the distributed deployment we have to wait in real time for the train to travel to its
destination for which we wait 35 minutes. The last step is to gather all the logs and
declare the test as passing or failing.

1 - name: Get logs
2 hosts: all
3 become: yes
4 gather_facts: no
5 tasks:
6 - name: Extract container name from hostname
7 set_fact:
8 log_name: "{{ inventory_hostname.split(’_vm’)[0] }}"
9

10 - name: "Get docker logs"
11 shell: "docker logs {{ log_name }} > /tmp/{{ log_name }}.logs"
12 args:
13 creates: "/tmp/{{ log_name }}.logs"
14
15 - name: "Fetch log file to the local machine"
16 fetch:
17 src: "/tmp/{{ log_name }}.logs"
18 dest: "{{ playbook_dir }}/{{ log_name }}.logs"
19 flat: yes
20
21 - name: "Fetch aps events"
22 fetch:
23 src: /tmp/aps-events
24 dest: "{{ playbook_dir }}/aps-events"
25 flat: yes
26 when: inventory_hostname == ’sim_vm’
27
28 - name: "Fetch pe events"
29 fetch:
30 src: /tmp/pe-events
31 dest: "{{ playbook_dir }}/pe-events"
32 flat: yes
33 when: inventory_hostname == ’sim_vm’
34
35 - name: Check if test has failed or passed
36 hosts: sim_vm
37 become: yes
38 gather_facts: no
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39 tasks:
40 - name: Check if train is deleted
41 shell: cat /tmp/pe-events | grep "data:UtoCreated.*TRAIN_EOM\|

data:TrainDeleted"
42 register: log_check
43 ignore_errors: true
44
45 - name: Found message
46 debug:
47 msg: "{{ log_check.stdout_lines }}"
48 when: log_check.rc != 0
49
50 - name: Fail the task if grep finds nothing
51 fail:
52 msg: "Pattern not found in the file."
53 when: log_check.rc != 0
54
55 - name: Found message
56 debug:
57 msg: "{{ log_check.stdout_lines }}"

Listing 7.8: Ansible tasks for fetching logs and test outcome declaration

Regardless of the test outcome we will gather logs which includes Docker logs of every
component and event logs. We specify this task before declaring the test as failing or
passing. Test outcome is defined by analyzing the PE events and the last event should be
the train reaching the destination and being deleted, for which we utilize grep to match
the pattern of the event. When fetching container logs we have to specify the name of
the container which we can extract from the inventory hostname, which is also used to
define conditional tasks that will be only run on the simulator virtual machine since it is
the only one containing PE and APS events.

7.2 User survey
In order to better assess the applicability and usability of the pipeline we performed a
survey amongst the developers in the innovation team. They were presented the pipeline
implementation applied to integration tests performed in the innovation team, after
which they were allowed to use it and ask any questions regarding it. We followed
this by performing a survey in order to elicit feedback and impressions of the testing
pipeline. The developers in the team were already experienced with performing these
tests manually, but not automatically in the cloud. We purposely kept the survey short
and concise consisting of only the most important questions relevant to our evaluation.
The innovation team is a team of five, consisting of a manager and four developers, one
of which is the author of this work and thus excluded from the survey. The rest of the
developers took part in the survey.
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7.2.1 Survey structure
The survey consisted of six questions divided into three sections. The first section serves
as a way for the participants to consent to the usage of their information for the purposes
of this work:

• Q.1: Do you consent to the usage of the information given in this survey
for the scientific purposes of the thesis? (Yes/No)

The second section gathers information about how the system is being tested at the
moment. Firstly, the participants explain the way it is tested, followed by a ranking of
their satisfaction with the current way of testing, and lastly outlining problems they see
with it.

• Q.2: Please explain how the current testing of MBS is done (e.g. setup,
simulator usage, testing, checking for correct behavior).

• Q.3: Please rate your experience of using the current test setup for
MBS in terms of satisfaction (1-10, 1 being extremely satisfied, 10 being
extremely unsatisfied).

• Q.4: What would you say are the problems of the current testing setup
for MBS? Leave blank if you think there are no problems.

The third, and the last section, consists of questions regarding the proposed pipeline for
automatic testing, which they were introduced to before the survey took place.

• Q.5: After seeing the cloud tests applied to MBS in action, do you think
that the new automatic testing in the cloud improves upon the previous
testing method? If yes, explain how.

• Q.6: Would you like to see more types of tests implemented in the cloud?
If yes, name and explain them.

7.3 Survey results
We will now present the results and findings from the survey. All the participants
consented to the usage of their responses so all the participants are considered in the
results. We will take a look at the answers of the second section containing questions
Q.2, Q.3, Q.4 related to the current testing setup, followed by an analysis of the third
section containing questions Q.5 and Q.6 related to the proposed automatic cloud tests.
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7.3.1 Current testing setup
From the answers provided in this sections we gathered the following:

• Q.2: Current testing setup

– Only unit tests and acceptance tests are automatic, while smoke testing is
performed manually.

– Each component (APS, PE, simulator) is tested in isolation using unit tests.
– For integration tests, one developer states that they use scripts to send REST

API requests, but the correctness is checked manually, via visual inspection.
– Integration tests are performed through web UI where results are again checked

via visual inspection.

• Q.3: User satisfaction (Figure 7.2)

– The average score given amongst the participants was 4.67.
– If we consider any rating of 5 and above to be satisfied, only one developer

can be considered satisfied.

• Q.4: Problems with current testing setup

– There are currently no tests in place that test the interactions of all the
components, as well as the components being deployed on different machines.

– Distributed deployment is not tested enough.
– Currently available automatic tests do not provide sufficient coverage.

Figure 7.2: User satisfaction (Q.3) with regards to the current (manual) testing setup.
Values below 5 are marked red, otherwise green.
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7.3.2 Automatic cloud tests
Following conclusions can be derived from the answers in this section:

• Q.5: Improvements

– All the participants believe that the automatic cloud tests improve upon the
current testing setup.

– Of the improvements, following were mentioned: automation of different sce-
narios and configurations, automatic integration tests, distributed deployment
testing, testing with multiple actors.

• Q.6: Future work

– Availability and scalability testing, component failure simulation
– Two participants expressed interest in integration tests that focus on the

interactions of the components

7.3.3 Survey conclusion
Taking the responses of the participants into account, we can clearly identify that manual
tests result in mostly unsatisfied users. We can also see how there is much potential for
automation especially in the aspect of integration tests. Cloud tests also offer a way of
testing distributed deployment where each component is deployed to a different machine,
something that is impossible to test locally.

7.4 Use case discussion
In order to conclude the evaluation we will now compare some attributes of both
approaches for the Hitachi Rail use case. Before the pipeline was developed we performed
the integration tests manually, the way it was previously, after which we implemented
the pipeline for automating them, and lastly used the pipeline to achieve the same tests
by simply making changes to the code and triggering them, thus practically using them.
Taking both the implementation and the effort needed to use the pipeline we can compare
it to the previous manual testing methods in regards to two aspect:

• Testing duration: Manually performing tests requires running all the required
services (APS, PE, simulator) on the local machine, after which we access the web
UI, we load the operational plan and begin observing. We act as the test oracle
by expecting some outcome (train reaching destination) and the test ends there.
We also then have to perform cleanup by stopping the execution of all the services.
Currently, due to a bug in the distributed deployment, simulation speed can only
be set to real-time and as such will take approximately the same amount of time
for both the manual and automatic tests as both have to wait 35 minutes for the
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train to reach the destination. However manual testing has a slight edge if we
take into account the solution build time as it is faster on the developer machines.
Moreover, should the simulation time bug be fixed we could set the speed to 8
times the normal speed which would be hard for a person to manually observe
giving an edge to automatic tests that rely solely on events. In the current state
of the solution, manual tests take less time compared to automatic tests,
taking into account the whole pipeline workflow.

• Testing effort: To perform manual tests, first and foremost the user has to
understand how to run the test, which components to run, how to perform the
test, and lastly how to validate it. Even if we do not take this into account, but
assume the test is performed by someone knowledgeable, the effort needed is far
greater compared to the automatic tests that require no effort since they will be
trigger and performed independently. Compared to manual tests, automatic
cloud test require far less effort, with only effort being the analysis of
the pipeline result.

• Initial effort: In contrast to the testing effort, we can also analyze the effort
needed to setup the pipeline for automatic cloud tests in comparison to the manual
tests. It is clear that test automation only happens after the initial tests are
defined, and then migrated to the cloud. Of course, automatic cloud tests can be
considered from the start, but still need to be manually defined in order to be
automated. During the implementation phase of the Hitachi Rail use case, a lot of
time was spent setting up the OpenStack project and the actual pipeline, before
even defining a single test. The initial effort needed for manual testing is
far less compared to automatic cloud tests that incur a significant initial
cost in terms of time.

• Hardware resources: Manual tests are performed on the developer machine, they
do not require additional hardware resources, still they occupy the developer re-
sources during their execution. For automatic cloud test, hardware resources
are required in order to host the actual cloud, introducing additional
costs in terms hardware.

We can also perform some calculations1that can show the potential of automatic cloud
tests, but we have to define some assumptions. The solution whose tests are being
migrated to the cloud does not exhibit any bugs in the process of the migration, and the
developer in charge of the migration already has knowledge of DevOps principles and
tools (e.g. IaC), as well as access to an OpenStack project. In this case we can estimate
that the migration process would last 10 working days for our use case. Since manual
tests take about 40 minutes to perform (automatic tests require no manual intervention
and thus last 0 minutes from the perspective of the developer in terms of effort), and for
the three developers using them, we can assume they each perform one test a day, which
for a working month accounts to 60 tests, resulting in 2400 minutes spent testing. If
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we also assume that we invest 10 hours monthly on cloud test maintenance we subtract
600 minutes from the time spent testing resulting in 1800 minutes a month saved per
month. Since we also estimated it takes about 10 working days to setup cloud tests, or
4800 minutes, dividing this by the minutes saved per month (2400 minutes) we get 2.67
as the amount of months needed to repay the time invested into test migration to the
cloud. The time to repay would be larger if the manual tests took less time to perform.
This means that once the simulation speed bug is resolved, time to repay would become
larger. We can clearly see that automatic tests incur a large initial cost that can grow
significantly depending on the developer experience, and the available infrastructure
(OpenStack project, hardware resources for the cloud), but they act as a better long term
option as they remove the testing effort.

Metric Manual tests Automatic tests

Testing duration2 – +

Testing effort – +

Initial effort + –

Hardware resources + –

Table 7.1: Tabular pros/cons comparison between manual and automatic tests in terms
of measured metrics. (+ means in favor of, - means worse)

Throughout the process of migrating the integration tests to the cloud a lot of previously
unknown bugs were uncovered. Distributed deployment was barely tested before, and it
has been uncovered that only normal simulation speed (real time speed) can be utilized
in that case, which should result in faster tests once fixed and faster simulation can
be performed (fastest being 8 times faster than normal). In the beginning the train
did not reach the destination successfully because of other bugs uncovered which were
later addressed and fixed. In some cases running the test manually on the developer
machine would not work due to the lack of idempotency. The migration process showed
that testing on the developer machine alone was not enough, and the integration tests
performed before were inadequate for both solution logic and distributed deployment.

There are few things to consider when drawing conclusions from this use case, that may
be specific to the use case. The test execution time will depend on the hardware resources
of the cloud and of the developer machine running manual tests. Another important
factor is that currently the simulation speed can only be done in real time (normal speed)
due to bugs uncovered and once fixed will result in 8 times faster simulation time and
thus test execution time. Also, in our case the developers where performing manual tests
on their machines, and have not tried to physically imitate the environment where the

1The calculations performed were based on ROI (Return On Investement) calculations[60].
2Testing duration results assumes a case where the simulation speed bug is fixed.
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actual solution would run. If that were the case there would be significantly more effort
needed for manual testing as it would require time and additional costs in the setup of
those machines, as well as maintenance.

However, analyzing the survey as well as the previously described comparison, we can
conclude the following: Automatic cloud tests introduce additional costs in terms
of time and hardware resources during the setup and implementation phase,
but significantly lower the effort of using the tests, while enabling previously
impossible test scenarios. In the end, depending on what the resources allow, manual
tests might be significant in smaller cases, but automatic cloud tests act as a better long
term option.
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CHAPTER 8
Discussion

8.1 Discussion of research questions
We will now present each research question again and provide an answer to them.

• RQ.1: What are the state-of-the-art open-source IaC and CI/CD tech-
nologies for enabling testing in the cloud using simulated environments?
In the Chapter 2 we’ve discussed various state-of-the-art technologies as well as
technologies that serve as the predecessors and influencers of the state-of-the-art.
We recognize Gitlab CI and Jenkins as the state-of-the-art CI/CD technologies that
have garnered much attention in both the scientific world as well as in practice. For
provisioning we outline OpenTofu and Pulumi, and for configuration management
Ansible as well as Puppet and Chef as the state-of-the-art.

• RQ.2: What are the requirements of a fully automated pipeline for
testing in the cloud using simulated environments?
In the Chapter 4 we performed requirements elicitation in order to derive a set of
requirements needed for implementing the fully automated pipeline, which covers
requirements in terms of the pipeline, test structure, provisioning and configuration
management. Depending on the use case the requirements provided may prove
non-exhaustive but aim to provide better understanding of what is required of such
a pipeline.

• RQ.3: What is the architecture for a fully automated pipeline for testing
in the cloud using simulated environments?
By researching the state-of-the-art as well as performing interviews with experts,
we derived and used the following technologies: Gitlab CI for a CI/CD pipeline,
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Ansible for configuration management, OpenTofu for provisioning and OpenStack
for cloud computing.

• RQ.4: What are the benefits and drawbacks of testing in the cloud using
simulated environments compared to the traditional testing methods?
Throughout research, interviews, implementation and evaluation we’ve identified
many benefits. Automation as the key concept of this work has showed much
potential from automating the deployment, to configuration management, and
finally to tests. By automating tests, any changes will be tested automatically
regardless whether or not the developer would know how to perform those tests
manually. By automating the whole deployment process, we remove the need for
manual maintenance. Simplicity of IaC lowers the bar of entry for provisioning
and configuring of infrastructure which allows the developers to describe all the
needed hardware and software through code. As each pipeline runs in its own
environment we can run many tests in parallel, only limited by actual hardware
resources. As we deploy and cleanup all the infrastructure needed for every test,
we ensure idempotency, which is hard to guarantee when running tests locally.
Considering the drawbacks, one of the biggest is the complexity this approach
introduces. By relying on multiple technologies utilizing cloud and IaC debugging
and implementing spans multiple points. In addition, knowledge needed to properly
apply these technologies and develop the pipeline slows down the transition process.
Cloud testing also introduces additional costs in terms of hardware needed to host
the cloud, as well as time needed to maintain it. Should one take the approach of a
public cloud, costs of using the cloud have to be considered.

8.2 Limitations
In this section we will present and discuss some limiting factors that have influenced this
work and its results.

Interview sample size

The interview (Chapter 5) performed included 5 participants who were eligible in terms
of experience and knowledge to discuss and answer the interview questions. Although
they all showed experience in previous companies, they represent only a group of people
currently working under the same company. This meant that we were limited to only
a certain number of participants that both had time for the interviews, and knowledge
needed.

Resource limitations

One of the biggest limitations of exploring cloud computing is the hardware resources
needed for hosting the cloud. In our work we were limited by the number of allowed
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simultaneous virtual machines, networks, routers, as well as hardware resources like
vCPUs and RAM. More concretely, 10 instances (where 4 were already used for setup
and hosting of needed infrastructure), 5 networks, 5 routers and 2 floating IPs, as well as
80 vCPUs and 160GB of RAM. The biggest limiting factor was the number of instances
and networks which prevented us from simulating a large number of users, or a very large
network topology.

Concrete hardware simulation

Although we can specify vCPUs, RAM, and storage, we cannot specify underlying
architecture of the processor. We cannot specify RAM speed, nor the type of storage
device like HDD, or SSD. Because of this, we cannot guarantee fully that the virtual
environment in the cloud completely replicates the client environment.

Survey sample size

As part of the evaluation chapter we conducted a survey within a small team, with three
developers partaking in the survey. Although the results shown demonstrated general
consensus regarding the state of manual tests and improvements of automatic tests,
should the sample size be larger our arguments would have been even more prominent,
and perhaps we would encounter outliers that argue against the migration of the tests to
the cloud.

Use case choice

Hitachi Rail use case allowed us to evaluate the automatic cloud testing approach on
a real life use case, however it only represents one use case. Even though we did not
have to adjust the pipeline drastically, it would still be useful to explore how the pipeline
would have to be adapted for other use cases that require more complex testing setup, or
more complex types of tests. Also, our use case is within the railway signaling domain,
however the business logic of the domain played less of a role during the implementation
for this use case, but it would still be useful if we could explore other domains.

8.3 Lessons learned
In this section we will discuss lessons learned in the form of challenges we’ve encountered
throughout the work on the thesis, which serves as a guide to potential difficulties one
can expect by taking this approach. We believe by also outlining the difficulties of testing
in the cloud we bring a more realistic picture of practical use of cloud testing.

Learning curve

An obstacle which can discourage some from automating and migrating their tests in
the cloud is first and foremost the initial learning curve. Cloud computing provides
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many challenges, and hosting your own cloud becomes an immense challenge for any
beginner. Debugging requires knowledge of underlying hardware, network stack, as well
as knowledge of host operating system. Throughout the pipeline implementation, much
time was spent debugging why certain components where not interacting correctly, which
in most cases required thorough reading of various documentation, of which many assume
a prerequisite knowledge of DevOps principles and cloud computing.

Setup

Due to the complexity of the pipeline architecture, as well as many components coexisting,
much time was spent setting up the actual infrastructure. As we opted to host everything
on our own, we had to setup Gitlab, Gitlab Runners, followed by creating our own Docker
image for pipeline execution containing all the needed dependencies (Docker, Ansible,
Terraform, etc.). This was followed by configuring and authorizing each component to
be able to access to the cloud resources as well as Gitlab resources. Only then could we
proceed to implement the pipeline logic.
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CHAPTER 9
Conclusion

Firstly we introduced the topic and the goals of this work, which we’ve followed by a
chapter dedicated to related work. In it, we provided an overview of the most important
concepts and practices that have paved the way for cloud testing. We’ve outlined how
these principles spawned various technologies that have enabled us to implement the
pipeline. We concluded the chapter by providing a literature review providing insight in
to what research has been performed in DevOps, CI/CD, IaC, as well as cloud computing.
Moreover we performed various interviews with experts in Hitachi Rail, eliciting knowledge
and summarizing it, and in conclusion deriving a technology stack which we used for the
implementation of the pipeline. In order to better understand what the pipeline needs
to achieve, we derived a requirement specification. In the implementation chapter we
covered step by step how we achieved the desired pipeline which we applied to a use case
in the railway industry. We evaluated the applicability of cloud tests using this use case,
which helped us outline the benefits and challenges. We compared cloud testing to the
traditional testing methods and performed a survey to gather user experience of using
cloud tests.

9.1 Future work
We will now provide various research avenues for future work in the field of testing
in the cloud. In this paper we focused on open-source technologies, but this leaves a
lot of state-of-the-art technologies unexplored. Amazon Web Services, Google Cloud
Platform, as well as Microsoft Azure are cloud computing technologies worth exploring,
that offer their ways of provisioning and configuration of cloud infrastructure (e.g. AWS
CloudFormation). This work only considers a subset of open-source technologies for the
pipeline implementation, and as such it is worth exploring how this can be achieved
with other technologies and then compared. It is worth exploring what open-source
technologies do various companies utilize by interviewing more experts from different
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companies. The concept of testing in the cloud can be applied to various use cases,
which can serve as a starting point for more case study research which would serve as an
argument for migrating to the cloud and the applicability of testing in the cloud.

9.2 Concluding remarks
Testing in the cloud has clearly demonstrated benefits, however a lot of time and effort is
needed in the initial setup phase. Migrating tests to the cloud requires knowledge of many
technologies and layers, which severely raises the initial cost and in some cases it might
outweigh the benefits. Still, as advances are made in cloud computing and infrastructure
as code, we might see a flattening in the learning curve, as well as a reduction in setup
time. In end effect, even simple tests running in the cloud will free up developer resources
by moving the testing process away from the developer machine, as well as free up time
by removing human intervention.

Unless exact hardware is needed, and enough time and resources can be invested, testing
in the cloud shows much potential and provides many benefits to its user. Most notably
automation, as the cornerstone of infrastructure as code, alleviates the burden of testing
as an inevitable part of the development cycle.
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APPENDIX A
Setup details

A.1 Gitlab Secrets
In order to authorize the runner to perform certain actions, we need to provide it with
certain authorization and authentication credentials. One approach would be to use a
separate external secret manager [41]. For the purposes of this work we took another
approach by utilizing masked variables. These can be defined in Gitlab CI/CD Variables
section. Masked variables work only on non-whitespace text, so we encode the text using
base64 and decode it in the pipeline. The following variables where utilized:

• SSH keys: We can store both the private and the public key for connecting to
the cloud instances using Ansible. We defined two variables: SSH_PRIVATE_64,
SSH_PUBLIC_64

• Clouds yaml: Terraform/OpenTofu use clouds.yaml to authenticate to OpenStack
in order to deploy and provision infrastructure. We store this file as a base64
encoded text in the variable CLOUDS_YAML_64

• Docker authentication: To ensure that docker can login to the Gitlab registry
to access container images we utilize DOCKER_AUTH_CONFIG [35] to store the
contents of the Docker Json config.

A.2 Terraform/OpenTofu providers
Each time we call tofu init/terraform init we download all the needed providers
defined in providers.tf:
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1 terraform {
2 required_providers {
3 openstack = {
4 source = "terraform-provider-openstack/openstack"
5 version = "2.1.0"
6 }
7 template = {
8 source = "hashicorp/template"
9 version = "2.2.0"

10 }
11 local = {
12 source = "hashicorp/local"
13 version = "2.5.2"
14 }
15 }
16 }

Listing A.1: Specifying providers needed for Terraform/OpenTofu project

In a pipeline, it makes no sense to repeatedly download all the needed providers every
single time when the pipeline is run. For this purpose, we can manually download each
provider, by copying the resulting content of tofu init/terraform init into the
repository. The next step is then to make Terraform/OpenTofu aware of this. In our
case using OpenTofu we define a file .tofurc with the following content:

1 provider_installation {
2 filesystem_mirror {
3 include = ["registry.opentofu.org/*/*"]
4 path = "./providers"
5 }
6 }

Listing A.2: Specifying providers needed for Terraform/OpenTofu project

Finally we make the OpenTofu aware of this by setting the environment variable
TF_CLI_CONFIG_FILE to the path to .tofurc.

A.3 Deployment
Delivering the actual solution to the client can be done in various ways. This of course is
done in agreement between the development team and the client. If the developers have
access to the machine(s) that will run the solution on the client side one can connect
to it using Ansible and install the needed software. Another way would be to build the
solution as a Docker container and store it in a registry accessible to the client. Gitlab
offers both a container registry and a release through artifacts. In our prototype pipeline
we decided on exposing the built solution as an artifact available under Releases tab of
the repository:
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1 deploy:
2 stage: deploy
3 before_script:
4 - cd poc/python
5 script:
6 - python3 -m build
7 artifacts:
8 paths:
9 - poc/python/dist

10 expire_in: 2 days
11 release:
12 name: ’Addition Endpoint Version $CI_COMMIT_TAG’
13 tag_name: ’$CI_COMMIT_TAG’
14 description: "Addition endpoint release"
15 assets:
16 links:
17 - name: ’addition_endpoint’
18 url: ’$CI_SERVER_URL/$CI_PROJECT_PATH/-/jobs/$CI_JOB_ID/

artifacts/download’
19 only:
20 - tags

Listing A.3: Deploy stage of the prototype pipeline

We build the solution, persist it by marking it as an artifact, and define the release by
naming it, associating it with a tag (releases can only be done through tags) and defining
the assets. The result will be a release that allows downloading of this artifact. To save
space we limit the artifact to 2 days, but this can of course be changed to not expire at
all.

A.4 Pipeline container image
If we run a Gitlab CI pipeline using Docker executor we need to provide an image that
will be used for creating the container which will act as the pipeline environment. If we
chose Ubuntu:latest we would have to install all the necessary dependencies (Ansible,
Terraform, etc.) within the pipeline which would slow it down. For that we can create a
separate repository that will have its own pipeline just for building the image that will
be used in our cloud testing pipeline. We define a pipeline as follows:

1 stages:
2 - build
3
4 variables:
5 IMAGE_NAME: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG
6
7 build-docker-image:
8 stage: build
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9 image: docker:latest
10 services:
11 - docker:dind
12 script:
13 - echo $CI_REGISTRY
14 - echo $CI_REGISTRY_PASSWORD | docker login -u $CI_REGISTRY_USER

--password-stdin $CI_REGISTRY
15 - docker build -t $IMAGE_NAME .
16 - docker push $IMAGE_NAME
17
18 only:
19 - main
20 - tags

Listing A.4: Gitlab CI pipeline for building a Docker image

Now all we have to do is define a Dockerfile as a recipe for creating the image. The
condensed version is presented as follows:

1 FROM ubuntu:latest
2
3 ENV http_proxy="http://proxy:8889"
4 ENV https_proxy="http://proxy:8889"
5 ENV no_proxy="localhost,127.0.0.1,.gts"
6
7 RUN apt-get update && \
8 apt-get install -y software-properties-common \
9 apt-transport-https \

10 ca-certificates \
11 curl \
12 ... && \
13
14 apt-get clean
15
16 CMD ["/bin/bash"]

Listing A.5: DockerFile for building the Docker image used for running the pipeline
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