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Zero-knowledge (ZK) protocols have recently found numerous practical applications, such as in authentication,
online-voting, and blockchain systems. These protocols are powered by highly complex pipelines that process
deterministic programs, called circuits, written in one of many domain-specific programming languages, e.g.,
Circom, Noir, and others. Logic bugs in circuit-processing pipelines could have catastrophic consequences
and cause significant financial and reputational damage. As an example, consider that a logic bug in a ZK
pipeline could result in attackers stealing identities or assets. It is, therefore, critical to develop effective
techniques for checking their correctness.

In this paper, we present the first systematic fuzzing technique for ZK pipelines, which uses metamorphic
test oracles to detect critical logic bugs. We have implemented our technique in an open-source tool called
Circuzz. We used Circuzz to test four significantly different ZK pipelines and found a total of 16 logic bugs
in all pipelines. Due to their critical nature, 15 of our bugs have already been fixed by the pipeline developers.

1 Introduction
Zero-knowledge (ZK) protocols have recently evolved to enable a wide range of practical scenarios
and applications [Ernstberger et al. 2024], including authentication, online voting, and blockchain
systems. These protocols are called “zero knowledge” because they allow one party, the prover, to
prove to another party, the verifier, that they know a secret without revealing it. More specifically,
consider a deterministic program 𝐶 , called a circuit, that performs a computation over public and
private (or secret) inputs, 𝐼𝑃 and 𝐼𝑆 respectively. Given 𝐶 , the prover must show to the verifier
that the computed output 𝑂 is indeed produced by executing 𝐶 with 𝐼𝑃 and 𝐼𝑆 , without however
revealing 𝐼𝑆 .

Under the hood, the typical workflow of a ZK pipeline, shown in Fig. 1, is the following. A circuit
𝐶 is specified in one of many domain-specific programming languages, such as Circom [Bellés-
Muñoz et al. 2023], Noir [Noi [n. d.]], Corset [Cor [n. d.]], and others. The compiler of the ZK
pipeline produces a constraint system as well as a witness generator. (Note that, for some pipelines,
the witness generator already exists and is not generated by the compiler.) Given inputs 𝐼𝑃 and
𝐼𝑆 , the witness generator produces a witness, which is essentially an assignment satisfying the
constraint system. On a high level, the witness may also be understood as a trace through 𝐶 . The
witness is used by the prover of the pipeline to generate a proof, which, together with 𝐼𝑃 , can be
passed to the verifier of the pipeline to verify its correctness.

Hence, unlike for regular programs, the pipelines for processing circuits comprise components for
witness and proof generation as well as for proof verification. They are, therefore, highly complex,
and given their growing applicability, correctness of these pipelines is highly critical [Chaliasos
et al. 2024]. More concretely, consider that the Gnark [Gna [n. d.]] and Corset ZK pipelines
are core components of the Linea blockchain, which stores crypto-assets worth ca. 850M USD as
of mid-October 2024. Bugs in these pipelines could have catastrophic consequences, potentially
causing significant financial and reputational damage. For this reason, pipeline developers typically
follow very strict development processes. In the case of Gnark [Gna [n. d.]], both internal and
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Fig. 1. Overview of zero-knowledge pipeline stages.

external security teams perform regular audits; 8 external audits alone have been performed in the
last two years (2022–24).

Still, bugs in ZK pipelines are extremely hard to detect just like for regular compilers and execution
environments. There is, thus, a pressing need to develop automated and effective techniques for
validating their correctness. Verifying the absence of bugs in their implementations is overly
demanding. Consider, for instance, the verification efforts for CompCert [Leroy 2009], a compiler
for a subset of C—it is about 15K lines of code and required 6 person years to write 100K lines
of specifications. So, for the much more complex ZK pipelines, such an endeavor is practically
infeasible.

Our approach. Contrary to verification, automated test-generation techniques have been pre-
viously used to detect bugs in real-world compilers (see [Chen et al. 2020] for an overview) and
program analyzers (e.g., [Fleischmann et al. 2024; He et al. 2024; Kaindlstorfer et al. 2024; Mansur
et al. 2023; Mordahl et al. 2023; Zhang et al. 2019, 2023]) without providing absolute correctness
guarantees, that is, without promising that all bugs are found. In this paper, we present the first
fuzzing technique for finding critical logic bugs in circuit-processing pipelines and its implementation
in an open-source fuzzer called Circuzz.

On a high level, Circuzz generates a configurable number of random circuits in an intermediate
language, which we designed to capture essential features of many existing ZK languages, such
as Circom or Noir. Next, Circuzz applies a sequence of metamorphic transformations to each
generated circuit, say 𝐶1, to obtain circuit 𝐶2. Metamorphic testing [Chen et al. 1998] typically
checks the correctness of a program 𝑃 by running the program on an input 𝑖1, observing the output
𝑜1, and transforming 𝑖1 to obtain 𝑖2. This transformation is such that we know what output 𝑜2 to
anticipate (in practice, often the same as for 𝑖1), thereby providing an oracle for the correct behavior
of 𝑃 . When actually running 𝑃 on 𝑖2, if 𝑜2 contradicts the anticipated output, the oracle is violated
and a bug in the program has been found. In our context, inputs 𝑖1 and 𝑖2 are circuits, the program
is a ZK pipeline, and the outputs are the outputs of the various pipeline stages, e.g., compilation,
witness generation, etc.

After creating transformed circuit𝐶2, e.g., by swapping the arguments of a commutative operator
in 𝐶1, Circuzz translates 𝐶1 and 𝐶2 from the intermediate language to a specific ZK language. It
then tests the entire processing pipeline, that is, including compilation, witness generation, proof
generation, and proof verification. To obtain (public and private) inputs 𝐼𝑃 and 𝐼𝑆 for the circuits,
Circuzz generates them randomly. Hence, when executing the pipeline for each circuit using
the same inputs, if any pipeline stage generates an unexpected output, a bug has been detected.
For the example of swapping the arguments of a commutative operator, we would not expect
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Fig. 2. Overview of our fuzzing technique for circuit-processing pipelines.

any stage outputs to diverge. This constitutes the first application of metamorphic testing for
circuit-processing pipelines.
In general, the bugs that Circuzz aims to detect are logic bugs; for instance, a pipeline stage

could be overly permissive (unsoundness), e.g., by generating a bogus witness or proof, or overly
dismissive (incompleteness), e.g., by not generating a valid witness or proof when it should. As we
discuss in our experimental evaluation, Circuzz detected 16 logic bugs in four ZK pipelines, 15 of
which are already fixed by the developers.

Our fuzzing technique primarily works on our intermediate language instead of specific ZK
languages. Note that ZK languages can be quite different, e.g., Noir is Rust-based whereas Corset
is Lisp-based. The generality that comes with the intermediate language allows us to easily extend
Circuzz to test new ZK pipelines by adding the corresponding circuit-generation backends, which
translate circuits from the intermediate to the target ZK language. In fact, we used Circuzz to test
four significantly different ZK pipelines, namely Circom [Bellés-Muñoz et al. 2023], Corset [Cor
[n. d.]], Gnark [Gna [n. d.]], and Noir [Noi [n. d.]].

Contributions. Overall, our paper makes the following contributions:

• We present the first systematic fuzzing technique for circuit-processing pipelines; it uses
metamorphic test oracles to find critical logic bugs.

• We implement our technique in the open-source tool Circuzz.
• We evaluate Circuzz by testing four different ZK pipelines, namely Circom, Corset, Gnark,
and Noir; Circuzz was able to detect logic bugs in all pipelines.

Outline. The rest of the paper is organized as follows. In Sect. 2, we give an overview of Circuzz,
and in Sect. 3, we describe the technical details of our technique. Sect. 4 presents our experimental
evaluation. We review related work in Sect. 5 and conclude in Sect. 6.

2 Overview
In this paper, we propose the first systematic technique for fuzzing circuit-processing pipelines.

An overview of our technique is shown in Fig. 2. On a high level, it consists of the following
steps: (1) circuit generation (in our intermediate language), (2) circuit transformation, (3) circuit
translation (to the target language), (4) input generation, and (5) bug detection. In the rest of this
section, we walk the reader through each of these steps based on an actual logic bug that Circuzz
found in Circom. In Sect. 3, we describe each of these steps in detail.
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1 inputs : in0 , in1

2 outputs: out0

3 out0 = (~ 𝑝)

4 assert(in0 != in1)

(a) Circuit 𝐶1 in CircIL.

1 inputs : in0 , in1

2 outputs: out0

3 out0 = (~ (((1 - 0) / 1) * 𝑝))

4 assert(in0 != in1)

(b) Circuit 𝐶2 in CircIL.

1 pragma circom 2.0.6;

2
3 template main_template () {

4 signal input in0 , in1;

5 signal output out0;

6 out0 <-- (~ 𝑝);

7 assert(in0 != in1);

8 }

9 component main = main_template ();

(c) Circuit 𝐶1 in Circom.

1 pragma circom 2.0.6;

2
3 template main_template () {

4 signal input in0 , in1;

5 signal output out0;

6 out0 <-- (~ (((1 - 0) / 1) * 𝑝 ));

7 assert(in0 != in1);

8 }

9 component main = main_template ();

(d) Circuit 𝐶2 in Circom.

Fig. 3. An example logic bug found by Circuzz in Circom.

Fig. 3a shows a circuit, say 𝐶1, generated by step (1) of our technique. The circuit is expressed in
our intermediate language, which we call CircIL; lines 1–2 declare the inputs and outputs, line 3
computes output out0, and line 4 introduces the constraint that in0 != in1. The output is assigned
a constant expression, namely the bitwise complement of 𝑝 . Here,

𝑝 = 21888242871839275222246405745257275088548364400416034343698204186575808495617,

which is a 254-bit prime number and the base field of the BN254 curve (also known as alt-BN128),
a common prime elliptic curve used in cryptography. (We omit the value of the prime number in
the code due to its size.)
Fig. 3b shows circuit 𝐶2, again in our intermediate language, which is generated by step (2) of

our technique, i.e., it is obtained by applying metamorphic transformations on 𝐶1. In particular, we
apply three equivalence transformations—that is, ones that do not alter the semantics of 𝐶1—on
line 3: a multiplication with the identity element (1 * 𝑝), a subtraction of the identity element
((1 - 0) * 𝑝), and a division by the identity element (((1 - 0) / 1) * 𝑝).
Step (3) translates 𝐶1 and 𝐶2 into the target language, in this case Circom. The resulting circuits

are shown in Fig. 3c and 3d, respectively. Next, step (4) randomly generates input values for signals
in0 and in1. Finally, step (5) tests the entire Circom pipeline on 𝐶1 and 𝐶2 using the same input
values for both circuits. Given that our metamorphic transformations are semantics preserving,
if any pipeline-stage outputs diverge, a bug is detected. Specifically, Circuzz checks whether
each stage of the Circom pipeline (i.e., compilation, witness generation, proof generation, and
proof verification), if executed, succeeds or fails (due to the same reasons) for both circuits. For
the witness-generation stage, Circuzz additionally checks whether the generated witnesses are
equivalent. Note that this check is only executed if the generated input values satisfy the constraint
on line 4.

It is the latter check (of the generated witnesses) that fails when running Circom on 𝐶1 and 𝐶2
from Fig. 3. In particular, Circuzz found that out0 of 𝐶1 evaluates to a very large number, whereas
out0 of𝐶2 evaluates to zero. Note that the constraint system generated by the compiler from a given
circuit operates over a finite field; its size may be determined by an underlying elliptic curve, and
in this case, Circuzz randomly selected the BN254 curve. In other words, all arithmetic operations
are computed modulo prime 𝑝 , thereby wrapping around this value. The difference in the outputs
for 𝐶1 and 𝐶2 was caused because Circom did not apply the modulo operation to constants before
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they were used in an expression; this can result in computing different values in the presence of
bitwise operations, such as the complement in our circuits. Consequently, any one of the above
metamorphic transformations alone would have also revealed the bug.

The developers fixed the issue by applying the modulo operation to all constants in the abstract
syntax tree.

3 Approach
We now describe our fuzzing technique for circuit-processing pipelines in detail. Before delving
into each of its five steps, we provide an overview of our intermediate language for circuits.

3.1 Circuit Intermediate Language
To easily support fuzzing of diverse circuit-processing pipelines, we generate and apply meta-
morphic transformations on circuits expressed in an intermediate language. This enables reusing
the first two steps of our technique, namely circuit generation and transformation, for any new
pipeline. In other words, to test a new pipeline, it is primarily the circuit-translation step that must
be extended to translate to the corresponding ZK language. The bug-detection step also needs to
be slightly adapted to execute the new pipeline.

On a high level, our intermediate language, CircIL, mainly captures a common subset of many
existing ZK languages, such as Circom or Noir. These languages essentially provide syntactic
sugar for expressing the underlying constraint system in a user-friendly way. For this reason, the
simplest intermediate language could perhaps be one that directly defines a constraint system, such
as R1CS (Rank-1 Constraint System). However, an intermediate language that is too simple would
make it difficult to test certain features of high-level target languages, such as Circom, and their
corresponding pipelines. We, therefore, designed a language that is as expressive as possible while
still only supporting features that can easily be translated to many popular ZK languages.
CircIL allows defining a circuit using three basic primitives: (1) a set of input variables (e.g.,

line 1 of Fig. 3a), (2) a set of output variables (e.g., line 2 of Fig. 3a), and (3) a sequence of statements
(i.e., the body), which expresses a set of constraints on the inputs and outputs (e.g., lines 3–4 of
Fig. 3a). The body may contain two types of statements: (a) assignments to output variables, where
the right-hand side is an expression over the underlying field (determined by an elliptic curve),
such as line 3 of Fig. 3a, and (b) assertions of Boolean expressions (i.e., the field elements 0 and 1),
such as line 4 of Fig. 3a. Expressions may be arbitrarily complex by using common operators, such
as addition, multiplication, or equality, supported by all target ZK languages.

However, some target languages support additional operators. For instance, the bitwise comple-
ment is only used by Circom. As we saw in Fig. 3a, CircIL supports this operator; we provide a list
of all CircIL operators below.

Unary operators: - (negation), ~ (bitwise complement), and ! (Boolean not)
Binary operators: +, -, *, /, % (modulo), ** (power), & (bitwise and), | (bitwise or), ^ (bitwise xor),

&& (Boolean and), || (Boolean or), ^^ (Boolean xor), ==, !=, <, <=, >, and >=

Ternary operators: _ ? _ : _ (conditional)

To generate circuits using only operators of the target ZK language, Circuzz takes as input a
language-specific configuration that enables an appropriate operator subset.

In general, it is easy to extend our intermediate language to support language-specific operators.
Their translation to the target language is typically straightforward and enables generating more
complex expressions. After including such operators in CircIL, we can also use them to define
additional, language-specific metamorphic transformations.
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3.2 Circuit Generation
The first step of our fuzzing technique randomly generates circuits based on the intermediate-
language grammar.
The circuit-generation component of Circuzz is highly configurable allowing users to control

the circuit size (by setting the maximum number of inputs and outputs, the maximum number of
assertions, and the maximum depth of the generated expressions) as well as the circuit structure
(by defining the allowed operators and setting custom weights determining how often a grammar
rule should be applied). Based on the given configuration, Circuzz generates a random number of
inputs, outputs, and assertions. It then generates random expressions to be assigned to outputs
and used in assertions. The expressions may contain constants, inputs, outputs as well as allowed
unary, binary, and ternary operators.

3.3 Circuit Transformation
The second step of our technique applies random metamorphic transformations to a circuit 𝐶1
generated by the previous step. The transformations are designed such that the resulting circuit 𝐶2
preserves the semantics of 𝐶1. We can express such transformations using a set of rewrite rules
that rewrite a circuit expressed in the intermediate language.

Rewrite rules. We developed a domain-specific language (DSL) for defining rewrite rules and
used it to define a total of 87 rules.

On a high level, the rewrite rules are based on pattern matching. Each rule is a triple, where the
first element provides a unique rule identifier, the second a pattern to match in the intermediate
language, and the third a rewrite template. For example, the following rule

{"one-plus-zero", "1", "(1 + 0)"}

is called one-plus-zero and replaces any occurrence of constant 1 by the expression (1 + 0). We
could also generalize the above rule as follows:

{"any-plus-zero", "?a", "(?a + 0)"}

"?<NAME >" (?a in the above rule) matches any expression and names it such that it may be
referenced in both the match pattern and rewrite template. For example, the following rule

{"assoc-add", "((?a + ?b) + ?c)", "(?a + (?b + ?c))"}

employs the associative property of addition and would rewrite an expression ((in0 + 1) + in2)

to (in0 + (1 + in2)). Naturally, multiple occurrences of a given name are used to express struc-
tural equality, e.g., the match pattern "?a | ?a" would match "(1 + 2) | (1 + 2)" but not
"(1 + 2) | (2 + 1)".
Our DSL also allows matching expressions of a given type. Specifically, "?<NAME >:<TYPE >"

matches any expression of a particular type, e.g., "?a:bool" would match 1 but not 42. Recall that
all expressions are elements of the field, and Boolean is a subtype consisting of elements 0 and 1.
Therefore, we currently only need to match type bool, but in the future, our DSL could easily be
extended to support more types if necessary. For example, the following rule

{"pow2-to-mul", "(?a ** 2)", "(?a * ?a)"}

rewrites an expression raised to the power of two to the expression multiplied by itself; no type
specification is needed. The following rule, however,

{"double-lor-bool", "?a:bool", "(?a || ?a)"}
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creates a logical disjunction between a Boolean expression and itself. Note that our intermediate
language is untyped, and we perform Boolean-type inference for pattern matching with such
rewrite rules.

Moreover, our DSL allows introducing new random expressions as part of the rewrite template
(i.e., the third component of the triple). Specifically, "$<NAME >:<TYPE >" is used to generate a random
constant of a given type in the rewrite template and name it. Again, the type specification is only
necessary for generating random Booleans. For example, the following rule

{"sub-add-random-value", "?a", "((?a - $r) + $r)"}

first subtracts a random constant from an expression and then adds it again; no type specification
is needed. The following rule, however,

{"double-lxor-bool", "0", "($r:bool ^^ $r:bool)"}

replaces constant 0 with the exclusive disjunction of a random Boolean and itself.
In general, using this domain-specific language, we have defined rules employing the identity,

commutative, associative, and distributive properties of logical, bitwise, and arithmetic operators,
De Morgan’s laws, etc.

Stacked transformations. To increase the likelihood of finding logic bugs in the tested pipelines,
Circuzz stacks the above circuit transformations. In other words, it may apply multiple rewrites
to circuit 𝐶1 to obtain 𝐶2. This is possible since, in our case, all transformations have the same
equivalence oracle, i.e., that no stage outputs should diverge.

3.4 Circuit Translation
Once we have two semantically equivalent, but syntactically different (after applying transforma-
tions), circuits 𝐶1 and 𝐶2, the next step translates these circuits from the intermediate language to
the ZK language of the processing pipeline under test. Circuzz currently supports four diverse ZK
languages, namely Circom, Corset, Gnark, and Noir. In particular, Circom is a low-level circuit
language, which served as an inspiration when designing our intermediate language. One of its
characteristics is that it is modular, thereby allowing users to define small, parameterizable circuits,
called templates (see Fig. 3), that may then be combined to form larger circuits. On the other hand,
Corset is Lisp-based, Gnark uses plain Go and provides a high-level API for writing circuits, and
Noir is Rust-based.

This circuit-translation step of Circuzz is one of the two steps (besides the bug-detection step)
that always needs to be extended when adding support for a new ZK language. The main task is to
map all supported terminal and non-terminal symbols of the intermediate language to the corre-
sponding symbols of the ZK language. For instance, for Gnark, we map a + b to api.Add(a, b)

and assert(a <= b) to api.AssertIsLessOrEqual(a, b). For certain target languages, such as
Circom, this step is straightforward, but for other languages that are quite different from CircIL,
such as Corset, the translation is more involved.

3.5 Input Generation
The input-generation step of Circuzz produces inputs (𝐼𝑃 and 𝐼𝑆 ) for circuits𝐶1 and𝐶2. We currently
use blackbox fuzzing to randomly generate elements of the field. However, since the size of most
supported fields is huge, we have introduced the ability to configure a set of constants that may be
used during circuit generation as interesting boundary values. Examples of such constants are 0, 1,
the size of the field 𝑝 (typically a prime number), 𝑝 −1, etc. We randomly pick boundary values with
a small probability (e.g., 5%). It is due to such a configuration that prime 𝑝 is used in the circuits of
Fig. 3.
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3.6 Bug Detection
As the final step of our technique, bug detection is specific to each processing pipeline under test
and constitutes the other step of Circuzz that needs to be extended when adding support for a new
ZK language. For instance, certain pipelines may combine the compilation and witness-generation
stages or support several witness-generation and proving engines, so their execution requires
configuration. Moreover, detecting bugs in each pipeline involves retrieving different artifacts, e.g.,
witnesses, error messages, return codes, etc., which are non-standard across pipelines.

Oracles. The bug-detection step executes the processing pipeline under test for both circuits
𝐶1 and 𝐶2 using the same inputs and reports a bug if our metamorphic oracle is violated, i.e., if
any difference is detected between the two execution behaviors. For instance, a bug is detected if
a witness is obtained only for one of the two semantically equivalent circuits. Circuzz typically
executes each pipeline stage for both circuits and checks for bugs before moving on to the next stage.
This allows to detect any differences in execution behavior as soon as possible without wasting
time on later stages, such as proving or verification, which can be computationally expensive.
Besides the metamorphic oracles, Circuzz checks additional non-metamorphic, correctness

properties per execution. For instance, a bug is reported if the witness generator generates a valid
witness, but the prover fails to produce a valid proof. Similarly, we check that every valid proof
can be successfully verified by the verifier. In future work, we plan to extend our oracles for the
verification stage, for instance, by also checking if destructive transformations of generated proofs
fail to be verified.

Additional metamorphic transformations. Optionally, the bug-detection step may introduce fur-
ther metamorphic transformations, not on the input circuits, but on the pipeline settings. More
specifically, we observed that many pipelines support settings that should not change their func-
tional behavior. For instance, similar to many C compilers, Circom supports a setting for selecting
the level of optimizations to be applied to the generated constraint system. Such settings can help
in detecting additional bugs as follows. We randomly select a pipeline setting 𝑆1 for processing 𝐶1
and obtain a setting 𝑆2 for processing 𝐶2 by applying an equivalent metamorphic transformation
on 𝑆1; we expect our oracle to still hold. For example, in Circom, the --O2 setting, which applies
Gauss elimination to remove as many linear constraints as possible, could be transformed into
the --O0 setting, which disables all optimizations. These transformations of pipeline settings were
especially effective for Corset, where Circuzz found 3 logic bugs due to such transformations.

3.7 Test-Throughput Optimizations
Certain pipeline stages are computationally expensive, for instance, proof generation. Consequently,
when testing ZK pipelines, the test throughput is much lower (often seconds or even minutes per
test case) than for many other fuzzing targets, such as parsers (often milliseconds per test case) or
compilers (often less than a few seconds per test case). However, test throughput is an important
aspect of effective fuzzers. For this reason, Circuzz implements optimizations to increase the
unusually low throughput when testing ZK pipelines.

Power schedule. An obvious optimization is to skip the slower prover and verifier stages for some
tests, but the interesting question is when to skip. We initially skipped slower stages randomly
with a (fixed) high probability, but then refined our approach to more fairly test the initial (faster)
stages (i.e., compilation and witness generation) and the subsequent (slower) stages (i.e., proof
generation and verification). More specifically, Circuzz is given a target ratio 𝜌 and, for each test,
it only executes the later stages if𝑇2/(𝑇1 +𝑇2) < 𝜌 , where𝑇1 is the total time we have already spent
executing the initial stages and𝑇2 is the total time we have already spent executing the later stages.
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By default, we use 𝜌 = 0.5 to roughly balance the time that is spent in the faster and slower stages.
Over time, Circuzz dynamically adjusts when to skip the slower stages, thereby converging toward
the desired target ratio.

This approach can be viewed as a novel “power schedule” [Böhme et al. 2016] assigning energy to
different pipeline stages. The power schedule directly exploits the ZK-pipeline structure and could
be applied to other systems with a similar structure; for instance, compilers with very expensive
optimization stages, or program verifiers with SMT-based verification stages.

Circuit size and complexity. We also observed that the size and complexity of the generated
circuits has a tremendous effect on the performance of the pipeline stages. In particular, small
circuits (e.g., circuits with few assertions, expressions of small depth, etc.) are preferable since
they tend to be processed much faster. We hypothesize that most bugs can be detected with small
circuits (see RQ3 and RQ4 in Sect. 4 for more details). Similar observations have been made in other
domains; for instance, several concurrency testing tools, such as Cuzz [Burckhardt et al. 2010], only
explore very few context switches. For this reason, Circuzz is, by default, configured to produce
smaller and less complex circuits (by controlling the number of assertions, expression depth, etc.).
Another interesting side effect of large and complex circuits, especially those with several

assertions, is that they make input generation more challenging—many randomly generated inputs
may not satisfy the assertions. This prevents the fuzzer from effectively testing later stages of a ZK
pipeline, such as proof generation and verification. For less complex circuits, we can effectively test
those stages with blackbox input generation (see RQ3 and RQ4 in Sect. 4 for more details). More
complex circuits would probably require feedback-guided (i.e., greybox) or whitebox [Godefroid
et al. 2008] input generation to satisfy their constraints. Unfortunately, whitebox fuzzing would
likely further reduce the test throughput, especially due to overhead from constraint solving. In
future work, we plan to explore alternative input generation techniques and further optimizations.

Circuit bundling. Finally, Circuzz also implements optimizations that are specific to certain
pipelines. For instance, consider that for Gnark, each circuit needs to be compiled by the regular Go
compiler, which is costlier than the compilation stage of other pipelines. To amortize this overhead,
Circuzz may bundle multiple circuit pairs (i.e., a generated and a transformed circuit) that are then
(batch-)processed by the pipeline. In other words, Circuzz can translate hundreds of circuit pairs
into a single Go test file such that all circuits are compiled together. Since Go is able to execute
individual tests (i.e., circuit pairs) in parallel, this bundling optimization has the additional benefit
of parallelizing the bug-detection step in Circuzz for free.

4 Experimental Evaluation
We evaluate Circuzz by testing four ZK pipelines, namely Circom, Corset, Gnark, and Noir. In
our evaluation, we address the following research questions:

RQ1: How effective is Circuzz in detecting logic bugs in diverse ZK pipelines?
RQ2: What are characteristics of the detected bugs?
RQ3: How efficient is Circuzz?
RQ4: How do the design choices and settings of Circuzz affect its effectiveness?

4.1 Zero-Knowledge Pipeline Selection
For evaluating the effectiveness and generality of our approach, we selected four popular, diverse,
and maintained ZK pipelines. From a user perspective, they primarily differ in the ZK language
for specifying circuits, ranging from functional to imperative. However, they also differ in many
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technical aspects of the processing stages, such as the supported constraint systems and crypto-
graphic curves. Moreover, we chose actively maintained pipelines to ensure that the developers
would respond to any reported bugs. We, therefore, required the latest activity in their repositories
(i.e., commits and responses to open issues) to be within the last two months. Next, we provide a
high-level overview of each tested pipeline.

Circom. At the time of writing, the Circom pipeline has 1.3K stars on GitHub and over 250 forks.
It is, for example, used to implement the Tornado cash payment mixer (storing crypto-assets worth
ca. 480M USD as of mid-October 2024). The Circom language is imperative; it allows operations on
constants, input, and output signals, all of which are field elements. Circom circuits are compiled
to executable witness generators that, given a set of input signals, can compute output signals and
generate witnesses for the prover and verifier of the pipeline.

Corset. The Corset language is functional and Lisp-like; it provides a limited set of operations
and does not support output signals. Columns constitute the basic building block of Corset
circuits and may be scalar or array-like; constraints are defined over columns. In addition to the
four common stages, the Corset pipeline has an optional “check” stage that, given field-element
assignments to columns, checks whether the corresponding constraint system is satisfied.

Gnark. At the time of writing, the Gnark pipeline has 1.4K stars on GitHub and over 360 forks.
Like Corset, it is currently used to implement the Linea blockchain (storing crypto-assets worth
ca. 850M USD as of mid-October 2024). Circuits in Gnark can be specified as functions in the
(general-purpose) Go language. Similar to Corset, Gnark does not support output signals; all
signals are considered inputs, which are defined as structs over field elements. Moreover, the whole
pipeline is embedded in Go, and each stage must be called using its API.

Noir. At the time of writing, the Noir pipeline has over 870 stars on GitHub and over 180 forks.
It provides a strongly-typed, Rust-like language for specifying circuits. Similar to Circom, Noir
supports explicit output signals that are computed and returned by the circuits. Unlike the other
pipelines, it allows input values other than field elements. Since this is a unique feature of Noir,
we have not yet added support for it in Circuzz. Structurally, the Noir pipeline differs from others
by merging the compilation and witness-generation stages.

4.2 Experimental Setup
Testing time. We started testing Circom in March 2024, and we incrementally improved and

extended our fuzzer to support more ZK pipelines. We subsequently added support for Gnark (in
June 2024), Corset (in July 2024), and Noir (also in July 2024). As shown by this timeline, once
Circuzz was mature enough, we were able to add new pipelines without too much effort.
Due to this timeline however, we did not spend the same amount of total fuzzing time on each

pipeline. We estimate that we fuzzed Circom for ∼5 months, Gnark for ∼4 months, and Corset
and Noir for ∼3 months. Note that, once a bug was detected, we typically did not continue fuzzing
the corresponding pipeline until the bug was fixed to avoid reporting duplicate issues.
For all pipelines, we tested either the latest stable release or the main development branch (to

potentially find bugs that were introduced more recently).

Circuzz settings. Over time, we refined the default setup for Circuzz based on our experience.
In particular, we identified the following key settings and default values: (1) the maximum number
of inputs and outputs (each defaulting to 2), (2) the maximum number of assertions (defaulting to
2), (3) the maximum expression depth (defaulting to 4), and (4) the maximum number of stacked
transformations that are applied to a generated circuit (defaulting to 64). The former three may
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affect the size and complexity of the circuits, and thus, the test throughput. The latter aims to
strike a balance between finding bugs faster (by applying more transformations) and facilitating
debugging (by not producing transformed circuits that differ too much from the generated ones).
As discussed in Sect. 3.7, we use a default target ratio of 𝜌 = 0.5 to roughly balance the time that
is spent in the initial (typically faster) stages (i.e., compilation and witness generation) and the
subsequent (typically slower) stages (i.e., proof generation and verification).
In RQ4, we compare different configurations of these settings in terms of their bug-finding

effectiveness. To this end, we evaluate which configurations are able to refind bugs that we reported
to the pipeline developers. To ensure that a bug detected by a given configuration indeed corresponds
to the original, reported bug (and not to another one), we apply the fix that was provided by the
developers and check whether the buggy behavior disappears. For this reason, we only use fixed
bugs for evaluating the effectiveness of different Circuzz configurations.

Fuzzing campaigns. To ensure a fair comparison and mitigate the effects of randomness in the
fuzzing process, we run 10 independent fuzzing campaigns for each Circuzz configuration. We
limit the duration of each campaign to 24 hours. In general, we did not limit the time per pipeline
execution. However, even though Corset was generally one of the fastest pipelines, we observed
that it would occasionally (i.e., only for a few circuits) use over 1TB of memory and take several
hours to run. For this reason, we introduced an upper bound of 8GB memory usage per pipeline
execution (only for Corset).

Hardware. We performed all experiments on a machine with an AMD EPYC 9474F CPU @
3.60GHz and 1.5TB of memory, running Debian GNU/Linux 12 (bookworm). To avoid issues due to
hardware resources and obtain reproducible results, we restricted each fuzzing campaign to use a
single logical CPU core.

4.3 Experimental Results
We now discuss our findings for each research question.

RQ1: Effectiveness of Circuzz. Tab. 1 shows all unique bugs found by Circuzz in the ZK pipelines
we tested. The first column assigns an identifier (ID) to each bug and links to the bug report. We
assign a number to fixed bugs and a letter to others. The second and third columns show the ZK
pipeline in which the bug was found, and the bug status (i.e., reported, confirmed, or fixed). The
fourth and fifth columns provide the pipeline stage where the bug was detected, and the oracle
that detected it. Here, “MT” denotes a metamorphic oracle, and “VC” stands for validity check, i.e.,
a non-metamorphic, correctness property asserting the successful execution of a pipeline stage
(see Sect. 3.6). The last column includes a short description of the bug.

In total, Circuzz detected 16 unique bugs, 15 of which were previously unknown. Bug 13 was
found in the latest Noir release, but the developers had independently detected and fixed it in
their development branch. Recall from Sect. 1 that ZK pipelines are regularly audited, and their
developers follow strict procedures; yet, Circuzz was effective in detecting previously unknown,
logic bugs. 13 of the bugs were detected due to violating a metamorphic oracle and 3 due to violating

a validity check. Of the 13 that were detected due to violating a metamorphic oracle, 10 involved
metamorphic transformations on the circuits and 3 on the pipeline settings (see Sect. 3). The latter
transformations (on the pipeline settings) uncovered bugs 5, 6, and 7 in Corset. Circuzz also found
several crashes as a by-product, but we did not report most of them to focus on critical issues. For
instance, when reporting bug 5, we discovered another, less severe bug, and developers opened an
independent issue to track it.

https://github.com/noir-lang/noir/issues/5463
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/corset/issues/243
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/corset/issues/227
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Table 1. Unique logic bugs detected by Circuzz.

Bug
ID Pipeline Status Stage Oracle Description

A Circom confirmed Prover VC “Polynomial is not divisible” error
1 Circom fixed Witness MT Incorrect evaluation of bitwise complement of constants
2 Circom fixed Witness MT Incorrect evaluation of bitwise complement of zero
3 Circom fixed Witness MT Inconsistent evaluation of field prime
4 Circom fixed Witness MT Inconsistent evaluation of a small field prime
5 Corset fixed Check MT Inconsistent behavior of expansion and native flags
6 Corset fixed Check MT Incorrect evaluation of constraints using expansion
7 Corset fixed Check MT Incorrect expansion transformation of conditionals
8 Corset fixed Check MT Incorrect evaluation of normalized loobean
9 Gnark fixed Witness MT Inconsistent evaluation of ∨ for constants and signals
10 Gnark fixed Witness MT Incorrect evaluation of AssertIsLessOrEqual
11 Gnark fixed Compiler MT Zero bit length for binary decomposition on constants
12 Gnark fixed Compiler MT Compiler panic on branch with unchecked cast
13 Noir fixed Witness MT Incorrect evaluation of asserted condition
14 Noir fixed Prover VC Proof failure due to insufficiently large string
15 Noir fixed Compiler VC Stack overflow for < with nested expressions

15 bugs are already fixed by the pipeline developers, attesting to their critical nature. Addressing
bug A is “quite a challenge” for the developers, which is why it has not yet been fixed. Even
though most of our bugs were fixed quickly, some of them within hours of our report, they were
often non-trivial to address. For instance, for bugs 5 and 10, the initial proposed fixes addressed
the underlying problem only partly, and Circuzz quickly uncovered follow-up issues 6 and 11,
respectively, which required additional changes in the code.

As shown in the table, 3 bugs were found in the compilation stage, 7 in the witness-generation
stage, and 2 in the proof-generation stage. Circuzz found all 4 Corset bugs when executing
the optional check stage, which checks the validity of the constraint system generated from a
given circuit. Note that we run the Corset check stage before the compilation stage. We find it
encouraging that Circuzz found most issues in early pipeline stages, which is likely due to the fact
that the proof-generation and verification stages are audited even more thoroughly. Additionally,
since these stages are significantly more computationally expensive than others, we ran them less
frequently (according to our target ratio 𝜌). While we can configure Circuzz to execute the full
pipeline more often, that would significantly decrease test throughput (see RQ4).
The feedback from the pipeline developers was overwhelmingly positive. For instance, one of

the main developers of Gnark responded with “that fuzzer is killing it!” when we reported bug 12.
In response to bug 8, Corset developers called it a “critical bug actually. Good spotting!”. It turned
out that a feature to support word-wise normalization was only partially implemented, but it was
used in the standard library. Overall, all teams strongly encouraged us to keep fuzzing their code.

RQ2: Detected logic bugs. In the following, we provide a more detailed description of bugs found
by Circuzz in each of the tested pipelines. Note that, for simplicity, we show manually minimized
versions of the generated and transformed circuits. In practice, we also manually minimized the
circuits that we included in our bug reports. This tends to make it much easier for developers to
debug and fix the issues.

Fig. 4a shows two circuits that revealed bug 2. Circuzz generated circuit C1 (top) that computes
the bitwise complement of 0. It then transformed C1 into the equivalent circuit C2 (bottom) by
replacing 0 with 0 ^ 0. Circom only allows quadratic constraints, which ~ (0 ^ 0) is not, therefore

https://github.com/iden3/circom/issues/269
https://github.com/iden3/circom/issues/270
https://github.com/iden3/circom/issues/283
https://github.com/iden3/circom/issues/288
https://github.com/iden3/circom/issues/298
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/corset/issues/243
https://github.com/Consensys/corset/issues/244
https://github.com/Consensys/gnark/pull/1181
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/gnark/pull/1229
https://github.com/Consensys/gnark/pull/1234
https://github.com/noir-lang/noir/issues/5463
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/noir-lang/noir/issues/6150
https://github.com/iden3/circom/issues/269
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/gnark/pull/1229
https://github.com/Consensys/gnark/pull/1234
https://github.com/Consensys/corset/issues/244
https://github.com/iden3/circom/issues/283
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1 template C1() {

2 signal a;

3 a <-- (~ 0);

4 }

5
6 template C2() {

7 signal a, tmp , zero;

8 tmp <-- (0 ^ 0);

9 zero <-- (~ tmp);

10 a <== zero;

11 }

(a) Bug 2 in Circom.

1 (defcolumns in0)

2 (defconstraint C1 ()

3 (vanishes! (let ((out0 in0))

4 (let ((out1 0))

5 (eq!
6 (is-not-zero!
7 (eq!
8 (if (is-zero out1) out1 1)

9 (neq! in0 in0)))

10 (~or! 0 out0 ))))))

(b) Bug 6 in Corset.

Fig. 4. Critical bugs detected by Circuzz in Circom (left) and Corset (right) and fixed by the developers.

Circuzz (internally) rewrites this expression into the intermediate assignments on lines 8 and 9.
When executed, the two circuits computed different values for signal a. The discrepancy came
from a difference in the sign of 0 and zero: constant 0 was considered positive, while signal zero
negative, resulting in different bitwise complements. The developers fixed the issue by enforcing a
positive sign on all zero operands of the bitwise complement. Interestingly, bug 3 presented earlier
(see Fig. 3) was discovered by a syntactically similar pair of circuits but uncovered a distinct issue,
as we explain in Sect. 2.

Fig. 4b shows bug 6 found in Corset; there is no need to understand the functionality of the code
other than observe that there is an if-condition nested within an expression on line 8. This issue
was discovered by running Corset on a single circuit, namely C1 from Fig. 4b, but with different
flags. Circuzz first ran the pipeline with the -N flag, which enables native mode. By default, all
operations are performed using BigInt objects, and native mode uses (mathematical) field values
instead. Circuzz then transformed this setting into the -Ne flag. The e part of the flag enables
expansion mode, which rewrites constraint expressions into a lower-level, but equivalent, form.
Even though flag -e should not affect the constraint satisfiability, the constraints were found SAT
in native mode but UNSAT when enabling both the native and expansion modes.
After closer inspection, the developers responded that “there is a problem with the handling of

if-conditions when they are nested within certain expressions”. The problematic part of the code, which
was only triggered when enabling expansion mode, intended to hoist the nested if-conditions into
separate constraints. The proposed fix changed the order of cases when pattern matching a nested
if-condition. However, when testing the fixed version, Circuzz revealed that, even though the fix
worked for the provided circuit, there were still cases where Corset did not treat if-conditions
correctly. Based on this finding, we reported bug 7. The developers concluded that “the related issue
is in the same (source-code) file as the original problem, but in a different method”. To fix the issue,
they had to rework the handling of nested if-conditions (in expansion mode) from scratch.

Circuzz discovered an issue in the evaluation of the AssertIsLessOrEqual primitive in Gnark
that we reported as bug 10. Consider circuit C1 shown in Fig. 5a. For C1, Gnark failed to generate a
witness since the assertion does not hold. Then, Circuzz applied the following rewrite rule

{"zero-or", "?a", "(?a | 0)"}

that transformed 0 (line 3) into the equivalent expression api.Or(0, 0) (line 9). Unlike for C1,
Gnark successfully generated a witness for the transformed circuit C2. The Gnark developers
modified the assertion API code to correctly handle the special case where the first argument of
AssertIsLessOrEqual is a constant.

https://github.com/iden3/circom/issues/283
https://github.com/Consensys/corset/issues/241
https://github.com/iden3/circom/issues/288
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/corset/issues/243
https://github.com/Consensys/gnark/issues/1227
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1 func (circuit *C1) Define(api frontend.API

2 ) error {

3 api.AssertIsLessOrEqual (1, 0)

4 return nil
5 }

6
7 func (circuit *C2) Define(api frontend.API

8 ) error {

9 api.AssertIsLessOrEqual (1, api.Or(0, 0))

10 return nil
11 }

(a) Bug 10 in Gnark.

1 fn main(input : Field) -> pub Field {

2 let b2 : [u8; 32] = input.to_be_bytes ();
3 let b2_f =

4 std::field:: bytes32_to_field(b2);
5 assert (0 != b2_f , "Assertion violated");

6 0

7 }

(b) Bug 14 in Noir.

Fig. 5. Critical bugs detected by Circuzz in Gnark (left) and Noir (right) and fixed by the developers.

This fix, however, overlooked another corner case where the first constant in the assertion is
zero. For instance, when replacing 1 by 0, the proposed fix did not work, and the metamorphic
oracle still failed. Circuzz found this corner case in a subsequent fuzzing campaign (bug 11). The
final fix removed the code that was trying to optimize the evaluation of such assertions for constant
arguments. The two iterations that were required to fix the root issue suggest that, despite thorough
testing on the developer side (including unit and regression tests), no test was able to catch neither
the initial issue (bug 10), nor the issue that remained after the partial fix (bug 11). This provides a
glimpse into the complexity that developers of ZK pipelines are facing and highlights the need for
automated test generation.

Fig. 5b shows the circuit that revealed bug 14 in the Noir prover. Before generating a proof, Noir
creates a structured reference string (SRS), which records proving and verification parameters as
well as a sequence of samples from some complex (secret) distribution. This string is later used
to verify the correctness of the proof. The number of required samples in the SRS depends on
the circuit and is estimated automatically. When proving our example circuit, the Noir pipeline
crashed because the (automatically) estimated number of samples in the SRS was too small. This
bug was revealed as a violation of our validity check that expects a successful witness generation
to be followed by a successful proof. Developers fixed the issue by changing the algorithm to
over-approximate the number of necessary samples.

Overall, the presented bugs demonstrate that Circuzz is able to identify a diverse—for instance,
with respect to the different ZK pipelines, oracles, and affected pipeline stages—set of critical bugs
that developers are eager to fix.

RQ3: Efficiency of Circuzz. We primarily evaluate the efficiency of Circuzz in terms of its bug-
finding time. We additionally measure the number of circuits that had to be generated to find a
given bug. We track these metrics for each fixed issue discovered by Circuzz (listed in Tab. 1). We
only use fixed issues for this evaluation since the difference in behavior of buggy and fixed code
provides a reliable way to identify if a given bug was indeed detected by the fuzzer.

Tab. 2 summarizes the results of this experiment across 10 independent fuzzing campaigns, i.e.,
using 10 different random seeds to randomize the fuzzing process, each with a time limit of 24 hours.
We use the default configuration of Circuzz as described in Sect. 4.2, i.e., up to 2 inputs, outputs,
and assertions per circuit, expressions of depth up to 4, and up to 64 stacked transformations. The
first two columns of the table show the ZK pipeline under test and the unique bug IDs (from Tab. 1),
and the third column indicates for how many of the independent fuzzing campaigns (i.e., random
seeds) Circuzz found the given bug. The fourth column presents the percentage of generated
circuit inputs that satisfy the corresponding constraint system. The remaining columns show the

https://github.com/Consensys/gnark/issues/1227
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/Consensys/gnark/pull/1229
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/gnark/pull/1229
https://github.com/AztecProtocol/aztec-packages/issues/8745
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Table 2. Time and number of generated circuits that the default configuration of Circuzz needed to find a

fixed issue across 10 independent fuzzing campaigns, each with a time limit of 24 hours.

ZK Bug Seeds SAT Time to bug Circuits to bug
Pipeline ID inputs min med max min med max

Circom

1 10 52.88% 38s 4m14s 13m47s 7 61 212
2 10 57.84% 13m08s 31m00s 1h00m30s 232 567 1265
3 10 57.38% 43s 13m30s 35m17s 19 210 717
4 10 57.53% 18s 7m19s 16m13s 8 108 247

Corset

5 10 65.08% 1s 17s 2m24s 3 11 66
6 10 64.21% <1s 20s 2m45s 5 17 117
7 10 61.17% 1s 3m35s 12m11s 5 91 340
8 10 63.26% 30s 3m26s 11m56s 19 112 377

Gnark

9 10 57.05% 1m54s 11m28s 25m12s 10 122 372
10 10 55.97% 1m13s 13m13s 44m21s 9 141 663
11 10 56.94% 2m01s 13m57s 39m17s 21 162 634
12 10 55.68% 30m20s 2h26m54s 20h21m27s 446 2361 15329

Noir
13 10 59.31% 29m45s 57m12s 5h07m37s 399 843 4963
14 10 58.88% 1h55m37s 10h17m13s 16h38m51s 488 2908 4780
15 10 59.05% 8m19s 48m40s 1h49m52s 25 184 450

minimum, median, and maximum bug-finding times across all campaigns as well as the minimum,
median, and maximum number of circuits that were generated until each bug was found.

Circuzz reliably detects all issues in all 10 campaigns, and the median bug-finding time for 13 (out

of 15) bugs is less than 1 hour. The median number of generated circuits that are needed to detect these

13 bugs is less than 850.

We observe that the bug-finding time varies greatly across different pipelines. This is expected
since pipelines differ structurally, in the way they are executed as well as in the programming
language in which they are implemented. The median time for a single pipeline run is 0.5s for
Circom, 0.1s for Corset, 3s for Gnark, and 6s for Noir. Thus, even for the same number of
generated circuits, Gnark and Noir are expected to have higher bug-finding times. For instance,
Gnark is essentially a library, and a pipeline run is a sequence of API calls that need to be compiled
before the circuit compilation; similarly, a Noir pipeline run performs additional analysis of circuits
and executes a virtual machine. Of course, there are also differences across pipelines in how much
time is spent in each stage. This affects how often the faster and slower stages are executed, which
in turn impacts the efficiency of Circuzz.
It is also worth noting that all bugs are detected using the default configuration of Circuzz,

which generates small and relatively simple circuits. Consequently, the percentage of SAT circuit
inputs (shown in the fourth column of Tab. 2) is always greater than 52% despite the fact that
inputs are generated using blackbox fuzzing. Such a high percentage is important for the fuzzer’s
effectiveness since UNSAT circuit inputs typically cannot exercise later stages of the pipeline, like
proof generation and verification. A significantly smaller percentage would, therefore, introduce
unwanted bias towards the earlier pipeline stages.

RQ4: Design choices and settings. In this research question, we evaluate the effectiveness of
several design choices and settings in Circuzz. Specifically, we consider five variants of the default
configuration, each of which modifies a single setting: (1) maximum number of inputs (changed
from 2 to 8), (2) maximum number of outputs (changed from 2 to 8), (3) maximum number of
assertions (changed from 2 to 8), (4) maximum expression depth (changed from 4 to 16), and (5) target

https://github.com/iden3/circom/issues/270
https://github.com/iden3/circom/issues/283
https://github.com/iden3/circom/issues/288
https://github.com/iden3/circom/issues/298
https://github.com/Consensys/corset/issues/219
https://github.com/Consensys/corset/issues/241
https://github.com/Consensys/corset/issues/243
https://github.com/Consensys/corset/issues/244
https://github.com/Consensys/gnark/pull/1181
https://github.com/Consensys/gnark/issues/1227
https://github.com/Consensys/gnark/pull/1229
https://github.com/Consensys/gnark/pull/1234
https://github.com/noir-lang/noir/issues/5463
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/noir-lang/noir/issues/6150
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Fig. 6. Comparison of the Circuzz default configuration with five variants. The bars show the relative change

with respect to three metrics: (1) bug-finding time, (2) test throughput, and (3) the percentage of SAT inputs.

ratio 𝜌 (changed from 0.5 to 1.0 to disable the optimization). For this evaluation, we again run 10
independent fuzzing campaigns for each of the five configuration variants (with the same random
seeds as for the default configuration).
We focus our comparison with the default configuration (see Tab. 2) on the following metrics:

(1) bug-finding time, (2) test throughput (i.e., number of generated circuits per second), and (3) per-
centage of SAT inputs. For each metric, we first compute the median ratio of the variant over
the default configuration for each of the fixed bugs (excluding timeouts), and then calculate the
geometric mean across all bugs. The results are summarized in Fig. 6.

Unsurprisingly, configurations that generate larger and more constrained circuits—with increased

expression depth and number of assertions—take 6.9x and 2.3x longer to find the given bugs, and
there is a significant reduction in test throughput (0.4x and 0.8x) in comparison to the default
configuration. Moreover, the variant with increased expression depth timed out for 7 out of 10
seeds for bug 12, and for 2 seeds for bug 14. The variant with an increased number of assertions
timed out for 1 seed for bug 14. The only outliers in terms of bug-finding time are Noir’s bugs 13
and 15. Both require several nested expressions to be detected. As a result, they are found faster
when increasing the expression depth.

With the default configuration, ∼59% of all circuits with concrete inputs were SAT (see Tab. 2).
Larger and more constrained circuits predictably result in fewer SAT inputs: when increasing the
expression depth, only ∼42% of all generated inputs were SAT, and when increasing the number of
assertions, only ∼26% of all inputs satisfied the corresponding constraint systems.

Increasing the number of circuit inputs does not have a drastic effect on any of our metrics. This
is expected since our circuit-generation step does not force all inputs to be used. Therefore, simply
adding more signals does not necessarily make the generated circuits more complex.

Increasing the number of circuit outputs does not have a significant effect on the bug-finding time.
However, it slightly reduces the test throughput. Upon closer inspection, we observed that the
bug-finding time increased by 2.9x for Corset, but decreased for other pipelines (0.5x for Circom,
0.9x for Gnark, and 0.7x for Noir). Recall that Corset does not directly support outputs, and our
translation simply introduces additional temporary variables. As a result, increasing the number of
outputs increases the complexity of Corset circuits. For other pipelines however, the additional
complexity is offset by making the oracle more effective—more output values are included in each

https://github.com/Consensys/gnark/pull/1234
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/AztecProtocol/aztec-packages/issues/8745
https://github.com/noir-lang/noir/issues/5463
https://github.com/noir-lang/noir/issues/6150
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generated witness, and thus, more data can be compared between the two witnesses of semantically
equivalent circuits.
After considering the four variants that change settings in the circuit generator, let us now

consider the final variant that increases the target ratio 𝜌 from 0.5 to 1.0, thereby disabling the
optimization that frequently skips the later, slower stages of a pipeline. In other words, this variant
always runs the entire pipeline, whereas the default configuration (with the optimization) tries to
balance the time that is spent in the earlier and later pipeline stages.
With the optimization, we would expect that only a small portion of all generated circuits

execute the entire pipeline. For three pipelines, this expectation is also confirmed experimentally.
For instance, Gnark’s prover is significantly slower than the rest of the pipeline, and only 0.7% of
all generated circuits execute the entire pipeline. Circom and Noir’s provers are also slow, and
only 3% (for Circom) and 10% (for Noir) of all circuits execute the entire pipeline. In contrast, for
Corset, the full pipeline is executed for 35% of all circuits. This higher percentage results from
the fact that we include the optional check stage (checking the validity of the constraint system
that is generated from a given circuit) in the earlier pipeline stages, thereby making them more
computationally expensive. To compensate, the later stages run more often for Corset than for
other pipelines.

When disabling the optimization, we observe higher bug-finding times. The number of timeouts
also increased without the optimization: for bug 12 (6 out of 10 seeds timed out), bug 13 (1 out of
10), and bug 14 (2 out of 10). This is not surprising since the test throughput dropped to 0.4x in
comparison to the default configuration.

As these results show, the default configuration provides a good trade-off for effectively finding
bugs across these different pipelines.

4.4 Threats to Validity
Our experimental results depend on the ZK pipelines under test, their settings (e.g., the used curve
or optimization level), and the settings of Circuzz. Moreover, fuzzing per se is a random process,
and Circuzz randomly generates circuits, transformations, etc. To address these potential threats,
we selected four ZK pipelines that differ in their circuit programming language, their architecture,
and backend components. In addition, we randomized the settings of the pipelines (via metamorphic
transformations) and systematically varied settings of Circuzz during our evaluation. To mitigate
effects of randomness on fuzzing, we ran 10 independent fuzzing campaigns for each evaluated
Circuzz configuration.

5 Related Work
We present the first systematic fuzzing technique for circuit-processing pipelines. It uses metamor-
phic test oracles [Barr et al. 2015; Chen et al. 1998; Segura et al. 2016] to find logic bugs. To the
best of our knowledge, there is no existing work on fuzzing circuit-processing pipelines, but the
problem itself has (independently) been described in the literature as an open problem [Chaliasos
et al. 2024].

There is recent work on finding bugs in a circuit itself [Wen et al. 2024]. In contrast, our approach
focuses on detecting bugs in a circuit-processing pipeline. Both types of bugs could have catastrophic
consequences, but a bug in a circuit-processing pipeline may affect many, or even all, deployed
circuits.
The most closely related areas to our work are fuzzing for compilers [Chen et al. 2020] and

program analyzers [Bugariu and Müller 2020; Bugariu et al. 2018; Even-Mendoza et al. 2023;
Fleischmann et al. 2024; He et al. 2024; Irfan et al. 2022; Kaindlstorfer et al. 2024; Kapus and
Cadar 2017; Klinger et al. 2019; Mansur et al. 2020, 2023; Midtgaard and Møller 2017; Park et al.

https://github.com/Consensys/gnark/pull/1234
https://github.com/noir-lang/noir/issues/5463
https://github.com/AztecProtocol/aztec-packages/issues/8745
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2021; Taneja et al. 2020; Winterer et al. 2020a,b; Zhang et al. 2019, 2023, 2024], such as software
model checkers [Biere et al. 1999; McMillan 2018] and abstract interpreters [Cousot and Cousot
1977]. After all, the first stage in circuit-processing pipelines typically invokes a compiler for
the ZK language. Similarly, most program analyzers have a compiler frontend that parses the
input programs and often translates them into an intermediate language used for the analysis.
The translation could generate a control-flow graph (as in many dataflow analyzers [Kildall 1973]
and abstract interpreters), a program in an intermediate verification language [Barnett et al. 2005;
Filliâtre and Paskevich 2013; Müller et al. 2016] (as in many deductive verifiers, such as Dafny [Leino
2010] and Spec# [Barnett et al. 2011]), or a GOTO program (as in CBMC [Biere et al. 1999] and
several other software model checkers).

On the other hand, regular compilers typically translate from a high-level language (such as C) to
a more low-level language (such as assembly or LLVM bitcode). In contrast, ZK pipelines translate
to a constraint system, and there are several later stages that make heavy use of cryptographic
primitives for generating and verifying proofs. ZK pipelines are, therefore, highly complex and
may contain even more subtle and hard-to-detect bugs than regular compilers.

Generally, most existing work on fuzzing for compilers and program analyzers uses one ormore of
the following three types of oracles: (1) specification-based oracles [Barr et al. 2015] (by comparing
the actual behavior to a formal specification of the expected behavior), (2) differential oracles [Barr
et al. 2015; McKeeman 1998] (by comparing the behavior of two or more implementations), and
(3) metamorphic oracles. In principle, all of these types of oracles could be used for ZK pipelines.
In this work, we have mainly focused on metamorphic oracles and have used specification-based
oracles to express correctness properties of the pipelines. In the future, we plan to extend our fuzzer
to also perform differential testing by comparing multiple pipelines. We also plan to incorporate
more metamorphic transformations for settings, which can also be viewed as a limited form of
differential testing; for instance, by enabling different proof systems via flags.

6 Conclusion
We have presented Circuzz, the first fuzzer for detecting logic bugs in circuit-processing pipelines.
It introduces CircIL, an intermediate language for circuit generation, and rewrite rules over
this language for metamorphic circuit transformations. Circuzz translates the generated and
transformed circuits into the ZK language of the pipeline under test and generates inputs for them
using blackbox fuzzing. Bugs are detected by executing the pipeline under test on the circuits
and checking for violations of the metamorphic oracles and other non-metamorphic, correctness
properties. We used Circuzz to test four diverse ZK pipelines and detected critical bugs in all of
them.

Despite the bug-finding effectiveness of Circuzz, there are still several (optional) components of
ZK pipelines that are not being tested. For example, as an alternative to the existing verifier, Gnark
allows generating a Solidity contract, which, when compiled and deployed on the blockchain, could
also be invoked to verify a generated proof. In this example, even bugs in the generated Solidity
contract, the Solidity compiler, or the Ethereum virtual machine could compromise the correctness
of the extended ZK pipeline. As a next step, we plan to explore how to test such components.
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