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—— Abstract

A growing trend in program analysis is to encode verification conditions within the language of
the input program. This simplifies the design of analysis tools by utilizing off-the-shelf verifiers,
but makes communication with the underlying solver more challenging. Essentially, the analysis
tools operates at the level of input programs, whereas the solver operates at the level of problem
encodings. To bridge this gap, the verifier must pass along proof-rules from the analysis tool to the
solver. For example, an analysis tool for concurrent programs built on an inductive program verifier
might need to declare Owicki-Gries style proof-rules for the underlying solver. Each such proof-rule
further specifies how a program should be verified, meaning that the problem of passing proof-rules
is a form of invariant synthesis.

Similarly, many program analysis tasks reduce to the synthesis of pure, loop-free Boolean
functions (i.e., predicates), relative to a program. From this observation, we propose Inductive
Predicate Synthesis Modulo Programs (IPS-MP) which extends high-level languages with minimal
synthesis features to guide analysis. In IPS-MP, unknown predicates appear under assume and
assert statements, acting as specifications modulo the program semantics. Existing synthesis solvers
are inefficient at IPS-MP as they target more general problems. In this paper, we show that IPS-MP
admits an efficient solution in the Boolean case, despite being generally undecidable. Moreover, we
show that IPS-MP reduces to the satisfiability of constrained Horn clauses, which is less general
than existing synthesis problems, yet expressive enough to encode verification tasks. We provide
reductions from challenging verification tasks—such as parameterized model checking—to IPS-MP.
We realize these reductions with an efficient IPS-MP-solver based on SEAHORN, and describe a
real-world application to smart-contract verification.
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Figure 1 The architecture of an analysis framework built atop an off-the-shelf software verifier.
Examples are given with respect to SMARTACE.

1 Introduction

In recent years, many tools have emerged to verify C programs by leveraging the Clang/LLVM
compiler infrastructure (e.g., [9, 61, 57, 55, 32]). These tools take as input C programs
annotated with assumptions and assertions, and decide whether an assertion can be violated
given that all assumptions are satisfied. One such tool is SEAHORN [32], which employs
techniques from software model checking [43], abstract interpretation [33], and memory
analysis [44] to enable efficient verification. Due to these features, many tool designers
have started using annotated C code as an intermediate language to dispatch program
analysis problems to SEAHORN (e.g., [56, 41, 4, 15, 18, 67]). In this setting, programs with
specifications are transformed into C programs with assumptions and assertions, and then
these C programs are analyzed using SEAHORN. The results obtained from SEAHORN are
examined to draw conclusions about the input programs.

However, the flexibility afforded by C code as an intermediate language makes communic-
ation with the underlying verification algorithm more challenging. When SEAHORN is given
a program to verify, it automatically applies various builtin proof-rules, such as induction for
loops [3] and function summarization [43]. A tool designer has no control over how these
rules are employed, nor is the developer able to introduce new proof-rules to SEAHORN. The
goal of this paper is to extend SEAHORN with the language features required to communicate
new declarative proof-rules to the underlying verification algorithm.

To illustrate this challenge, we consider SMARTACE [67], a tool that uses SEAHORN for
modular Solidity smart-contract verification. In SMARTACE, each smart-contract is modeled
by a non-terminating loop that executes a sequence of transactions'. For SMARTACE
to verify a smart-contract, it first requires an inductive invariant for the non-terminating
loop, and a compositional invariant for each map? in the program. The discovery of an
inductive invariant is automated by SEAHORN’s invariant inference capabilities. However,
SEAHORN is unaware of the modular proof-rules used by SMARTACE, and therefore, the
end-user must provide the compositional invariants manually. The authors of SMARTACE
hypothesized [67] that if each proof-rule could be declared to SEAHORN, then SEAHORN could
instruct the underlying verification algorithm to infer all invariants automatically. Inspired
by this hypothesis, we first implemented compositional invariant synthesis in SEAHORN,
and then discovered that our solution generalized to many program verification problems.
Consequently, our solution forms a general-purpose framework well-suited to compositional
invariant synthesis.

To illustrate this more general problem, consider a tool designer who wishes to use an
off-the-shelf software verifier (e.g., SEAHORN) as the back-end to a new analysis framework

! Transactions in Solidity /Ethereum can be thought of as sequences of method invocations.
2 In Solidity, maps are often used to store data for individual smart-contract users.
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(e.g., SMARTACE). Recall that many off-the-shelf verifiers rely on specialized solvers to
discharge verification conditions, including solvers for Satisfiability Modulo Theories [12],

Constrained Horn Clauses (CHCs) [38], or intermediate verification languages (e.g., [10, 26]).

As depicted in Figure 1, an analysis framework built atop an off-the-shelf verifier takes as
input a program with specifications, translates this program into the language of the verifier,
and then uses the verifier to generate verification conditions for its specialized solver. Since
software verification is undecidable in general, it is often necessary for the tool designer
to declare additional proof-rules for the solver. Example proof-rules include introducing
predicate abstractions, suggesting modular abstractions for an array, and proposing modular
decompositions for a parameterized system. However, it is challenging for the tool designer to
communicate proof-rules to the solver—the former operates at the level of the input program,
while the latter operates at the level of verification conditions. If a tool designer does attempt
to encode proof-rules at the level of the input program, then these proof-rules are typically
eliminated by optimizations from the verifier?, long before verification conditions are ever
produced. That is, there is an impedance mismatch!

To bridge this gap, the verifier must pass proof-rules from the tool designer to the solver.

Each proof-rule is associated with a set of invariants that the solver must find in order to prove
the program correct. In other words, the invariants are declared by the proof-rules. Since
these invariants span many classes (e.g., inductive, compositional, and object invariants), it

is often the case that specialized invariant inference techniques cannot solve this problem.

Instead, one must note that each proof-rule refines the invariants which the solver must
synthesize. Consequently, one solution to the aforementioned impedance mismatch is to
use synthesis techniques (e.g., [7, 25, 71, 60]). In particular, using synthesis allows the tool
designer to declare proof-rules by specifying what invariants are to be synthesized at the
level of the input program. This flexibility, however, comes at a price. General synthesis is
significantly more expensive than verification [65]!

Our key contribution is a definition of a new form of synthesis, called Inductive Predicate
Synthesis Modulo Programs (IPS-MP), that bridges the gap between flexible verification and
efficient synthesis. Our theoretical results are two-fold, we show that: (a) IPS-MP reduces
to satisfiability of CHCs, hence establishing that IPS-MP is a specialization of general
synthesis [62, 64, 5, 42]; (b) for the special case of Boolean programs, IPS-MP is decidable
with the same complexity as verification. We conjecture that the latter extends to other
decidable models of programs (e.g., timed automata). Our practical result is to reduce a wide
range of common proof-rules to IPS-MP. We show how IPS-MP guides inference of inductive

invariants, class invariants, array invariants, and even modular parameterized model checking.

In other words, IPS-MP is well-suited to many areas of program analysis. As a real-world
application, we show that IPS-MP enables the full automation of SMARTACE.
Similar to existing synthesis frameworks, IPS-MP extends a programming language with

unknowns. The language itself is unrestricted (i.e., it has loops, procedures, memory, etc.).

However, the unknowns may only appear within assume and assert statements, denoting
constraints on the strongest and weakest possible solutions, respectively. A solution to an
IPS-MP problem is a mapping from each unknown to a Boolean predicate such that the
resulting program is correct (i.e., satisfies all of its assertions). A high-level overview of
IPS-MP is shown in Figure 2. Each problem instance consists of two components: (1) a
program with its specification (described by assumptions and assertions), which contains
calls to unknown predicates under assume and assert, and (2) the declarations of those

3 For example, a pure function with annotations may be optimized away by the Clang compiler.
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Predicate Templates Implementation of Predicates

Program with Specifications Witness of Unrealizability

Figure 2 Overview of the IPS-MP problem.

predicates, which we refer to as predicate templates. Intuitively, a predicate template is a
partial implementation with a number of unknown statements. A solution consists of a full
implementation of each predicate, or a witness to unrealizability (i.e., a proof that a solution
does not exist).

The reducibility of IPS-MP to CHC-solving motivates an efficient IPS-MP solver. We

build on the SEAHORN framework (thus, our underlying language is the fragment of C
supported by SEAHORN [32]), and integrate with two CHC solvers, namely SPACER [43], and
ELDARICA [35]. Our empirical results on verification problems from various domains show
that: (1) IPS-MP is effective at specifying verification strategies, (2) our implementation
combined with existing CHC-solvers is highly efficient for linear arithmetic invariants, and (3)
existing reductions to either general synthesis or specification inference are infeasible. Our
evaluation focuses on general synthesis, rather than invariant inference, since the invariants
in our benchmarks span many classes. To contextualize these results, we briefly review the
state-of-the-art in synthesis.
State-of-the-art in synthesis. The general synthesis problem is the task of generating a
program that satisfies a given specification. There are many general synthesis frameworks,
e.g., Sketch [62], Rosette [64], SYGUS [5], and SEMGUS [42]. In Sketch and Rosette, users
write programs with holes, representing unknowns. These holes are filled with predefined,
loop-free expressions such that all program assertions are satisfied. SYGUS introduced a more
language-agnostic approach to general synthesis. It generates loop-free programs, satisfying
a given behavioral specification, from a potentially infinite language. Building on SYGUS,
SEMGUS allows users to define pluggable semantics, thereby enabling synthesis of programs
with loops. A distinguishing characteristic along this line of work is an emphasis on software
development. In contrast, IPS-MP targets software verification and proof synthesis, which
are theoretically simpler problems.

Specification synthesis (e.g., [21, 2, 54]) is another line of work that addresses a more
specialized synthesis problem targeting program analysis, rather than software development.
In specification synthesis, a program may call functions with unknown implementations. The
goal is to synthesize specifications (e.g., the weakest specification for an unknown library
procedure) that ensure the correctness of the calling program. Typically, a specification
synthesizer imposes extra requirements, such as non-vacuity [54], maximality [2], or reachab-
ility [21], to ensure that solutions are reasonable. In contrast, the invariants synthesized by
IPS-MP have constraints on both the strongest and weakest possible solutions, avoiding the
need for additional (and often costly) requirements.

Of particular interest are the similarities and differences between IPS-MP and syntax-
guided synthesis. In IPS-MP, program holes are filled by expressions from an unbounded
language. To make this problem tractable, IPS-MP restricts Sketch and Rosette by requiring
that holes only appear in partial predicates. Formally, this means that IPS-MP solving is
subsumed by non-linear constrained Horn clause solving. This restriction is crucial as it
allows an IPS-MP solver to prove that a problem is unrealizable, unlike in Sketch or Rosette.
Furthermore, IPS-MP differs from SYGUS and SEMGUS in that the behavioral specification
is given with respect to a given program (in other words, modulo a given program), rather
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than through a separate logical specification. The program itself also places requirements on

the holes, through assumptions and assertions, which is in contrast to specification synthesis.

In recent years, new extensions have been proposed to the Sketch framework. However,
these extensions all generalize Sketch to more complex, and consequently less tractable,
problems, whereas IPS-MP restricts Sketch to a more tractable problem which proves to
be useful in the domain of program verification. To illustrate these gaps, we compare
IPS-MP to PSKETCH [63], Synapse [16], Grisette [47], and MetaLift [13]. In the case of

PSKETCH, both frameworks target the development of provably correct concurrent programs.

However, PSKETCH focuses on inductive program verification in the presence of interleaving
executions, whereas IPS-MP focuses on the verification of sequential code fragments via
user-defined proof rules (e.g., the synthesis of compositional invariants in SMARTACE). In
the case of Synapse, both tools aim to extend program synthesis problems with hints provided
by an end-user. However, the nature of these hints is very different. In IPS-MP, the user
introduces entirely new proof-rules, for which an underlying solver oversees the search for a
solution. In contrast, the hints provided by an end-user to Synapse assign costs to solutions,
for which the underlying solver tries to optimize. These hints do not allow the end-user
to propose new proof-rules, and are suited to synthesis optimization rather than program
verification. In the case of Grisette, a framework was proposed to programmatically generate
and solve sketches. However, Grisette is based around bounded model-checking, whereas the
IPS-MP problem targets unbounded model-checking and is, therefore, incomparable. More
closely related is MetaLift, which makes use of the fact that inductive program verification
can be reduced to syntax-guided synthesis. However, this verification program is not exposed
to end-users. In particular, the assume and assert statements are hidden from end-users, and
the end-user has no way to propose new placements for them. We conclude that IPS-MP is
a novel synthesis problem.
Constrained Horn clauses. A prominent approach to verification is reduction to the
satisfiability of CHCs, otherwise known as verifier synthesis [30]. While verifier synthesis does
enable the flexible design of software verifiers, it does not address the issue of communicating
proof-rules to the underlying solver. In invariant synthesis, the proof-rules are either chosen
once and for all [30], or are implicit in the solving algorithm (e.g., [45, 66]). While we show
that IPS-MP reduces to CHC-solving, our focus is on communicating new proof-rules to the
solver via synthesis. Other solutions to IPS-MP might emerge in the future.

Contributions. This paper makes the following contributions:

1. Sec. 4 presents the novel IPS-MP problem which has many applications to both program
analysis and software verification;

2. Sec. 5 shows that even though IPS-MP is undecidable in general, there exists an efficient
solution modulo Boolean programs;

3. Sec. 6 provides reductions from important verification problems to IPS-MP;

4. Sec. 7 presents a solver for IPS-MP within SEAHORN. We demonstrate the effectiveness
of our implementation compared to state-of-the-art synthesis frameworks CVC4 [11] (a
SYGUS synthesizer) and HORNSPEC [54] (a specification synthesizer). We conclude that
IPS-MP fills a gap not met by other synthesis frameworks.

All omitted proofs are found in the appendix.

2 Overview

To illustrate the basics of IPS-MP, we start with an artificial example. For the moment,
we focus on the language used in our presentation and the possible solutions to an IPS-MP
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1 bool PRED_TEMPLATE Post(int x, int y) { 6 for (int i = @0; 1 < y; ++i) {

2 return synth(x, y); } 7 x+=1; }

3 void main(int y) { 8 assert(Post(x, y));

4 int x = 0; 9 X = *; y = %; assume(Post(x, y));
5 assume(y > 0); 10 assert(x == y); }

Figure 3 A simple example of the IPS-MP problem.

problem. Realistic applications of IPS-MP, highlighting its importance, are presented later
in this section.

Our example, shown in Figure 3, consists of a single function main that provides the
context for a synthesis problem. The function main is written in a typical imperative language,
with loops and function calls. We extend the language with two verification statements,
assume and assert, with their usual semantics. In our example, y is initially positive, due
to assume (y > @) on line 5, and the program is correct if assert (x == y) on line 10 holds
for all executions. That is, lines 5 and 10 provide a program specification. The goal of
this example is to synthesize a pure expression e such that the program is correct after
substituting e for each call to Post. To indicate that a predicate is a target for synthesis, the
language is extended by the predicate template annotation PRED_TEMPLATE (line 1). Each
predicate template is a pure, loop-free function whose body either returns true, or returns
via a call to the special predicate synth. Each call to synth indicates a hole in the predicate
implementation, and must be determined by a synthesizer. Each return of true places an
explicit constraint on when the implementation must be true. In our example, Post always
returns via a call to synth (line 2). In the rest of the program, a call to a partial predicate
can only appear as an argument to either assume or assert. As described below, verification
calls place implicit constraints on when the implementation must be true. Multiple calls to
the same predicate are allowed. In our example, Post is called once under assert (line 8),
and once under assume (line 9).

A solution to an IPS-MP problem is a mapping from each partial predicate p to a pure
Boolean expression e over the arguments of p, such that if every call to synth in p is replaced
by e, then the main program satisfies all of its assertions. If such a solution does not exist,
the output is a witness to unrealizability, which is a mapping from each partial predicate p
to a pure Boolean expression e over the arguments of p, which is both necessitated by the
assertions placed on the partial predicate, and sufficient to violate an assertion that is part
of the specification. In our example, there are many possible solutions. The weakest and
strongest solutions are post,..(z,y) = (z = y) and posty,..n,(2,y) = (y > 0 Az = y). Each
solution defines a corresponding predicate Post such that all assertions in the main program
are satisfied. Intuitively, each call to Post under assume provides an implicit constraint on
the weakest possible synthesized solution. Likewise, each call to Post under assert provides
an implicit constraint on the strongest possible synthesized solution. Following this intuition,
the example shows an application of IPS-MP to find an intermediate post-condition, over
two variables x and y, that is true after the loop and is strong enough to ensure an assertion.
This means that solving IPS-MP requires, in general, inferring inductive invariants for loops
and summaries for functions.

To illustrate the case when synthesis is not possible, consider removing line 7 from
Figure 3. Since x is not incremented, it will never equal y. However, Post cannot be mapped
to false, since this violates the assertion on line 8. If Post is not false, then the assertion
on line 8 is reachable and will fail. Therefore, this IPS-MP problem is unrealizable. The
witness to unrealizability is a mapping that sends Post to an expression over x and y, which
is necessitated by the assertion on line 8 and violates the assertion on line 10. An example
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witness is synth,;iness(T,y) = (x =0Ay =1).

This section continues with three important applications of IPS-MP. Sec. 2.1 presents
a methodology to reduce verification problems to IPS-MP. For readers new to verification
as synthesis, the standard example of inductive loop invariant inference can be found in
Appx. B. Secs. 2.2, 2.3, and 2.4 extend on the techniques in Appx. B to unify class invariant
inference, array verification, and parameterized compositional model checking under a single
synthesis framework. Sec. 2.5 discusses the benefits of predicate templates and explains why
IPS-MP requires both assumptions and assertions of partial predicates. We note that the
automation in SMARTACE is a special case of Sec. 2.3.

2.1 Methodology

In Figure 3, a single predicate (i.e., Post) represents a single unknown (i.e., the post-condition
of a loop). This permits an IPS-MP solver to explore all relations between arguments (e.g. x
and y of Post). When there are many variables, or large variable domains, the space of
candidate solutions becomes very large. Restricting the syntactic structure of each unknown,
referred to as its shape, helps to prune the search space. In general, an unknown can be split
into cases (see Sec. 2.3), and the variables in each case can be partitioned (see Appx. B).
Fach partition is encoded by a unique predicate. Refining a predicate’s shape prunes the
candidate solution space, but may eliminate valid solutions.

Whenever an unknown is refined, the syntactic changes are reflected only where the
unknown is assumed or asserted. The program remains unchanged otherwise. For this reason,
in IPS-MP, it is convenient to separate unknowns from their shapes. In the context of
program verification, this is accomplished with the following methodology. First, a proof-rule
for the program of interest is reduced to assumptions and assertions on one or more unknowns.
This is done once per proof-rule. Second, the shape of each unknown is refined using insight
from the program. Third, the program is instrumented with assumptions and assertions.
The instrumented program is an IPS-MP problem and is automatically solved by an IPS-MP
solver. We illustrate this methodology using examples from object-oriented program analysis,
array verification, and parameterized verification.

2.2 Class Invariant Inference as Synthesis

As a first example, we illustrate a reduction from class invariant inference to IPS-MP. In
object-oriented programming, a class bundles together a data structure, its initialization
procedure, and its operations. For example, the Counter class in Figure 4a accumulates
values between 0 and some maximum value. The underlying data structure is a pair consisting
of the current value, pos, and the maximum value, max. The initialization procedure on
lines 3—6 first ensures that _max is positive, and then sets the current value to 0 and
the maximum value to _max. The operations for Counter include reset, capacity, and
increment. When reset is called, the current value is set back to 0. When capacity
is called, the distance to the maximum value is returned. When increment is called, if
capacity is greater than 0, then the current value is incremented and true is returned, else
the current value is unchanged and false is returned.

The goal of this example is to prove that drain satisfies its assertions. The drain
function takes an instance of Counter (in an arbitrary state), exhausts the counter’s capacity,
and then resets the counter to 0. The function is correct if increment always returns true
on line 17, and capacity always returns a positive value on line 19. Verifying these claims

26:7

ECOOP 2024



26:8

Inductive Predicate Synthesis Modulo Programs (Extended)

1 class Counter {

2 int max; int pos;

3 Counter (int _max) { 1 bool PRED_TEMPLATE CInv(int m, int p) {
4

assume (_max > 0); 2 return synth(m, p); }
max = _max; 3 void main(void) {
6 pos = 0; } 4 if (%) {
7 void reset() { pos = 0; } 5 Counter o(x*);
8 int capacity() { 6 assert(CInv(o.max, o.pos));
9 return max - pos; 3} 7 } else if (x) {
10 bool increment() { 8 Counter o = *; assume(CInv(o.max, 0.pos));
11 if (pos >= max) return false; 9 o.reset();
12 pos += 1; 10 assert(CInv(o.max, o0.pos));
13 return true; }3} 11 } else if (x) {
14 12 Counter o = *; assume(CInv(o.max, 0.pos));
15 void drain(Counter o) { 13 o.increment();
16 while (o.capacity() > @) { 14 assert(CInv(o.max, 0.pos));
17 assert(o.increment()); } 15 } else {
18 o.reset(); 16 Counter o = *; assume(CInv(o.max, 0.pos));
19 assert(o.capacity() > 0); } 17 drain(o); }}
(a) The original program. (b) The IPS-MP problem (using Figure 4a).

Figure 4 A program (see Figure 4a) which is correct relative to the choice of class invariant
(0 < 0.max) A (0 < o.pos < 0.max), and a corresponding IPS-MP instance.

is non-trivial, as the correctness of drain depends on the possible states of Counter. For
example, proving the assertion on line 17 requires the invariant (0 < max — pos).

A common approach to the modular analysis of object-oriented programs is class invariant
inference (e.g., [24, 37, 1, 46]). A class invariant is a predicate that is true of a class instance
after initialization, closed under the application of impure class methods, and sufficient to
prove the correctness of the class [37]. In the case of Counter, the impure methods are reset
and increment. Therefore, a class invariant for Counter must satisfy four requirements.

Figure 4b illustrates a technique to encode multiple cases in a single IPS-MP program.
Intuitively, this program uses non-determinism to execute one of four possible cases. A case
is selected on line 4 by a sequence of if-else statements, each with a non-deterministic
condition. Even though the execution of each case is mutually exclusive, the IPS-MP solution
must work in all cases. The cases in Figure 4b correspond to the requirements of a class
invariant for Counter. To ensure that the class invariant holds after initialization, the first
case initializes an instance of Counter with non-deterministic arguments, and then asserts
that the instance satisfies the class invariant (lines 4-6). To ensure that the class invariant
is closed with respect to reset, the second case selects an arbitrary instance of Counter
(through non-determinism), assumes that this instance satisfies the class invariant, executes
reset, and then asserts that the instance continues to satisfy the class invariant (lines 7-10).
Similarly, the third case ensures that the class invariant is closed with respect to increment
(lines 11-14). Finally, to ensure that the class invariant entails the correctness of drain, the
fourth case selects an arbitrary instance of Counter, assumes that this instance satisfies the
class invariant, and then calls drain with the instance as an argument (lines 15-17). This
gives a program with unknowns, as required by the verification methodology.

Next, the shape of the class invariant is considered. In this example, we lack program-
specific knowledge to help split the invariant into sub-cases. Furthermore, it would be
futile to partition the invariant’s arguments, as the invariant must relate max to pos (e.g.,
line 17 of Figure 4a requires that 0 < max — pos). Therefore, CInv(m,p) is used as
the shape of the invariant. In Figure 4b, CInv corresponds to the partial predicate on
line 1. One solution to Figure 4b is the expression (m > @) && (p <= m) for the hole
in CInv. To prove the correctness of drain, a synthesizer may also infer the invariant
(0 <o.posAo.pos < o.max) for the loop on line 16 of Figure 4a.
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bool PRED_TEMPLATE Inv3(int m, int v) {
if (m == @ & v == @) { return true; }
else { return synth(m, v); } 2}

bool PRED_TEMPLATE Inv4(int m, int v){
if (m == 0 & v == @) { return true; }
else { return synth(m, v); }}

7 void main(int sid) {

8 int max = 0;

9 while (true) {

Gk w N e

o

10 int id = *;
11 int x = *;
12 assume (id != x);
13 // int v = datal[id];
14 int v = %; int u = *;
15 if (id == sid) { assume(Inv3(max,v)); }
16 else { assume(Inv4(max,v)); }
1 void main(int sz) { 17 if (x == sid){ assume(Inv3(max,u)); 2}
2 assume(sz > 0); 18 else { assume(Inv4(max,u)); 3}
3 int xdata = new int[sz]; 19 // Properties.
4 memset (data, @, sz * sizeof(int)); 20 assert(v <= max);
5 int max = @; int sid = x; 21 if (id == sid) { assert(v == 0); }
6 assume (0 <= sid && sid < sz); 22 // Update.
7 while (true) { 23 if (id != sid) { v += 1; }
8 int id = *; 24 if (v > max) { max = v; }
9 assume (0 <= id && id < sz); 25 // datalid] = v;
10 int v = datal[id]; 26 if (id == sid) { assert(Inv3(max,v)); }
11 if (id != sid) {v += 1;} 27 else { assert(Inv4(max,v)); }
12 if (v > max) { max = v; } 28 if (x == sid) { assert(Inv3(max,u)); }
13 datalid] = v; }} 29 else { assert(Inv4(max,u)); }3}}
(a) The original program. (b) The IPS-MP problem.

Figure 5 A program (see Figure 5a) which is correct relative to the choice of array abstraction
(i=sAv=0)V (i #sA0<v<max), and a corresponding IPS-MP instance.

2.3 \Verification of Array-Manipulating Programs as Synthesis

Consider the array-manipulating program in Figure 5a. This program initializes the array
data, and then performs an unbounded sequence of updates to the cells of data while
maintaining the maximum element of data in max. A special index, stored by sid, remains
unchanged during execution. On lines 2—4, data is allocated and then zero-initialized. On
line 5, max is set to 0, since the maximum element of a zero-initialized array is 0. On line 6,
sid is set to an arbitrary index in data. The unbounded sequence of updates begins on line 7,
when the program enters a non-terminating loop. During each iteration, an index is selected
(lines 8-9), and if this index is not sid, then the corresponding cell in data is incremented
by 1 (line 11). If the cell is incremented, then max is updated accordingly (line 12). Note
that Figure 5a can be thought of as a simplified smart contract, where data is an address
mapping, sid is an address variable, and each iteration of the loop is a transaction . For a
more general presentation of smart contracts as array-manipulating programs, see [67].

The goal of this example is to prove two properties about the cells of data. The first
property is that every cell of data is at most max. The second property is that datal[sid]
is always zero. It is not hard to see why these properties are true. For example, the first
property is true since every cell of data is initially zero, and after increasing the value of a
cell, max is updated accordingly. However, verifying these properties is challenging, since
data has an arbitrary number of cells. One solution to this problem is to compute a summary
for each cell of data, with respect to max and sid, and independent of data’s length. This
summary is then used in place of each array access to obtain a new program with a finite
number of cells. For simplicity, we assume that array accesses are in bounds, and that
integers cannot overflow (i.e., are modeled as mathematical integers).

A common approach to obtain such a summary is to over-approximate the least fixed
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point of the program by an abstract domain that provides a tractable set of array cell
partitions according to semantic properties (e.g., [29, 34, 20]). An alternative approach
(followed here) is to compute a compositional invariant [50] for each cell of the array. A
compositional (array) invariant is a predicate that is initially true of all cells in the array, and
closed under every write to the array. Furthermore, a compositional invariant must be closed
under interference, that is, if ¢ % j and the cell data[i] is updated, then datal[j] continues
to satisfy the compositional invariant. That is, a compositional invariant is assumed after
each read and asserted after each write.

Using this approach, the program in Figure 5b is obtained. On line 10, an arbitrary
index named 1id is selected, as in the original program. However, on lines 11-12, a second,
distinct index named x is selected, to stand for a cell under interference. On lines 14-18, the
compositional invariant is assumed, in place of reading the values at datal[id] and datal[x].
On lines 20-21, the two properties are asserted. If an arbitrary cell satisfies both properties,
then every cell must satisfy both properties. On lines 23-24, the cell updates are performed
as in the original program. On lines 26-29, the compositional invariant is asserted, in place
of writing to data[id]. Note that lines 2—4 of Figure 5a do not appear in Figure 5b since
the compositional invariant abstracts away the contents of data. This gives a program with
unknowns, as required by the verification methodology.

Next, the shape of the compositional invariant is restricted. Observe that on line 11 of
Figure 5a, the value written into data depends on whether the index is sid. This suggests
that the compositional invariant has two cases that branch on whether id equals sid, namely
((id = sid)AInv3(max,v))V((id # sid) A Inv4(max,v)). In the IPS-MP encoding, both
Inv3 and Inv4 correspond to partial predicates (see lines 1 and 4 in Figure 5b, respectively).
The templates, on lines 2 and 5, correspond to the initialization rule for the invariant.
Recall, however, that these templates are not strictly necessary. One alternative is to assert
Inv3(max,@) and Inv4(max,@) before line 9, though this is not illustrated. Due to the
branching shape of the invariant, each assume and assert statement must branch between
the two partial predicates (see lines 14-18 and 26-29). Given Figure 5b, a synthesizer may
find the expressions (v == 0) for the hole in Inv3, and (0 <= v) && (v <= max) for the
hole in Inv4. By substitution, ((id = sid) A (v =0))V ((id # sid) A (0 < v) A (v < max)).
To verify main, a synthesizer may also infer the invariant (0 < max) for the loop at line 9.

2.4 Parameterized Verification as Synthesis

As a third example, we illustrate a reduction from parameterized verification to IPS-MP.
This example considers two or more processes running in a ring network of arbitrary size. A
ring network organizes processes into a single cycle, such that each process has a left and
right neighbour [19]. In this ring, adjacent processes share a lock on a common resource.
Processes are either trying to acquire a lock, or have acquired all locks and are in a critical
section. Initially, all processes are trying and all locks are free. Each processes runs the
program in Figure 6a. The state of each process is given by View on line 3, and the transition
relation of each process is given by tr# on line 5. Since each process runs the same program
with the same configuration of locks, the ring network is said to be symmetric.

The goal of this example is to prove that if a process is in its critical section, then the
process holds both adjacent locks. Following [50], this property is proven by computing an

4 For simplicity, tr is not deadlock-free as processes retain their locks until reaching their critical sections.
However, the critical section can be reached any number of times without encountering a deadlock.
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1 typedef enum { Free, Left, Right } Lock; 1 bool PRED_TEMPLATE RInv(

2 typedef enum { Try, Critical } State; 2 Lock 1, State s, Lock r) {

3 struct View { 3 if (1 == Free & r == 1 && s == Try) {
4 Lock lhs; Lock rhs; State st; }; 4 return true;

5 View tr(View v) { 5 } return synth(l, s, r); }

6 bool held = v.lhs == Left && 6 void main(struct View v) {

7 v.rhs == Right 7 if (x) {

8 if (v.st == Critical) { 8 State otr = x;

9 v.st = Try; 9 assume (RInv(v.left, v.st, v.right));
10 v.lhs = Free; 10 assume (RInv(v.right, otr, v.left));
11 v.rhs = Free; } 11 v = tr(v);

12 else if (held) { 12 assert(RInv(v.left, v.st, v.right));
13 v.st = Critical; } 13 assert(RInv(v.right, otr, v.left));
14 else if (v.lhs == Free) { 14 } else {

15 v.lhs = Left; } 15 assume (RInv(v.left, v.st, v.right));
16 else if (v.rhs == Free) { 16 bool held = v.left == Left &&

17 v.rhs = Right; } 17 v.right == Right;

18 return v; } 18 assert(v.st != Critical || held); 3}}
(a) The process. (b) The IPS-MP problem (uses tr).

Figure 6 A process for a parameterized ring, and an IPS-MP problem that verifies the process.
The process is correct relative to the compositional invariant ((v.lhs # Left) V (v.rhs # Right)) =
(v.st # Critical), and the IPS-MP problem synthesizes the compositional invariant. Note that Lock
and State are defined in Figure 6a using typedef, and that otr is a process under interference.

adequate compositional invariant for each process. An adequate compositional invariant is
true of the initial state of each process, closed under the transition relation, closed under
interference, and entails the property of interest. Remarkably, in a symmetric ring network,
a compositional invariant can be computed by analyzing a ring with exactly two processes.

Using this approach, the program in Figure 6b is obtained. This program uses a non-
deterministic if statement to split the analysis into two cases (line 7). The first case
instantiates a two-process network using the compositional invariant (lines 8-10). Due to
network symmetry, the left lock of the first process is the right lock of the second process,
and vice versa. A single process in this network executes a transition (line 11), and then
the closure of the compositional invariant is asserted for both processes (lines 12-13). The
assertions on lines 12-13 ensure both closure under the transition relation and closure under
interference, since only a single process transitioned. The second case instantiates a single
process using the compositional invariant (line 15), and then asserts the property of interest
(lines 16-18). Together, these cases define a compositional invariant. This gives a program
with unknowns, as required by the verification methodology.

Next, the shape of the compositional invariant is considered. In this example, there
is no motivation to split the invariant into cases. Furthermore, it would not make sense
to partition the arguments of the invariant, since the state of a process is dependent
on the combined state of its adjacent locks. Therefore, RInv(l,s,r) is assumed to be
the shape of the invariant. In the IPS-MP encoding, RInv corresponds to the partial
predicate on line 1. The template on line 3 ensures that the compositional invariant is
true of the initial state of each process. As an alternative to a template, one can instead
assert RInv(Free,Try,Free) before line 7. One solution to this problem is to fill the
hole in RInv with the expression (s == Try) || ((1 == Left) && (r == Right)).
Consequently, ((s # Try) = (I = Left Ar = Right)).

2.5 Discussion

In Sec. 2.3, all explicit constraints were easily replaced by implicit constraints. However,
explicit constraints can yield more succinct encodings. For example, consider the initial
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1 bool PRED_TEMPLATE Inv(int x, int y) {

2 return synth(x, y); }
3 void main(void) {
1 bool PRED_TEMPLATE Inv(int x, int y) { 4 int x = %; int y = %;
2 if (x + y == 5) { return true; } 5 assume(x + y == 5);
3 else { return synth(x, y); } } 6 assert(Inv(x, y));
4 void main(void) { ... } 7 R
(a) Predicate template encoding. (b) Assertion-based encoding.

Figure 7 The initial condition (z + y = 5) encoded using a predicate (see Figure 7a), and its
equivalent encoding using an assertion (see Figure 7b).

condition (z 4+ y = 5). In Figure 7a, the condition is given as an explicit predicate template,
and in Figure 7b, it is desugared as an assertion. To desugar the constraint, additional
variables and assumptions are required.

In the examples presented so far, each IPS-MP problem places both assumptions and
assertions on each partial predicate. All interesting IPS-MP problems follow this pattern.
However, IPS-MP is well defined even if a partial predicate has only assumptions placed on
it, only assertions placed on it, or neither. In these cases, the IPS-MP problem is trivial or
reduces to a simpler problem.

If partial predicates only appear in assumptions, then the synthesized solution is never
strengthened. In other words, the solution may be arbitrarily weak. This is an instance
of specification synthesis. Usually, in specification synthesis, non-functional requirements
are placed on each specification to ensure that a solution is “interesting” (e.g., [21, 2, 54]).
Without these requirements, uninteresting solutions, such as false, are permitted. Since
IPS-MP only places functional requirements on its solutions, this case is trivial and returning
false from each predicate is always a solution (given a correct program).

If partial predicates only appear in assertions, then the synthesized solution is only ever
strengthened. A solution in this case is an expression that subsumes all assertions placed on
the predicate. However, an expression that evaluates to true subsumes all possible assertions.
Therefore, this case is also trivial and returning true from each predicate is always a solution
(given a correct program).

If partial predicates never appear in the program, then the synthesizer can select an
arbitrary implementation for each predicate. However, if the synthesizer returns a solution,
then the program must be correct relative to the solution. Therefore, if the program does
violate an assertion, then the synthesizer must return a witness to unrealizability instead.
Consequently, the output of the synthesizer indicates if the program is correct, and is
equivalent to verification.

3 Background

This section recalls results from logic-based program verification. Sec. 3.1 reviews the key
definitions of First Order Logic (FOL) and the Constrained Horn Clause (CHC) fragment
of FOL. Sec. 3.2 introduces a programming language used throughout this paper. Sec. 3.3
recalls the connection between CHCs and program semantics through the weakest liberal
precondition transformer.

3.1 First Order Logic and Constrained Horn Clauses

A first order signature 3. defines a set of predicates, a set of relations, and their respective
arities. Given a set of variables V, a term is either a variable from V or an application of
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a relation in X to one or more terms. An atom is an application of a predicate in X to
one or more terms. A formula joins atoms using standard logical connectives, existential
quantification, and universal quantification. A formula is quantifier-free if it contains neither
existential nor universal quantification. A formula is a sentence if all variable instances are
quantified. Given a FO-formula ¢, the formula ¢[z/y] is defined by substituting y for all
free instances of = in p. We write Term(X, V) and QFFml1(3, V) for the sets of terms and
quantifier-free formulas generated by ¥ and V.

A FO-theory T is a deductively closed set of sentences over a signature X. A T -model
for a formula ¢ is an interpretation of each predicate, relation, and free variable in T U {¢}
such that every formula in 7 U {p} is true. If a T-model exists for ¢, then ¢ is satisfiable,
otherwise, ¢ is unsatisfiable. In the case that all valid interpretations of T are 7-models for
©, then @ is T-valid and we write =7 . Furthermore, if each interpretation of a T-model
M can be expressed in some logical fragment F, then M provides an F-solution to ¢ .

Constrained Horn Clauses (CHCs) are a fragment of FOL determined by a FO-signature ¥
and an set of predicates P. A CHC is a sentence of the form ¥ V-oApy (Z1)A- - -App(Z) = h(7),
where ¢ € QFFmI(X, V) and {p1,...,px, h} C P. For program semantics, it is useful to use v’
to denote the value of a variable v after a program transition and keep(W) := A oy w = w’
to denote that variables W C V are unchanged during a transition. Given a set of variables
V = {v1,...,v,} CV, the set of variables {v},...,v),} is denoted V’. Likewise, given a
formula ¢ over the variables in V, the formula @[vy/v]] - - [v,/v}] over V' is denoted ¢'.

3.2 Procedural Programming Language

Throughout this paper, we consider a simple procedural programming language, whose syntax
is standard and can be found in Appx. A. We assume that all expressions are factored out
by a FO-signature X, with variables from a set V. That is, each expression is of the form
QFFml(X, V). The set of all programs in the language is denoted Progs(X,V). For simplicity,
types are omitted. In this language, a program has one or more procedures, with execution
starting from main. Each procedure is written in an imperative language, including loops and
procedure calls. The language is extended with a non-deterministic assignment (i.e., *), and
verification statements assume and assert. The expressions in assume and assert can be
either from QFFmI(X, V) or a call to a pure Boolean procedure, called a predicate. Predicates
may only be called within assume or assert statements. Given a program P € Progs(X, V),
Procs(P) denotes the procedures in P. A special case is when all variables are Boolean.

» Definition 1. Let Ypoo denote a Boolean signature. A Boolean program is a tuple

(Locs, GV, LV, E) with E = (NE, CE, FE, AE, PE) and V = GV U LV such that:

1. Locs is a finite set of control-flow locations with entry-point main € Locs;

2. GV and LV are disjoint sets of local and global variables (respectively);

3. NE C Locs x QFFml (Xpoo1, VUV’) x Locs is a set of normal edges, CE C Locs X
Locs x Locs is a set of call edges, FE C Locs X Locs x Locs is a set of (partial predicate)
call-under-assume edges, AE C Locs x Locs X Locs is a set of (partial predicate) call-
under-assert edges, and PE C Locs X Locs is a set of procedure summary edges;

4. If (I1, R, l2) € NE, then ls is reachable from 1y by updating the variables according to R
and if (lean, lin, lret) € CE, then lyet s reachable from l.an by executing the procedure with
entry location liy;

5. If (lcan, lin, lret) € FE, then l.ey is reachable from liy, by assuming the partial predicate with
entry location lean and if (Iean, lin, lret) € AE, then Lyt is reachable from li, by asserting
the partial predicate with entry location leay;
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ToCHC(P) := wip(P(Main), T) A /\  ToCHC(f)
FeProcs(P)
ToCHC (f(Z) { S; return & }):=VZ - (Z =T A fpre(Z) = wip (S, foum (Z,€)))
ToCHC (p(Z) { return e; }) :=VZ - p(Z¥) & e

Figure 8 The partial correctness conditions for a program P € Progs(X,V). This follows the
presentation of [14].

6. If (lin,lout) € PE, then the procedure with entry location li, has exit location lyyt.

A Boolean program consists of control-flow locations and edges between locations. Each
procedure has a single entry location, li,, and a single exit location, loyt, where (Iin, lous) € PE.
The program enters at main € Locs, and a special location I} € Locs indicates failure.
Normal edges connect control-flow locations within a procedure and represent non-procedural
statements. For example, the statement assert (e) (where e is an expression) corresponds to
two normal edges, (I1,e A keep(GV U LV),l2) and (I3, e A keep(GV U LV), 11 ). Call edges
(optionally under assume or assert) connect locations in a caller’s procedure and a callee’s
procedure by giving the call and return locations of the caller (I..n and Iy, respectively),
and the entry location for the callee (li,). For simplicity, all procedures have the same local
variables, and arguments are passed by global variables. The location [, is assumed to have
no outgoing edges.

The state of a Boolean program is a tuple (I, s), where [ is a location and s is an assignment
to each Boolean variable. Initially, I = main and s is an arbitrary assignment. For each
normal edge (I1, R,l2), a transition exists from (I1,s1) to (l2, s2), if s1 A R A sh is valid. All
call edges have the expected semantics.

3.3 Logical Program Verification

The Weakest Liberal Precondition (WLP) transformer gives logical semantics to imperative
programs [23]. We write wip(S, Q) for the WLP of a statement S with respect to a post-
condition@. The WLP transformer for Progs(X, V) is standard and can be found in Appx. A.
Note that in this transformation, the loop,, predicate is an invariant for a loop at line In.

The wip(—) transformer can be used to verify partial correctness for procedural programs.
This is achieved through the ToCHC(—) transformer in Figure 8. The wip(P(main), T)
term asserts that main satisfies all assertions. For each procedure f € Procs(P), the term
ToCHC(f) asserts that f is correct for all inputs passed to f in every execution. Note that
in Figure 8, fpre collects inputs to f, and fsym relates the inputs of f to the outputs of
f. In the case that f is a predicate, fpr. and fqym are omitted, since f is side-effect free.
Together, TOCHC(P) asserts that the program P is correct for any execution starting from
main. If TOCHC(P) is satisfiable, then there exist loop invariants for P such that P satisfies
all assertions [14]. Therefore, TOCHC(P) can be used to verify P. Furthermore, ToOCHC(P)
is in the CHC fragment [14].

Efficient procedures exist to prove that Boolean programs are correct. For example,
program summarization simultaneously computes a summary 6 from control-flow locations
to input-to-reachable-state relations, and a summary ¢ from procedures to input-output
relations. For a location [ € Locs, if 8(1) = L, then [ is unreachable. Therefore, a Boolean
program P is correct if and only if (I, ) = L in the least summary of P [6]. Program
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Algorithm 1 Computes the least Boolean program summary (6,0) [8]. Follows the
presentation of [17].

1 var (0,0) ; // A program summary 22 Func DoProcs(V, LV, PE, CE, lyk, Swk):
2 var W; // A map from Locs to a queued state 23 for (lwk,lin,lret) € CE do

3 Func UpdateReach(l, v): 24 sin < elim(swi, VU LV)[V'/V];
4 saiff < v A = 0(1l); 25 UpdateReach (lin, Sin);

5 if sqir # L then 26 X <+ o(lin)* A keep(LV');

6 0(1) < 0() V saifr; 27 s« elim(swi A X, V)V /V'];

7 L W(Il) = W(0) V saife 28 UpdateReach (lyet, $);

8 Func Dolntraproc(V, NE, lwk, Swk): = .

° for (lyx, R,l2) € NE do 29 Func InitBoolReach(Locs, PE):

10 s ¢ elim(swi A R*, V'); 30 for I € Locs do 6(1) «+ L ;

"o, 31 for (lin,lout) € PE do U’(lin) — 1

11 s2  so[V" V'] 0(mai T W(mai T

12 UpdateReach(lz2, s2); 52 L (main)  T; W(main) « T;

L 33 Func ComputeBoolReach(P):

13 Func DoProcSum(V, LV, PE, CE, lwk, swk): 34 (Locs, GV, LV,(N,C, 2,2, P)) < P
14 for (lin,lwk) € PE do 35 V+ GVULV;

15 Ssum < elim(swi, LV U LV') A = (lin); 36 InitBoolReach(Locs, P);

16 if ssum = L then continue; 37 while 3 lyx € Locs - W(lwk) # L do
17 o(lin) <= o(lin) V Ssum; 38 Swk — W(lwk) 3 W(lwk) < L;

18 for (lcan, lin, lret) € CE do 39 DoIntraproc(V, N, lwk, Swk);

19 X « 8kum A keep(LV') ; 40 DoProcs(V, LV, P, C, lyk, Swk);
20 s < elim(0(lcan) A X, V[V V'] 41 DoProcsum(V, LV, P, C, lwk, Swk);
21 UpdateReach(lret, $); =

summarization is defined in Def. 2°. The algorithm to compute @ is presented in full, for
reuse in Sec. 5.1. For presentation, elim(¢, W) denotes the existential elimination of W in .

» Definition 2 ([6]). A Boolean program summary for (Locs, GV,LV,E), where E =
(NE, CE, 2,9, PE) is a tuple (0,0) such that Q = QFFml(Xp,0, VUV'), V= GV ULV
and the following hold:

1. 0: Locs — Q and 0 : Locs — Q;

2. o(main) =T;

3. V(I1,R,ls) e NE-0(l1) NR' = 9(l2) v /v";

4.V (leants lin, eet) € CE - 6 (lean) A 0’ (Lin) A keep (LV') = 0 (Let) [V'/V"];

5 V( call, lin, ret) e CFE - e//m(9 (lcall) VU LV’) =0 (lin);'

6 V(lm, out) € PE - g(lout) = O'(lin).

ComputeBoolReach in Algorithm 1 is the standard algorithm to compute a least program
summary. The algorithm works by iteratively applying the rules of Def. 2 until a fixed
point is reached (we write R* := R[V'/V"]|[V/V’]). Termination is ensured by the finite-
state of Boolean programs and the monotonicity of each rule. We extend on the algorithm
ComputeBoolReach in Sec. 5.1.

4 IPS-MP: Problem Definition

This section defines partial predicates and the IPS-MP problem. A partial predicate is a pure
Boolean function without an implementation. A program P is open if it contains a partial
predicate p. An implementation for p is a Boolean expression e over the arguments of p. The
program obtained by implementing p as return e is denoted P[p + ¢]. The set of all partial

5 To align with Algorithm 1, Def. 2 is non-standard but equivalent to [6].
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1 bool Post(int x, int y) { 1 bool Post(int x, int y) {
2 return x==y; } 2 return (y>0) && (x==y); }
3 void main(int y) { 3 void main(int y) {
4 assume (y>0@); int x=0; 4 assume(y > 0); int x=0;
for (int i=0; i<y; ++i) { x+=1; } 5 for (int i=0; i<y; ++i) { x+=1; }
6 assert(Post(x, y)); 6 assert(Post(x, y));
7 x=%; y=%; assume(Post(x, y)); } 7 x=x; y=x; assume(Post(x, y)); }
(a) The program P[ILyeqr]- (b) The program P [ILstrong)-

Figure 9 Implementations of the simple program in Figure 3.

predicates in P is written Partial(P) = {p1,...,pr}. Given a function II from Partial(P)
to pure Boolean expressions, we write P[II] to denote P[p1 < II(p1)]- - [pr < H(px)]. The
IPS-MP problem is to find a II such that P[II] is correct.

» Example 3. Recall program P from Figure 3. Since Post is unimplemented in P, then
P is an open program. Formally, Partial(P) = {Post}. In Sec. 2, two implementations
were proposed for Post, namely (z = y) and (y > 0 Az = y). These implementations are
represented by the mappings ITyeqr and Ilsrong from Partial(P) to pure Boolean expressions
such that ITeqr : Post — (2 = y) and Ispong : Post = (y > 0 Az = y). The closed
programs P yeqr] and P[gion, are illustrated in Figure 9a and Figure 9b, respectively. <

» Definition 4. An Inductive Predicate Synthesis Modulo Programs (IPS-MP) problem is
a tuple (P, T,Iy) such that P € Progs(X,V) with first-order signature ¥ and variable set
V, T is a first-order theory, and Iy : Partial(P) — QFFm1(X, V) are predicate templates. A
solution to (P, T,1ly) is a function I : Partial(P) — QFFmI(X, V) such that P[] is correct
relative to T and Vp € Partial(P) - =1 o (p) = H(p).

Assume that (P, 7T,1Ily) is an IPS-MP problem with a solution II. With respect to the
IPS-MP overview in Figure 2, P is a program with specifications, I1y is a collection of predicate
templates, and II is an implementation of partial predicates. The witness to unrealizability
is discussed in Sec. 5. As an example of Def. 4, Figure 5b is restated as a formal IPS-MP
problem.

» Example 5. This example restates Figure 5b as an IPS-MP problem (P,IIy, 7). The
program P is given by lines 7-29 of Figure 5b. Then Partial(P) = {Inv3,Inv4}, since
Inv3 and Inv4 are called on lines 15-16, but lack full implementations. From lines 1-6,
IMo(Inv3) =TIIp(Inv4) = (m = 0Av = 0). Now, recall from Sec. 2.3 that all variables in
Figure 5b are arithmetic integers. Therefore, T is the theory of integer linear arithmetic. A
solution to (P, Iy, 7) is IT such that II(Inv3) = (v =0) and II(Inv4) = (0 < vAv <m). <«

5 Decidability of IPS-MP

This section considers the decidability of IPS-MP. Sec. 5.1 shows that IPS-MP is efficiently
decidable in the Boolean case. Sec. 5.2 shows that IPS-MP is undecidable in general, but
admits sound proof-rules for realizability and unrealizabiliy.

5.1 The Case of Boolean Programs

This section shows that for Boolean programs, IPS-MP is decidable with the same time
complexity as problem verification (i.e., polynomial in the number of program states). In
contrast, general synthesis is known to have exponential time complexity in the Boolean
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case [65]. Therefore, IPS-MP modulo Boolean programs does in fact offer the benefits of
general synthesis without the associated costs. To prove this result, we first extend Boolean
program summaries (Def. 2) to programs with partial predicates. These new summaries
are then used to extract solutions to IPS-MP (or witnesses to unrealizability). Analyze of
Algorithm 2 extends on Algorithm 1 to compute these new summaries. The total correctness
and time complexity of Analyze are proven in Cor. 9 and Thm. 7, respectively.

To simplify our presentation, we assume that all predicates are partial. In a Boolean
program, each partial predicate has an entry location, but no edges nor exit location. This
means that a standard summary can be obtained for a Boolean program with partial predicates
by discarding all calls to partial predicates. Such a summary characterizes reachability, under
the assumption that partial predicates are never called. From this summary, the arguments
passed to each partial predicate under assert can be collected. For the program summary
to be correct, the partial predicates must return true on these asserted arguments. If the
partial predicate returns true on these asserted arguments, then for any call under assume
using the same arguments, the program execution must continue to the next state. This
procedure can then be repeated until a fixed point is obtained. This new partial program
summary is defined formally in Def. 6.

» Definition 6. Let P = (Locs, GV, LV, (NE, CE, FE, AE, PE)) be a Boolean program. A
partial program summary for P is a tuple (8,0,1I) such that:

1. II: Partial(P) — QFFml(Xpe01, GV);

(0,0) is a program summary for (Locs, GV, LV (NE, CE,&,2, PE));

V(lcatts lin, lret) € AE - 0(lcan) = I (Iin)

V(lca, lins lret) € AE - 0(lean) = 0(lret);

V(lcatts liny lret) € FE - 0(lcan) AT (lin) = 0(lret)-

gRwb

The rules of Def. 6 follow directly from the preceding discussion. Rule 2 ensures that (0, o)
is a program summary for P after discarding all calls to partial predicates. Rules3 and 4
collect the arguments passed to partial predicates under assert. Rule 5 advances the program

state from calls to partial predicates under assume, according to the collected arguments.

These steps are made operational by Analyze of Algorithm 2. Note that Analyze does not
call ComputeBoolReach directly, and instead applies all rules in a single loop.

The termination of Analyze follows analogously to ComputeBoolReach. First, note that
Analyze terminates if all work items have been processed. Each iteration of the loop at
line 22 processes at least one work item. A state is added to the work list only if it has

not yet been visited. The number of states is finite, since Boolean programs are finite-state.
Therefore, Analyze must terminate with time polynomial in the number of program states.

This is in contrast to general synthesis, which requires time exponential in the number of
program states [65].

» Theorem 7. Let P = (Locs, GV, LV FE) with E = (NE,CE,FE, AE, PE) be a Boolean
program. Then for each input (P,Ily), Analyze of Algorithm 2 terminates in O(n?m - |Locs|)
symbolic Boolean operations where n = 21GVYLVI s the number of variable assignments and
m =-|NEU CEUFE U AE| is the number of edges.

The correctness of BoolSynth follows from the correctness of ComputeBoolReach in [17].
Thm. 8 proves that Analyze extends ComputeBoolReach to obtain a least partial program
summary. Cor. 9 proves that an IPS-MP solution (or a witness to unrealizability) can be
extracted from a least partial program summary. Since Analyze terminates, this is a decision
procedure for the Boolean case of IPS-MP.
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Algorithm 2 An extension of Algorithm 1 to solve IPS-MP for Boolean programs.

1 var (0,0,1I) ; // A partial program summary 16 Func Init(Locs, PE, Ilp):
2 var W; // A map from Locs to queued states 17 InitBoolReach(Locs, PE);
3 Func DoAssumes(V, LV, PE, FE, Iy, Swk): 18 for | € Partial(P) do TI(I) « IIo(1) ;
4 for (lwi, lin, lret) € FE do 10 Func Anal :
i yze(P, Ilp):
5 sin < elim(swi, V.U LV)[V'/V]; 20 | (Locs, GV,LV,(N,C,F,A,P)) « P;
o | L UpdateReach(lrer, H(lin) A sin); 21 | V< GVULV ; Init(Locs, P, Tlp);
7 Func DoAsserts(V, LV, PE, AE, lyx, Swk): 22 while 3 by € Locs - W(lwi) # L do
8 | for (lyk, lin, ket) € AE do 23 swic = Wlwie) 3 W(lwie) ¢ L;
UpdateReach (lret, II(lin) A Swk) ; 24 DoIntraproc(V, N, lyk, Swk);
10 UpdateReach (lin, 25 DoProcs(V, LV, P, C, lyk, Swk);
elim(swi, V U LV [V’ /V]); 26 DoAssumes(V', LV, P, F, lyk, Swk);
wko ) 27 DoAsserts(V, LV, P, A, lyk, Swk);
Ny LV, P, C, luk, Swit);
11 Func DoFuncSum(V, LV, FE, AFE, lyk, Swk): 28 DoProcSum(V/, » Ly s bwks Swk/,
12 if lyx € Partial(P) then K k 29 DoFuncSum(V', LV, F, A, lwk, Swk);
13 H(lwk) — H(lwk) V Swk; " .
14 for (lean, hyk, lret) € FE U AE do 50 F““/fngi’;’iz;jhgﬁ,n(’)'
15 | UpdateReach(lret, 8(lcan) A Swi) 32 if 6(11) = L then return (v/,II) ;

33 | else return (x,II);

» Theorem 8. Let P = (Locs, GV,LV,E) be a Boolean program and Iy be a collection
of predicate templates for P. Analyze of Algorithm 2 computes a least partial program
summary, (0,0,11), for P such that Vp € Partial(P) - IIy(p) = I(p).

» Corollary 9. BoolSynth of Algorithm 2 decides IPS-MP for Boolean programs.

5.2 The General Case

This section presents sound proof-rules for the realizability and unrealizability of IPS-
MP problems. These rules are shown to be instances of CHC-solving. To justify the
reduction from IPS-MP to this undecidable problem, the general case of IPS-MP is also
shown to be undecidable. First, assume that (P,7,II) is an IPS-MP problem. Recall
that P € Progs(F,V) where F is the FO-fragment of pure program expressions. A logical
encoding of (P, T,y) is given by:

CHCSynth(P, IIy) := ToCHC(P) A ( /\ vZ - (Mo (p) :>p(f))>

pEPartial(P)

The term ToCHC(P) encodes verification conditions for P, in which each partial predicate is
unspecified. Calls to a partial predicate p, under assume and assert, provide constraints on the
strongest and weakest possible solutions to CHCSynth(P,IIj). The clause VZ - (Ilp(p) = p(Z))
then ensures the strongest solution to p subsumes IIy(p). Then a solution o to CHCSynth (P, II)
contains an implementation o(p) for each partial predicate p, that subsumes IIy(p) and
ensures the correctness of P (Thm. 10). Furthermore, if o is an F-solution, then each o(p)
can be implemented in the programming language. On the other hand, if CHCSynth(P, ) is
unsatisfiable, then for every choice of implementation IT satisfying Iy, the closed program P[II]
is incorrect (Thm. 11). Together, these theorems give sound proof rules for the realizability
and unrealizability of (P, T,1Ily). In practice, F is chosen to be the same fragment used by
the CHC-solver.

» Theorem 10. Let X be a first-order signature, V be a set of variable symbols, F =
QFFml(X, V), P € Progs(X,V), and (P, T,Iy) be an IPS-MP problem. If o is an F-solution
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to CHCSynth(P,Ily) relative to T, then II : Partial(P) — F such that II : p — o(p) is a
solution to (P, T,1y).

» Theorem 11. If (P, T,1y) is an IPS-MP problem and CHCSynth(P,Iy) is T -unsatisfiable,
then (P, T,Iy) is unrealizable.

CHCSynth(P,I1j) strengthens ToCHC(P) by adding additional CHCs. Since ToCHC(P)
is a conjunction of CHCs, then CHCSynth(P, 1) is also a conjunction of CHCs. Therefore, a
CHC solver can check the satisfiability and unsatisfiability of CHCSynth(P,IIy). As a result,
a CHC solver can find a solution to (P,7,IIy) (Thm. 10), or prove that the problem is
unrealizable (Thm. 11).

» Theorem 12. CHCSynth(P,Ily) is a CHC conjunction.

» Example 13. This example uses Thm. 10 to solve the IPS-MP problem in Figure 4b.
The program in Figure 4b corresponds to the IPS-MP problem (P, T,II;) where P is the
source code, T is the theory of integer linear arithmetic, and Il : CInv — L. In this
example we let F be the fragment of linear inequalities of the variables {m,p}, where m
and p are the arguments to CInv. Then our goal is to find an expression e € F such
that P[CInv < e] is correct. According to Thm. 10, we can extract e from the output
of a CHC-solver. The first step in this process is to construct the input CHCSynth(P, IIy).
To construct CHCSynth(P,Ily) we must first construct the term ToCHC(P). Recall that
ToCHC(P) encodes verification conditions for the program P. Since P is open (CInv is
unimplemented), then CInv will be an unknown in ToCHC(P). According to Sec. 3.3,
ToCHC(P) will consist of the verification conditions for P[main], along with a summary
for each function in P. We begin by constructing a summary for each method from the
Counter object in P. As described in Sec. 3.3, each predicate fp.(x) collects the inputs
x to a function f, and each predicate fsum (X, €) each argument x to a return value e For
simplicity, we encode object state by passing member fields as arguments and return values.
Redundant declarations are omitted.

@ ctor :=Ym - Counterye(m) = ((m > 0) = Countersym(m, m,0))
QReset 1= Ym - Vp - resetyre(m, p) = resetyos(m, p, m,0)
$cap = Ym - Vp - capacity,,.(m,p) = capacity,,,,(m,p.m —p # 0)
Plner := VYm - V¥p - incrementy.(m,p) = (((p > m) = incrementsum(m, p, L)) A
((p < m) = incrementsym(m,p + 1, T)))

Next, we construct a summary for the function drain. Note that, unlike the methods of
Counter, the function drain contains a loop. As described in Sec. 3.3, loops are encoded
using loop invariants with the loop at line n associated with an invariant loop,,. In our
example, the loop at Line 16 of Figure 4a is associated with a loop invariant loop,;. Then
the summary of drain is as follows.

O Rt 1= capacityprs(p/, m') -V - (capacitywm(p/, m’, ) = (w A draingm,(p, m, P, m')))

# Loop 1= loopy5(p, m, T)A
((loop15(p, m,xz) ANz > 0) = (capacityme(p, m) AV - (capacity,,,, (p, mz) = loop,3)))A

((100py5(p, m, ) A < 0) = resetye(p, m) AVP -V’ - (resetom(p,m,p',m') = pru))

@pr :=Vp - Ym - draing.(p, m) = (capacity,,.(p, m) AV - (capacity,,,, (p, m, ) = @roop))

Finally, we construct the verification conditions for main. Since main is the entry-point to
P, then main must be safe for all possible inputs. This means that main does not require a
summary. The conditions are as follows.

ECOOP 2024
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©Main := Vb1 - Vba - Vb3-
(b1 = 1) = (Ym - Countery.(m) AYm' - ¥p - (Counter sy (m,m’, p) = Clno(m’,p)) A
(b1 #1Aby =1) = (Ym - Vp - Clnv(m,p) =
(’(‘Ssetprc(mv p) AVm' - vp’ (7‘eseifmm(p7 m,p’,m’) = Clnu(p’, m')) ) A
(b1 #1Aby #1Abg =1) = (Vm - Vp- Clnv(m, p) =
(incrementpm(Wh p) A vm' - Vp/ (incrementsum (p, m, p’7 m,) = C’Inv(p’, m/)) ) A
(b1 #1Aby #1#b3 =1) = (Ym-Vp- Clnv(m,p) =
(dmz’np,‘e(m,p) AVm' - Vp' (clminsmn(p7 m,p,m') = T)))

As outlined in Sec. 3.3, TOCHC(P) = @ umain A ©Clor A PReset N ©Cap N Piner N ©pr. Next,
ToCHC(P) is strengthened by the predicate template I (CInv) to obtain CHCSynth(P, 1) =
ToCHC(P)A(Vm -Vp- L = CInv(m,p)). Clearly the term L = CInv(m,p) is trivially satis-
fied. This is because the predicate template IIo(CInv) is also trivial. In general, this need not
be the case. Nonetheless, the term ToCHC(P) is non-trivial. If TOCHC(P) is provided to a
CHC-solver, then the CHC-solver will return a solution ¢ containing the following components:
expressions o (Countery.), o(Resetyr), o(Capacity,,,), o(Increment ), and o(Drainy),
which over-approximate the inputs passed to each function; expressions o(Counter sym,),
o(Resetsum), o(Capacity,,,), o(Incrementsym), and o(Draingym ), which over-approximate
the return values of each function; an expression o(loop, ) which over-approximates the reach-
able states of the loop in drain; an expression o(CInv) which describes a safe implementation
for CInv. In one solution, o(loopys) = (P <mA(x#0=0<p)A(z=0=0=p)). This
states that the counter is always in a valid position, and in position zero if and only if the ca-
pacity returns to zero. In such a solution, it is also possible that o(CInv) = (m > 0Ap < m).
Clearly o(CInv) is an F-solution since o(CInv) is a conjunction of linear inequalities. Then
by Thm. 10, IT: CInv — (m > 0A p < m) is a solution to (P, T,Iy) with P[II] both closed
and safe. |

Like CHC-solving, the general IPS-MP problem is also undecidable. This is because
program verification reduces to IPS-MP. Intuitively, if a closed program P is given to an
IPS-MP solver, then a solution to the IPS-MP problem implies that P is correct, and a
witness to unrealizability implies that P is incorrect. In this way, the halting problem also
reduces to IPS-MP.

We show that TPS-MP is undecidable for linear integer arithmetic by reducing the halting
problem for 2-counter machines to IPS-MP. Recall that a 2-counter machine is a program
with a program counter and two integer variables [49]. The program has a finite number of
locations, each with one of four instructions: (1) inc(x) increases the variable x by 1 and
increment the program counter; (2) dec(x) decreases the variable x by 1 and increment the
program counter; (3) jump(x, i) goes to location i if x is 0, else increments the program
counter; (4) halt() halts execution of the program. The halting program for 2-counter
machines is known to be undecidable [49].

» Theorem 14. The IPS-MP problem is undecidable for linear integer arithmetic.

6 From Verification to Synthesis

This section establishes reductions of Sec. 2. Class invariant inference is proven directly. Array
abstraction and symmetric ring verification are subsumed by a reduction from parameterized
compositional model checking to IPS-MP. Loop invariant synthesis is proven in Appx. C.
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1 bool PRED_TEMPLATE Inv(int x, int y) {
2 return synth(x, y); }

3 void main(int br, int a, int b) {

4 if (br == 0) {

5 Cls ob = Cls(a);

6 assert(Inv(ob));

7 } else if (br == 1) {

8 Cls ob = *; assume(Inv(ob));

9 ob.f(a);
10 assert(Inv(ob));
11 } else if (br==2) {
1 class Cls { 12 Cls ob = *; assume(Inv(ob));
2 int x; int y; 13 ob.g(a, b);
3 Cls(int a) { ... %} 14 assert(Inv(ob));
4 void f(int a) { ... } 15 } else if (br==3) {
5 void g(int a, int b) { ... }} 16 Cls ob = *; assume(Inv(ob));
6 void func(Cls ob, int a) { ... } 17 func(ob, a); }}
(a) The input program. (b) The IPS-MP reduction.

Figure 10 A reduction from class invariant inference to IPS-MP.

We write X for a first-order signature, V for a set of variables, and IT; for a collection of
predicate templates which maps each predicate to L.

6.1 Class Invariant Inference

A safe class invariant is a predicate that is true of a class instance after initialization, closed
under the execution of each impure class method, and sufficient to prove the correctness of a
function taking class instances as arguments [37]. Class invariant inference asks to find a
safe class invariant given a program. The inference problem is intensional if solutions are
in the same logical fragment as assertions in the programming language [51]. A definition
of (intensional) class invariant inference is found in Def. 15. In this definition, ToCHC(f)
relates the class invariant ¢ to a summary of each method f in P, and fp,. is used to enforce
that f is summarized. For simplicity, a class has two fields and two impure methods, each
taking at most two arguments (Figure 10a). A generalization to m methods is not difficult.
A generalization to n arguments follows immediately.

» Definition 15. A class invariant inference problem is a tuple (P,T) such that P €
Progs(%,V) is an open program as in Figure 10a and T is a theory. A solution to (P,T) is
a o € QFFmI(X, {x,y}) such that the following are T -satisfiable:

Yt ==YV (Clspm(a) AClssum(a,z,y) = 99) Ycioser =YV (<p Afaum(z,y,a,2",y") = 50’)
Y Closez 1= VYV (50 A Eoum(®,y,a,b,z’y") = 90/) Ysuic = YV (80 = funcuum(z,y, G))

PYSum = TOCHC(P) A VV(W = fpre(w7 Y, a) A gpre(a;7 Y, a, b) A funcpre(l7 Y, ’1))

» Theorem 16. Let (P, T) be a class invariant inference problem and P’ be the program
obtained by adding main in Figure 10b to P. Then II is a solution to (P’ 11, ,T) if and only
if II(Inv) is a solution to (P,T).

6.2 Reducing PCMC to IPS-MP

Parameterized compositional model checking (PCMC) is a framework to verify structures
with arbitrarily many components (e.g., an array with arbitrarily many cells, or a ring with
arbitrarily many processes) by decomposing the structure into smaller structures of fixed
sizes [50]. Intuitively, each of these smaller structures is a view of the larger structure from
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1 bool PRED_TEMPLATE Inv(
2 int 1, int s, int, r) {

3 if (init(l, s, r)) { return true; }

4 else { return synth(l, s, r); } 2}

5 void main(int br, struct View v) {

6 if (br == 0) {

7 int inf = x;

8 assume (Inv(v.left, v.st, v.right));
9

// Transition relation. 10 v = tr(v);

1 struct View { int 1; int r; int s; }; assume (Inv(v.right, inf, v.left));
2

3 View tr(View v) { ... } 11 assert(Inv(v.left, v.st, v.right));
4 // Initial state predicate. 12 assert(Inv(v.right, inf, v.left));
5 bool init(int 1, int s, int r) { ... } 13 } else if (br == 1) {

6 // Correctness property. 14 assume (Inv(v.left, v.st, v.right));
7 bool property(View v) { ... } 15 assert(property(v)); }}

(a) The input program. (b) The IPS-MP reduction.

Figure 11 A reduction from compositional ring invariant synthesis to IPS-MP. The state of each
process and resource are both assumed to be integer values.

the perspective of a single component. A proof of the larger structure is obtained by verifying
each of the smaller structures, and showing that their proofs compose with one another [50].
If the number of smaller structures is finite (i.e., most perspectives are similar), then PCMC
is applicable [50]. For example, in Sec. 2.3 and Sec. 2.4, the array and ring were highly
symmetric, and therefore, all perspectives were similar.

Once the larger structure has been decomposed, the proof of compositionality follows
by inferring adequate compositional invariants for groups of similar components [50]. The
number of compositional invariants, and the properties they must satisfy, depend on the
decomposition. However, each property is one of initialization, closure, or non-interference.
An initialization property states that a compositional invariant is true for the initial state of
a component. A closure property states that a compositional invariant is closed under all
transitions of its components. A non-interference property states that for any component
¢, if ¢ satisfies its compositional invariant and an adjacent component (also satisfying its
compositional invariant) performs a transition, then ¢ continues to satisfy its compositional
invariant after the transition. In addition, all composition invariants must be adequate in that
they imply the correctness of the larger structure. To make the rest of this section concrete,
we restrict ourselves to compositional ring invariants®. As in Sec. 6.1, the inference problem
is assumed to be intensional. A formal definition of (intensional) compositional invariant
inference is given in Def. 177. Note that in Def. 17 ToCHC relates the compositional invariant
¢ to the summary of tr, trp,. enforces that tr is summarized, and s := @[l/7][s/i][r/]]
is the compositional invariant applied to a process (r,,1).

» Definition 17. A compositional ring invariant (CRI) inference problem is a tuple (P,T)
such that P € Progs(X,V) is an open program as in Figure 11a and T is a theory. A
solution to (P, T) is a ¢ € QFFmI(X,{1,s,r}) such that the following are T -satisfiable

gwen @y = [l/r][s/i][r/l]:
Vit : =YV (il’]i‘l’_(l7 s, 1) = ga) Y close 1= VYV (Lp AN @i N T sum (L, s, T, l/,s/,r/) = ga/)
Yt =YV (¢ = property(l,s,r)) Ying 1=V (9 A @rag At sum s, 0y, 1') = onr”)

Ysum := ToOCHC(P) AVV - (@ A @mg = trpre(l, s, 1))

6 Sec. 2.3 is a degenerate case. In this ring, processes communicate through locks. In an array, cells do
not “communicate”.

7 In PCMC, a witness to unrealizability does not entail the incorrectness of a structure. Instead, no proof
of correctness exists relative to the chosen decomposition.
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Benchmarks IPS-MP (SPACER) IPS-MP (ELDARICA) HORNSPEC CVC4
Type Safe Buggy Preds Size Time TO v Time TO MEM Vv Time UN TO N/A V
Loop 7 7 9 179 KB 4 0 14 45 0 0 14 4 12 2 7 7 0
Class 6 6 6 694 KB 2 0 12 1449 0 0 12 — 12 0 6 6 0
Array 4 6 6 535 KB 4 0 10 230 0 0 10 — 10 0 4 6 0
Ring 2 3 2 197KB 1 0 5 52 0 0 5 — 5 0 2 3 0
Proc 3 3 3 418 KB 2 0 6 4 0 0 6 — 6 0 3 3 0
SC 70 4 181 974 MB 6878 4 70 6717 53 12 9 — — — - —
Total 92 29 207 975 MB 6891 4 117 8497 53 12 56 4 45 2 22 29 0

Table 1 Performance of various solvers on IPS-MP benchmarks.

» Theorem 18. Let (P, T) be a CRI inference problem, P’ be the program obtained by adding
main of Figure 11b to P, and Iy be the predicate template from Figure 11b. Then Il is a
solution to (P’ Iy, T) if and only if TI(Inv) is a solution to (P,T).

7 Implementation and Evaluation

We have implemented an IPS-MP solver within the SEAHORN verification framework.

SEAHORN takes as input a C program, and returns a CHC-based verification problem
in the SMT-LIB format according to Sec. 3.3 [32]. We extend SEAHORN to recognize
predicate templates. For each predicate, SEAHORN adds clauses to the verification conditions
according to Sec. 5.2. Proofs of unrealizability are generated with the implementation of [28]
found in SEAHORN. That is, proofs of unrealizability are already supported by SEAHORN.

The goal of our evaluation is to confirm that:

1. TPS-MP is practical for the reduction described in Sec. 6;

2. CHC-based solvers are more efficient than general synthesis solvers for IPS-MP instances;
3. The overhead incurred when using IPS-MP is tolerable.

Towards (1) and (2), we have collected 92 IPS-MP problems with linear integer arithmetic
as the background theory (see Safe in Tab. 1). Of these benchmarks, 7 reflect loop invariant
inference (and interpolation [48]), 6 reflect class invariant synthesis, 4 reflect array (and
memory) abstraction, 2 reflect ring PCMC, 3 reflect procedure summarization, and 70
reflect parameterized analysis of smart-contract (SC) programs (see [67, 68]). The first
20 benchmarks were collected from research papers in the area of software verification.
The remaining benchmarks, involving the parameterized analysis of SCs, were obtained by
extending SMARTACE with support for IPS-MP. Of these 70 SC benchmarks, 62 are taken
from real-world examples used to manage monetary assets [53]. To address question (3),
we compare the performance of SMARTACE with and without IPS-MP, relative to these
real-world examples. Note that the extension to SMARTACE was a routine exercise, due
to the original design of SMARTACE. In particular, SMARTACE encodes all compositional
invariants as predicates returning true, to then be refined manually by an end-user [68].
These predicates appear in assume and assert statements, as described in Sec. 2.4. Our
extended version of SMARTACE can replace these predicates with predicate templates,
yielding valid IPS-MP problems.

A summary of all benchmarks can be found in Tab. 1. As reflected by their size (see Size
in Tab. 1) and total number of unknown predicates across all realizable instances (see Preds
in Tab. 1), SCs are included to evaluate IPS-MP on large programs. When possible,
benchmarks are drawn from prior works in program analysis (i.e., [40, 46, 59, 53]). To reflect
unrealizability in IPS-MP, 29 faults have been injected in these benchmarks (see Buggy
in Tab. 1). Further information can be found about the realizable real-world SC’s in Tab. 2.
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Contracts Performance (Time)
Name Props  Preds Size v VERX [53] SMARTACE (Manual) [67] SMARTACE (IPS-MP)
Alchemist 3 12 36 MB 3 29 7 208
Brickblock 6 12 122 MB 6 191 13 1214
Crowdsale 9 27 76 MB 9 261 223 238
ERC20 9 27 45 MB 9 158 12 103
Melon 16 32 149 MB 16 408 30 979
PolicyPal 4 16 123 MB 4 20773 26 3118
VUToken 5 22 319 MB 1 715 19 17
Zebi 5 14 45 MB 5 e 8 487
Zilliga 5 10 54 MB 5 94 8 501
Total 62 172 969 MB 58 22706 346 5685

Table 2 Overhead of integrating IPS-MP-solving with SMARTACE.

Each SC in this table is associated with one or more safety properties (see Props in Tab. 2),

which in turn, corresponds to a realizable IPS-MP instance. As before, Preds and Size

indicate the total predicate count and size for these instances. All benchmarks are available
at https://doi.org/10.5281/zenodo.5083785.

To evaluate IPS-MP, we find the number of benchmarks that are solved by either of two
state-of-the-art CHC solvers: ELDARICA [35] and SPACER [43]. To compare CHC solvers
to general synthesis tools, we provide our benchmarks to a state-of-the-art specification
synthesizer, HORNSPEC [54], and a state-of-the-art SYGUS solver, CVC4® [11]. Since CVC4
solves SYGUS instances, which do not support proofs on unrealizability, then we only evaluate
CVC4 on realizable benchmarks (see N/A in Tab. 1). Due to the size of each SC benchmark,
we only ran the tools that could solve Loop through to Proc on these benchmarks. The
results for each tool are reported in Tab. 1, where TO is the number of timeouts (after
30 minutes), MEM is the number of failures due to memory limits, UN is the number of
benchmarks for which a tool returned unknown, v* is the number of benchmarks solved, and
Time is the total time (in seconds) to find all solutions in a given set. In Tab. 2, the total
time for SPACER is further broken down by SC (see SMARTACE (IPS-MP) in Tab. 2). For
comparison, the verification times for VERX (an automated SC verifier with user-guided
predicate abstraction [53]) and the original version of SMARTACE (see SMARTACE (Manual)
in Tab. 2) are also provided. All evaluations were run on an Intel® Core i7° CPU @ 1.8GHz
8-core machine with 16GB of RAM running Ubuntu 20.04.

From this evaluation, we answer questions (1) through to (3) in the positive.

1. As illustrated by Tab. 1, many examples of class invariant inference and compositional
invariant inference (i.e., CLASS, ARRAY, RING, and SC) taken from the literature could
be encoded using IPS-MP. In the case of SC, the generation of IPS-MP instances could
be fully-automated using a modified version of SMARTACE. We conclude that IPS-MP
is practical for the reductions described in Sec. 6.

2. As shown in Tab. 1, all small benchmarks were solved by ELDARICA and SPACER, with
average times under a minute. Furthermore, all but four SC benchmarks were solved by
SPACER within a 30-minute timeout, with an average time of 96 seconds. Upon closer
inspection, we found that SPACER would fail to solve these four examples, and would
return unknown after approximately one hour. However, CVC4 failed to solve any SC
benchmarks within 30-minutes. Therefore, we conclude that CHC-based IPS-MP-solving
is effective for the reductions of Sec. 6, and can outperform general synthesis solutions.

8 To support CVC4, we convert each realizable problem from SMT-LIB format to the SYGUS input
language.
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We note that HORNSPEC returned unknown on all but two benchmarks®.

3. Asshown in Tab. 2, the IPS-MP version of SMARTACE incurred an average time overhead
of 18x as compared to the manual version of SMARTACE. This should come as no surprise,
since the manual version of SMARTACE achieved a verification time of under 3 seconds
for 44 of the 62 properties with the help of user-provided compositional invariants. In
these cases, a solving time as low as 60 seconds would correspond to an overhead of
at least 20x. To better contextualize this overhead, we compare the verification time
of IPS-MP version of SMARTACE to the verification time of VERX. We first note the
outlying case of POLICYPAL, in which the IPS-MP version of SMARTACE achieves a
speedup of over 6x. For the remaining SC’s, the IPS-MP version of SMARTACE fell
within 1.3x of VERX on average. Since VERX is a specialized tool with less automation
than the IPS-MP version of SMARTACE, we conclude that the overhead incurred by
IPS-MP is tolerable in this particular real-world application. We note that in [53], only
the “average” times were reported for VERX. It is unclear whether this is the average
time to verify all properties, or an average across all properties. The authors of VERX
were contacted, but were unable to provide the original data. For this reason, we assume
conservatively that all times reported by VERX are total.

One limitation of the evaluation is its emphasis on SC verification. However, compositional

SC verification is representative of compositional verification, as illustrated in [67]. We do

acknowledge that design patterns specific to SC development might bias the benchmark set.

We hope for this benchmark set to be expanded in future work.

Note, however, that we do not plan to benchmark our IPS-MP solver against invariant
synthesis tools. Recall that our implementation simply extends SEAHORN with support for the
IPS-MP synthesis language. In cases where the IPS-MP instance reduces to invariant synthesis,
our extension is bypassed, and verification reduces to executing SEAHORN. Therefore, a

direct comparison is not possible, and the evaluation results would not be meaningful.
Furthermore, SEAHORN is a state-of-the-art program verifier with prior success in SV-COMP.

Thus, SEAHORN is already known to perform well on invariant synthesis tasks.

An important direction for future work is to understand why CVC4 times out on all
benchmarks. We hypothesize that the lack of a grammar in IPS-MP proves challenging for
CV(C4’s enumerative search. We also note that many of our benchmarks produce non-linear
CHC'’s, whereas the invariant synthesis track for SYGUS reduces to solving linear CHC’s.

8 Related Work

General program synthesis. As explained in Sec. 1, general synthesis engines (e.g.,
Sketch [62], Rosette [64], SYGUS [5], and SEMGUS [42]) are fundamentally different from
IPS-MP. Among these frameworks, only SEMGUS can both solve synthesis problems and prove
unrealizability. Similar to IPS-MP, SEMGUS reduces the synthesis problem to satisfiability
of CHCs. However, this is where the similarities end. SEMGUS reduces synthesis to
unsatisfiability and extracts solutions from the refutation proofs. In contrast, IPS-MP
reduces to satisfiability and solutions are extracted from model of the CHCs. SEMGUS
solves a more general problem, which comes at a high price both from a theoretical and
practical perspective. We show that IPS-MP modulo Boolean programs can be solved in
polynomial time (in the number of states), while SEMGUS lacks this guarantee. Existing
SEMGUS solvers (e.g., MESSY [42]) synthesize programs from sets of candidates described

9 The authors of HORNSPEC confirm this result though the cause is unknown.
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using regular tree grammars. As a result, their CHCs use constraints over Algebraic Data
Types to represent the grammar terms, which are harder to solve than either Boolean or
linear arithmetic constraints. Only Sketch and Rosette are “modulo programs”, but do not
allow loops nor recursion.

Specification synthesis. Specification synthesis solves the problem of finding specifications
for unknown procedures which enable the verification of a given program (e.g., [21, 2, 54]).
Unlike IPS-MP, specification synthesis is under-specified. Trivial specifications such as false
are often sufficient but undesirable. As a consequence, many tools aim to synthesize either
weakest (i.e., maximal) or non-vacuous solutions. In IPS-MP, any solution is valid as long
as it satisfies all program assertions. In Sec. 7, we also compare our IPS-MP solver with
HORNSPEC [54] and demonstrate that HORNSPEC is unsuitable for IPS-MP.

Data-driven invariant generation. Multiple approaches have been proposed (e.g., [27,
71, 60, 69, 58, 36]) that rephrase loop invariant synthesis as a learning problem. Recent work
has extended these techniques to parameterized verification [70]. Often, these techniques
require problem-specific biases to learn useful invariants (e.g., [60, 69, 58, 70]). Furthermore,
these techniques lack the complexity bounds of decidable verification. In contrast, IPS-MP
is problem-agnostic, and achieves the same complexity as verification in the Boolean case.
Adapting data-driven techniques to IPS-MP-solving is an interesting future direction.
Constrained Horn clauses. In recent years, CHC-solvers have become a common tool
for verification and synthesis problems. Example include SEAHORN [32], SEMGUS [42], and
HORNSPEC [54]. The connection between CHCs and verification has long been explored in
the CLP community (e.g., [39, 52, 22]). This direction was popularized again by the work of
Rybalchenko et al. [30]. According to the annual CHC-COMP competition!'®, SPACER [43]
and ELDARICA [35] are the most effective general-purpose CHC-solvers.

9 Conclusion

We proposed IPS-MP, a novel synthesis problem suitable for solving a wide range of verific-
ation problems, such as invariant inference and verification of parameterized systems. To
demonstrate the relevance of IPS-MP, we provided three reductions from classic verification
problems to IPS-MP. To highlight TPS-MP’s practicality, we proposed a solution that effect-
ively leverages off-the-shelf CHC solvers and implemented it in the SEAHORN verification
framework. Our evaluation demonstrates the effectiveness of CHC solvers in solving IPS-MP
when compared with general synthesis tools such as HORNSPEC and CVC4.

Finally, we demonstrated that the interesting instance of IPS-MP for Boolean programs
is efficiently decidable, whereas the general instance is undecidable. Despite this, the general
instance of IPS-MP is theoretically simpler than general synthesis, and thus, warrants
specialized solvers. In future work, we plan to study other instances of IPS-MP, such as
IPS modulo timed automata. We further suspect that IPS-MP will enable new practical
applications of PCMC.
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(Procs) = a procedure name | Main
(Preds) a predicate name
(VarList) (Var), ..., (Var)
(ValList) <Expr> ..., (Expr)
(ProcApp) (Procs) ( (ValList) )
(PredApp) (Preds) ( (ValList) )
(Inst) == (Var)=(Val) | (Var) = | skip | assume( (Expr) ) |
assert( (Expr) ) | assume( (PredApp) ) |
assert( (PredApp) ) | (VarList) = (ProcApp)
(Stmt) = (Stmt); (Stmt) | (Inst) | while ( (Expr) ) { (Stmt); } |
if ( (Expr) ) { (Stmt); } else { (Stmt); }
(ProcDecl) ::= (Procs)( (VarList) ) { (Stmt); return (ValList); }
(PredDecl) := (Preds)( (VarList) ) { return (Expr); }

Figure 12 The formal grammar for programs with variables V and operations over the signature
Y. That is, (Var) ::=V, (Val) := Term(X, V), and (Expr) ::= QFFmI(3, V). The set of programs in
the language is denoted by Progs(X, V).

A Syntax and Semantics

The syntax of Progs(X,V) is presented in Figure 12. To simplify the presentation, types
are omitted and all local variables are declared as inputs to procedures. Up to these
simplifications, all IPS-MP instances in Sec. 2 can be thought of as programs in this language.
A qualitative description of this language can be found in Sec. 3.2. Denotational semantics for
this language are given by the WLP transformer in Figure 13. In this semantic interpretation,
each loop S at line In is associated with a predicate loop;,,. The result of wip(S, Q) encodes
that loop,,, is a loop invariant for S which is sufficient to entail Q.

B Loop Invariant Inference as Synthesis

Consider the program in Figure 14a. This program takes as input a non-negative integer x,
and then computes 2 - x through repeated addition. The function is correct if y = 2 -z on
line 5. A standard approach to this problem is to find an invariant for the loop on line 4 that
entails y = 2 - x on line 5. Therefore, the goal of this example is to construct an IPS-MP
problem to synthesize such a loop invariant (existence of this loop invariant entails the
correctness of Figure 14a).

By definition, a loop invariant is a predicate that is true upon entry to the loop, closed

under each iteration of the loop, and true of the program’s state upon loop termination [31].

Each requirement of a loop invariant can be represented through assumptions and assertions,
as in Figure 14b. First, to ensure that the loop invariant is true upon entry, the loop invariant
is asserted upon entering the loop (line 8). Second, to ensure that the loop invariant is closed
under each iteration of the loop, Figure 14b over-approximates the state of the program
upon entry to an arbitrary iteration of the loop. To restrict the program to an arbitrary
iteration of the loop, the loop is first unrolled to a single iteration (lines 11-14). Before
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1Uh7(sa;‘s2a62):::1Uh00§1710h0092762))
wip(whiley, (@) {S}, Q) := Vi - ((loop,,, (W) A ) = wip (S, loopy,, (W))) A
Vi - ((loopy,, (W) A =) = Q) A loop,,, (W)
)

wip(if (¢) {S1} else {S2}, Q) := (¢ = wip(51,Q)) A (~p = wip(S2, Q)
wlp(x = *,Q) :=Vz - Q
wip(ij = f(€), Q) := fpre(€) AV (foum (€, 7) = Q[7/T])
wip(skip, Q) :== Q
wip(z =€,Q) = Qz/e]
wip(assert(p), Q) == A Q

wip(assume(p), Q) = = Q
Figure 13 The WLP transformer for Figure 12. This follows the presentation of [14].

1 bool PRED_TEMPLATE Invi1(int x, int i) {

2 return synth(x, i); }

3 bool PRED_TEMPLATE Inv2(int i, int y) {

4 return synth(i, y); }

5 void main(int x) {

6 assume(x >= 0);

7 int i = @; int y = 0;

8 assert(Invi(x, i)); assert(Inv2(i, y));

9 y = *%; i = %
10 assume (Invi(x, 1i)); assume(Inv2(i, y));
1 void main(int x) { 11 if (i < x) { // Unrolled while loop.
2 assume (x >= 0); 12 i +=1; y += 2;
3 int i = @; int y = 0; 13 assert(Invl(x, i)); assert(Inv2(i, y));
4 while (i < x) { i += 1; y += 2;} 14 assume (false); 3}
5 assert(y == 2 * x); } 15 assert(y == 2 * x); }
(a) The original program. (b) The IPS-MP problem.

Figure 14 A program that is correct relative to the loop invariant (2-i =y) A (¢ < z), and an
IPS-MP problem that synthesizes the loop invariant.

checking the loop condition, the state of an arbitrary loop iteration is then selected by setting
each mutable variable non-deterministically, and assuming that these new values satisfy the
loop invariant (lines 9-10). If this state also satisfies the loop condition, then closure is
enforced by first executing the body of the loop, and then asserting that the loop invariant is
maintained (lines 12-14). Otherwise, the state does not satisfy the loop condition, and the
program exits the loop (line 15). This gives a program with unknowns, as required by the
verification methodology.

Next, the shape of the loop invariant is restricted. We note that the loop is correct
because i is incremented up to x, while maintaining that y is twice the value of i. It follows
that there exists a loop invariant for Figure 14a that does not relate x and y in the same
constraint. However, x must be compared with i, and i must be compared with y. Therefore,
our loop invariant has the shape Inv1(z,4) A Inv2(i,y). In the IPS-MP encoding, both Inv1
and Inv2 correspond to partial predicates (see lines 1 and 3, respectively) that are assumed
and asserted together (see lines 10 and 8, respectively). One solution to this problem is to
assign the expression (i <= x) to the hole in Inv1, and the expression (y == 2 * i) to
the hole in Inv2.
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C Loop Invariant Inference: Reduction to IPS-MP

A safe loop invariant is a predicate that is true upon entry to a loop, maintained by each
iteration of a loop, and is sufficient to prove that the program is correct [31]. Loop invariant
inference asks to find a safe loop invariant given a program. The inference problem is
intensional if solutions must be in the same logical fragment as assertions in the programming
language [51]. A formal definition of (intensional) safe loop invariant inference is given
in Def. 19. Note that in Def. 19, ToCHC(f) is used to relate the loop invariant ¢ to the
summary of each procedure f in P. For simplicity of presentation, a program has a single
loop and two variables (Figure 15a). A generalization to m loops is possible and not difficult.
A generalization to n variables follows immediately.

» Definition 19. A loop invariant inference problem is a tuple (P,T) such that P €
Progs(X, {x1,22}) is a problem with the main procedure from Figure 15a (where ¥ is a
first-order signature), and T is a theory. A solution to (P,T) is a ¢ € QFFml(X, {1, z2})
such that the following are T -satisfiable:

1. Ypre :=VV - wip(Sy, @), where Sy is the statement before the loop;

2. Y =VV - (@ Ae) = wip(Ss, @), where Sy is the loop body and e is the loop condition;
3. Ypost :=VV - (@ A —e) = wlp(Ss, T), where Sz is the statement after the loop;

8. Pprocs = N feprocspy TOCHC(f).

» Theorem 20. Let (P, T) be a loop invariant inference problem and P’ be the program
obtained by replacing main in P with the definition of main in Figure 15b. The partial
predicate implementation I1 is a solution to (P', 11, T) if and only if II(Inv) is a solution

to (P, T).

Proof. Let II be a solution (P’,II,, 7). This is true if and only if P’[II] is correct relative
to 7. By Prop. 22, this is true if and only if TOCHC(P'[II]) is T-satisfiable. By definition:

ToCHC(P'[]) = wilp(P'(main), T) A ¥proes AVV - (Inv(z,y) < @)
wip(P' (main), T) = VV - wip(S1, Inv(z,y) AVV' - (Inv(z',y') =
(¢ = wip(S2, Inv(z’,y"))) A (=€’ = wip(Ss, T)))))

AsVV - Inv(z,y) & ¢, then ToCHC(P'[II]) is T-satisfiable if and only if ToCHC(P’'[I])
is T-satisfiable after substituting ¢ for Inv. By substituting ¢ for Inv and rewriting
wlp(P’(main), T) as a conjunction of CHCs, it follows that TOCHC(P'[II]) < ¢pre A @1 A
©Post N\ procs. Therefore, ¢ is a solution to (P, T). The other direction is symmetric. <

D Proof of Theorem 7

Proof. Let k = |GV U LV|. The call to Init on line 21 of Algorithm 2 has complexity
O(|Locs|+|PE|) since Init iterates over Partial(P) and calls InitBoolReach, InitBoolReach
iterates over Locs and PE, and |Locs| > Partial(P). The loop on line 22 of Algorithm 2 re-
quires O (|Locs| - 2%) iterations, since each state is visited at most once, there are at most 22%
variable assignments, and exactly |Locs| control-flow locations for each assignment. During
each iteration, six procedures are called with the following worst-case runtime complexities:
Each call to DoIntraproc performs O(|NE|) operations since DoIntraproc iterates over
NE and does O(1) operations per edge in NE.
Each call to DoProcs performs O(| CE|) operations since DoProcs iterates over CE and
does O(1) operations per edge in CE.
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1 bool PRED_TEMPLATE Inv(int x1, int x2) {

2 return synth(x1, x2); 3}
3 void main(int x1, int x2) {
4 S1;
5 assert(Inv(x1, x2));
6 x1 = *; x2 = *;
1 void main(int x1, int x2) { 7 assume (Inv(x1, x2));
2 // Code before loop. 8 if (e) {
3 S1; 9 S2;
4 // Loop condition and body. 10 assert(Inv(x1, x2));
5 while (e) { S2; } 11 assume (false);
6 // Code after loop. 12 3
7 S3; 13 $33
8 } 14 3}
(a) The input program. (b) The IPS-MP reduction.

Figure 15 A reduction from loop invariant inference to IPS-MP. In both programs, (S1,S2,S3)
are statements, and e is a Boolean expression in the language grammar.

Each call to DoAssumes performs O(|FE|) operations since DoAssumes iterates over FE
and does O(1) operations per edge in FE.
Each call to DoAsserts performs O(|AE|) operations since DoAsserts iterates over AE
and does O(1) operations per edge in AFE.
Each call to DoProcSum iterates over PE. However, DoProcSum only processes (lin, lout) €
PE if I,y = lwk- Since each function has a single exit location, there is at most one
edge in PE such that loy = lwk. Therefore, each call to DoProcSum performs O(|CE|)
operations, as once (lin, lout) is found, DoProcSum does O(1) operations, iterates over CFE,
and does O(1) operations per edge in CE.
Each call to DoFuncSum performs O(|FE U AE|) operations since it iterates over both
FFE and AE, and does O(1) operations per edge in FE U AE.
Therefore, BoolSynth terminates within O (22% - [Locs| - [NE U CE U FE U AE|) operations.
<

E Proof of Theorem 8

Proof. From the correctness of ComputeBoolReach (Algorithm 1):

1. DoInterproc encodes rule 3 of Def. 2;

2. DoProcs encodes rules 4 and 5 of Def. 2;

3. DoProcSum encodes rule 6 and maintains rule 5 of Def. 2.

Algorithm 2 introduces three new procedures, that correspond to the rules of Def. 6.

1. DoAssumes encodes rule 5 of Def. 6;

2. DoAsserts encodes rule 3, and queues work for DoFunSum;

3. DoFunSum maintains rules 4 and 5 of Def. 6 for items queued in DoAsserts.

Following the proof of Algorithm 1, the loop on line 22 computes a fixed point of the equations
in Def. 6. This is the least solution that is weaker than the initial assignment to (6, o,1I) on
line 21. Both # and o are initialized according to ComputeBoolReach, and follow rule 2 of
Def. 2. The initial assignment to II is IIg. Therefore, when Analyze terminates, (6, c,1I) is
a least partial program summary such that Vp € Partial(P) - II(p) = II'(p). <

F  Proof of Corollary 9

The following proposition was stated informally in Sec. 3.3.
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» Proposition 21 ([6]). If (8,0) is the least summary of a Boolean program P, then P is
correct if and only if o(l,) = L.

The proof of Cor. 9 follows.

Proof. Assume that (P,@,1;) is an IPS-MP problem for a Boolean program P. By
Thm. 8, line 31 computes a least partial program summary (6, o, II) for P such that Vp €
Partial(P) - IIy(p) = II(p). Furthermore, by Thm. 7, the call on line 31 always terminates.
Then, II solves the IPS-MP instance if and only if P is safe. By Prop. 21, P[II] is safe if and
only if #(1;) = L. On line 32, if (I, ) = L, then a solution is returned, else a witness to
unrealizability is returned. Therefore, BoolSynth decides the IPS-MP problem for Boolean
programs. <

G Proof of Theorem 10

The following proposition was stated informally in Sec. 3.3.

» Proposition 22 ([14]). A program P is correct relative to theory T if and only if TOCHC(P)
has a T-model.

The proof of Thm. 10 follows.

Proof. Let CHCBnd(P) := A\ cpartiai(py V2 - (Io(p) = p(7)). Assume that o is an F-solution
to CHCSynth(P). Since CHCBnd(P) is a term of CHCSynth(P), then Vp € Partial(P)- =1
IIy(p) = II(p). It then follows by induction on the size of Partial(P) that P[II] is correct.
Hypothesis. For some k > 0, if |Partial(P)| < k and CHCSynth(P, IIy) has an F-solution,
then P is correct.
Base Case. If |Partial(P)| = 0, then P is correct by Prop. 22.
Inductive Case. Assume that |Partial(P)| = k + 1, CHCSynth(P) has an F-solution o,
and the inductive hypothesis holds up to k. Let p € Partial(P) and P’ = P[p < o(p)]. By
the definition of an interpretation, ¢ is also a solution to ToCHC(P) A CHCBnd(P) A VZ -
p(Z) © o(p). Furthermore, VZ -Ily(p) = p(Z) is subsumed by VZ - p(Z) < o(p). Therefore,
o is an F-solution to CHCSynth(P’). By hypothesis, P’[II] is correct. Since II(p) = o(p),
then P'[II] = Plp < o(p)][II] = P[II]. Therefore, P[II] is also correct.
Therefore, IT is a solution to (P, 7T, 1Iy). <

H Proof of Theorem 11

The following proposition was stated informally in Sec. 3.3.
» Proposition 23 ([14]). ToCHC(P) is a CHC conjunction.

The proof of Thm. 11 follows.

Proof. Assume for the intent of contradiction that IT is a solution to (P, T ,1Iy). Then P[II]
is correct relative to T, since IT is a solution. Then by Prop. 23, ToCHC(P[II]) is T-satisfiable,
since P[II] is correct relative to 7. By definition:

ToCHC(P[IT]) = ToCHC(P) A ( AN vEp) @p(f)))
pEPartial(P)
Then, ToCHC(P)A (/\pEPartial(’P) VZ Iy (p) = p(f))) has a T-solution, since II is a solution to

(P, T,I) and therefore satisfies Vp € Partial(P)- =7 II(p) = Iy(p). Then CHCSynth(P, 1))
is T-satisfiable. By contradiction, (P, 7 ,IIp) is unrealizable. <
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| Proof of Theorem 12

Proof. By Prop. 23, ToCHC(P) is a CHC conjunction. For each p € Partial(P), ly(p) =
p(Z) is a CHC, since IIy(p) is quantifier-free and p is a predicate symbol. Therefore,
CHCSynth(P,IIy) is a CHC conjunction. <

J  Proof of Theorem 14
The following proposition was stated informally in Sec. 5.2.
» Proposition 24 ([49]). The halting problem is undecidable for 2-counters.

The proof of Thm. 14 follows.

Proof. Assume for the intent of contradiction that IPS-MP is decidable for linear integer
arithmetic. Let V = {z,y, z}, ¥ be the signature of linear integer arithmetic, and 7 be the
theory of linear integer arithmetic. Every 2-counter machine can be encoded in Progs(X, V)
as follows:

1. The two integer counters are x and .

2. The program counter is z.

3. The body of P(main) is a while loop with loop condition true.

4. The body of the while loop is a sequence of if-else statements that maps each value of
z to an instruction.

5. The instruction inc(x) is: x = x + 1; z = z + 1;

6. The instruction dec(x) is: x = x - 1; z = z + 1;

7. The instruction jump(x, i) is: if (x==0) { z=i; } else { z=z+1; }

8. The instruction halt () is: assert(false);

If P € Progs(X, V) is a 2-counter machine (following the above encoding), then P halts if and
only if P violates an assertion. Furthermore, |Partial(P)| = 0. Let IIy be the trivial function
from Partial(P) to QFFmI(X,V). Then the IPS-MP problem (P, 7, 1IIj) has a solution if and
only if P halts. Since IPS-MP is decidable, then the halting problem for 2-counter machines
is decidable. However, the halting problem is undecidable for 2-counter machines by Prop. 24.
Then by contradiction, IPS-MP is undecidable for the theory of integer linear arithmetic. <

K  Proof of Theorem 16
Proof. Let II be a solution (P’,II,, 7). This is true if and only if P’[IT] is correct relative
to 7. By Prop. 22, this is true if and only if TOCHC(P'[II]) is T-satisfiable. By definition
ToCHC(P'[I]) = wip(P'(main), T) A ToCHC(P) AYV - (Inv(z,y) < ¢)
wip(P'(main), T) =¥V - (((br =0) = 19) A--- A ((br = 3) = 73))
where 7; is the WLP of the i-th branch of P/(main). Since br does not appear in any 7;, then
wlp(P’(main), T) is equisatisfiable with (VV - 1) A+ A (VV - 73). Since YV - (Inv(z,y) < ¢),

ToCHC(P'[1I]) is T-satisfiable if and only if TOCHC(P'[II]) is T-satisfiable after substituting
@ for Inv. Observe that, after substituting ¢ for Inv and simplifying to CHC conjunctions:

T0 = wlnit T1 = QpclosureI AVV - (SO = fp'r'e(-r7 Y, a))
T2 = 7/}Closure,? AVV - (90 = gpre(x> Yy,a, b)) T3 = ¢Sufﬁcient AYV - (SO = funcpre(x, Y, a))

As a direct reSUIta TOCHC(P[H/D <~ ¢Im't/\w0losure1 /\wClosur'eQ A¢Suﬁ€cientA¢Sum- Therefore,
© is a solution to (P, 7). The other direction is symmetric. <
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L Proof of Theorem 18

Proof. Let II be a solution (P’,II, 7). This is true if and only if P’[II] is correct relative to
T. By Prop. 22, this is true if and only if TOCHC(P’[II]) is T -satisfiable. By definition

ToCHC(P'[H]) = wip(P'(main), T) A process AVV - (Inv(l,s,1) & @)
wip(P'(main), T) = VYV - (((br =0) = 7o) A ((br #0) = 7)),

where 7; is the WLP of the i-th branch of P’(main). Since br does not appear in 7y or 71,
then wip(P’(main), T) is equisatisfiable with (VV - 19) A (VV - 71). By definition of wlp:
70 = (Inv(l,s,7) A Inv(r,i,l)) =
(trme(l,s,r) A (trsum(l,s,r, U8 )= (Inv(l',s',r/) A Inv(r',i,l'))))
Since YV - (Inv(z,y)) < ¢, TOCHC(P'[II]) is T-satisfiable if and only if ToCHC(P'[II]) is

T-satisfilable after substituting ¢ for Inv. Observe that, after substituting ¢ for Inv and
simplifying to CHC conjunctions:

T0 = wClosure A wlnf AVV - (@ A PInf = trpre (l7 S, 7’)) T1 = wAdequate

Then ToCHC(PII']) < ¥ ciosure AV inf AV Adequate N Sum- Since the template for Inv is init,
then also =7 init(l,s,r) = . Therefore, ¢ is a solution to (P, 7). The other direction is
symmetric. <
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