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Large language models (LLMs) show promise in code
translation – the task of translating code written in one pro-
gramming language to another language – due to their ability
to write code in most programming languages. However,
LLM’s effectiveness on translating real-world code remains
largely unstudied. In this work, we perform the first sub-
stantial study on LLM-based translation to Rust by assessing
the ability of five state-of-the-art LLMs, GPT4, Claude 3,
Claude 2.1, Gemini Pro, and Mixtral. We conduct our study
on code extracted from real-world open source projects. To
enable our study, we develop FLOURINE, an end-to-end code
translation tool that uses differential fuzzing to check if a Rust
translation is I/O equivalent to the original source program,
eliminating the need for pre-existing test cases. As part of our
investigation, we assess both the LLM’s ability to produce
an initially successful translation, as well as their capacity to
fix a previously generated buggy one. If the original and the
translated programs are not I/O equivalent, we apply a set
of automated feedback strategies, including feedback to the
LLM with counterexamples. Our results show that the most
successful LLM can translate 47% of our benchmarks, and
also provides insights into next steps for improvements.

I. INTRODUCTION

The task of program translation between programming
languages is becoming particularly relevant, given the recent
interest in safe programming languages such as Rust, and the
expectation of translating potentially buggy, legacy code into
such modern languages. While “rule-based” translation tools
have been developed [1]–[3] that target a fixed source and
target language (e.g. C to Rust), recent work [4]–[7] provides
hope that large language models (LLMs) can accomplish this
task for any source and target language.

Prior work in using LLMs for code translation [4]–[9]
has almost exclusively focused on translating code taken
from competitive programming websites [10], educational
websites [11], or hand-crafted coding problems [12], [13].
While useful, such benchmarks are not representative of real-
world code. For example, these benchmarks are typically a

single function using only primitive data types, whereas real-
world code has many functions and user-defined data types
(e.g. structs).

In this work, we take a step towards answering the question:
Can LLM’s translate real-world code? Towards this end,
we develop FLOURINE, an end-to-end code translation tool
capable of producing validated Rust translations. FLOURINE
first uses an LLM to obtain a candidate translation, then
applies a compilation driven repair, where we make use of
the Rust compiler’s error messages as described in [14].
Once the translation compiles, FLOURINE uses cross-language
differential fuzzing to test the I/O equivalence between the
source program and the Rust translation. Notably, our cross-
language differential fuzzer removes the need for unit tests
– prior work assumed test cases already exist in the target
language, or they were hand-written as part of the study, mak-
ing a substantial investigation difficult. If a counterexample is
discovered, FLOURINE executes a feedback strategy, which
provides feedback to the LLM to fix the counterexample.

For the dataset we extract benchmarks from seven open
source projects written in C and Go. We do not use the
entire projects because LLMs cannot fit them in their context
window. We choose these languages because Rust, C, and
Go are typically used for low-level programming tasks, such
as systems development, so C and Go are likely candidates
for translation to Rust. The open source projects are from
a diverse set of domains: audio processing, text processing,
geometry, banking, 2D triangulation, graph algorithms, and
sound card emulation. To automate and reduce bias in the
selection of code samples, we develop a methodology and tool
for extracting them from projects. We use this tool to extract
code samples that contain between 1 and 25 functions and
use only standard libraries, and which also use features such
as global variables, user-defined, dynamically-allocated, data
structures, array pointers, type casts, enumeration types etc..

For example, Figure 1 contains a program extracted
from the ACH library featuring a global variable
moov_io_ach_stringZeros, which is initialised
with the function call moov_io_ach_populateMap(94,
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var (
moov_io_ach_stringZeros map[int]string =

moov_io_ach_populateMap(94, "0")
)

func moov_io_ach_populateMap(max int, zero string)
map[int]string {
out := make(map[int]string, max)
for i := 0; i < max; i++ {

out[i] = strings.Repeat(zero, i)
}
return out

}

Fig. 1: Code sample from ACH

"0"). This kind of initialization of a global variable is not
allowed in Rust, making it non-trivial to find an equivalent
translation without resorting to unsafe code. Claude3 managed
to find the following translation:

static MOOV_IO_ACH_STRING_ZEROS:
Lazy<HashMap<usize, String>> =
Lazy::new(|| populate_map(94, "0"));

This snippet uses once_cell::Lazy, which stores a value
that gets initialized on the first access.

As another example, Figure 2 contains a program we
extracted from the go-gt library, featuring a user-defined type
Env that assembles several arrays, pointers and numeric data.
Mapping Env to an exact counterpart in Rust is not obvious as
a slice []int64 in Golang can be represented by a vector in
Rust Vec<i64>, which is a growable, owning array-like data
type, or a borrowed-slice &’a [i64], a non-growable, non-
owning array-like data type. Our cross-language differential
fuzzer handles translations of the function add that use both
variants for Env by correctly mapping between the Go and
Rust representations of its inputs (where the receiver e of type
*Env is one of the inputs).

The code in Figure 3, extracted from the go-edlib library,
returns all the longest common subsequences of two input
strings (for brevity, we omit the callees). This code presents
several challenges, for instance, finding a correct mapping
between different styles of error handling. In Golang, a failable
computation output is typically expressed by a pair of the
target output type and the error type, as shown in the signature
of LCSBacktrackAll. On the other hand, in Rust, this is
often expressed by an optional output type, such as Result<
Vec<String>, Error>. Moreover, this program contains
casts from strings to arrays, and array manipulation, which
need to be correctly mapped to their corresponding Rust
representation.

We evaluate the LLM’s ability to produce compilable trans-
lations, as well as translations that preserve the source be-
havior. Given that semantic equivalence is critical to program
translation, we further investigate the LLM’s potential to take
feedback and fix equivalence errors. We develop and compare
four different feedback strategies. Three of our feedback
strategies provide the the LLM with counterexamples returned

func (e *Env) add(i, p int64) {
var j int64
e.S[i] = true
e.Prev[i] = p
for j = 0; j < e.N; j++ {

if e.Lx[i]+e.Ly[i]-e.G.Get(i, j) < e.Slack[i
] {
e.Slack[i] = e.Lx[i] + e.Ly[i] - e.G.Get

(i, j)
e.Slackx[i] = j

}
}

}

func (m Matrix) Get(i int64, j int64) int64 {
return m.A[i*m.N+j]

}

type Env struct {
N int64
G *Matrix
S []bool
Slack, Slackx, Prev []int64
Lx, Ly []int64

}

type Matrix struct {
N int64
A []int64

}

Fig. 2: Function add from go-gt

func LCSBacktrackAll(str1, str2 string) ([]string,
error) {
runeStr1 := []rune(str1)
runeStr2 := []rune(str2)

if len(runeStr1) == 0 || len(runeStr2) == 0 {
return nil, errors.New("Can’t process and

backtrack any LCS with empty string")
} else if Equal(runeStr1, runeStr2) {

return []string{str1}, nil
}
return processLCSBacktrackAll(

str1,
str2,
lcsProcess(runeStr1, runeStr2),
len(runeStr1),
len(runeStr2),

).ToArray(), nil
}

Fig. 3: Function LCSBacktrackAll from go-edlib

by the fuzzer. We compare these with a baseline strategy that
repeats the original prompt, relying on randomness in LLM
inference to obtain a new candidate translation.

In total, we perform 8160 code translation experiments
across 408 code samples, four feedback strategies and five
state-of-the-art LLMs – GPT4, Claude 3, Claude 2.1, Gem-
ini Pro, and Mixtral. Overall, the LLMs achieve successful
translation rates of 21% to 47% on our code samples, and
feedback strategies are responsible for up to 8% absolute of
this success rate. Somewhat unsurprisingly, we find that larger
programs (in LoC) are less likely to translate successfully than



struct Env {
n: i64,
g: Box<Matrix>,
s: Vec<bool>,
slack: Vec<i64>,
slackx: Vec<i64>,
prev: Vec<i64>,
lx: Vec<i64>,
ly: Vec<i64>,

}

struct Matrix {
n: i64,
a: Vec<i64>,

}

fn add(e: &mut Env, i: i64, p: i64) {
let mut j: i64 = 0;
e.s[i as usize] = true;
e.prev[i as usize] = p;
for j in 0..e.n {

if e.lx[i as usize] + e.ly[i as usize] - get
(&e.g, i, j) < e.slack[i as usize] {
e.slack[i as usize] = e.lx[i as usize] +

e.ly[i as usize] - get(&e.g, i, j);
e.slackx[i as usize] = j;

}
}

}

fn get(m: &Matrix, i: i64, j: i64) -> i64 {
m.a[(i * m.n + j) as usize]

}

Fig. 4: Rust translation of function add from go-gt

smaller programs. Surprisingly, we also find that our feedback
strategies that include counterexamples in the prompt actually
perform worse than the simple baseline strategy. We discuss
why this may be case, and suggest directions for future work.

We claim the following contributions:
• We develop FLOURINE, a tool capable of producing

validated Rust translations without the need for hand-
written test cases

• We build a cross-language fuzzer, capable of passing
inputs and outputs between languages

• We use FLOURINE to conduct the first substantial study
of using LLMs to translate real-world code

• We demonstrate that LLMs are capable of translating
parts of real-world projects, and that directly providing
counterexamples as feedback to an LLM is less effective
than repeating the original prompt

• We open source all code, benchmarks, results to repro-
duce our experiments*

II. RELATED WORK

In this section, we discuss closely related work from the
literature under several categories.

Code Translation. The most closely related code translation
works use LLMs for translation where the source and target

*Artifact can be downloaded at https://d34gtk3knhjgeg.cloudfront.net/
artifact.tar.gz

languages are different. Most of them [4]–[7], [9] evaluate
exclusively on competitive programming style code. In con-
trast, our work evaluates on real-world code, allowing us
to draw stronger conclusions about LLM’s ability for code
translation. Others use some real-world code: [15] evaluates
on real-world API code, translating Java to C#. Their technique
requires additional fine-tuning, unlike ours. Another work, [8],
uses real-world benchmarks but does not produce syntactically
correct code for those examples. Two of the works [8], [9]
conclude that counterexamples can be useful feedback, which
does not match our conclusion. We compare our results with
theirs in Section VI-C1.

Other LLM/ML code translation works focus on problems
where the source an target language are the same [16], [17].
We consider this a different task than ours, because the goals
are different. Meta studies have been conducted on code
translation as well in [18], [19], though they do not provide
insight on translating real-world code. Finally, several works
have developed rule-based techniques for specific source and
target language pairs such as C to Rust, [3], [20], [21], C
to Go [1], and Java to C# [2]. While rule-based approaches
can theoretically guarantee correctness of the translation, they
require significant engineering effort to build, and they can
produce unidiomatic code as we demonstrate in our results.

Cross-Language Differential Fuzzing. While differential
fuzzing/testing has a rich literature, the majority do not con-
sider comparing implementations in two different languages.
There are many works that compare programs in the same lan-
guage using symbolic execution [22]–[25] and fuzzing [26]–
[29]. Such works do not need to solve the problem of mapping
data from one language to another, though they are likely
complementary to our work – they could be used to improve
the coverage achieved by our fuzzer. Works in fuzzing multi-
language systems [30] do not address this problem either. Only
one work [31] attempts general cross-language testing like we
do by compiling both languages down to a shared IR. As we
will discuss in Section IV-B, this approach cannot effectively
handle user-defined data types, and is heavily dependent on
the IR compiler preserving structure of the original source
program.

Feedback Strategies for LLMs. Only a limited number
of works have tried to develop feedback strategies for LLMs.
Recent work in automated program repair [32], [33] reports
success with an approach that provides counterexamples as
feedback. We discuss their results in relation to ours in
Section VI-C1. While any automated program repair technique
could be used as a feedback strategy, we focus only on
feedback strategies that use an LLM to fix errors.

III. OVERVIEW

In this section, we define the task of code translation,
provide an overview of our algorithm for code translation with
LLMs, and then illustrate on a concrete example.

https://d34gtk3knhjgeg.cloudfront.net/artifact.tar.gz
https://d34gtk3knhjgeg.cloudfront.net/artifact.tar.gz


A. Code Translation

We first formally define the problem of code translation.
Let l be a programming language, and Pl the set of all valid
programs written in l. Assume we have a program p ∈ Pl

that we wish to translate to a different language l′. That is,
we wish to find p′ ∈ Pl′ that has the same behavior as p with
respect to a mapping between the values of l and l′.

In our work, a program (i.e. p or p′) is a set of functions,
user-defined types (e.g. struct definitions), global variables,
import/include statements etc. One of the functions in a
program is the entry point function. Note that the entry point
function is not necessarily main() – the inputs and outputs
of the entry point could be primitive data types, user-defined
types (e.g. structs, classes), and even pointer types.

For simplicity of notation, we define p and p′ as operating
on program states. A program state contains the values of the
inputs outputs of the program, as well as variables defined in
the global scope. Letting Sp and Sp′ be the set of all program
states for p and p′, respectively, we have p : Sp → Sp and
p′ : Sp′ → Sp′ . We write p(sin) = sout where sin, sout ∈ Sp

to denote the result of executing p on sin.
To complete our definition of code translation, we define

M : Sp → Sp′ and M ′ : Sp′ → Sp, which are mapping
functions that map states of program p to states of p′, and vice
versa. Formally, translation’s goal is to discover a program p′

such that:
∀s ∈ Sp.p(s) = M ′(p′(M(s)))

B. Our Code Translation Algorithm

Next, we present our iterative algorithm for code translation.
We again assume we have a source program p, and we wish
to discover a translation p′ with the same behavior.

Let G : Q → Pl′ be an LLM that takes a natural
language query q ∈ Q and outputs a candidate translation
p′ ∈ Pl′ . q contains the original source program p and natural
language instructions to translate p into the target language
l′. Note that in practice, the resulting p′ may have a top-level
function whose function signature is incompatible with p and
therefore the mapping functions M ,M ′ cannot be defined, or
the program output by the LLM may not compile. We find that
the former rarely happens, and we address the latter through
a compilation repair phase, which is based on the approach
in [14].

We also assume the existence of a fuzzer. We define this as
FUZZER(p, p′), which takes the original source program and
translation, and returns two sets of examples E+ and E−. E+

is a set of positive examples where p and p′ agree. Positive
examples have the form (sin, sout), where sin, sout ∈ Sp′ . E−

is the set of counterexamples where the output produced by p
disagrees with p′. A counterexample is a triple of states from
S′
p of the form (sin, sexp, sact), which are the initial state,

expected output state, and the actual output state.
Finally, we have a routine FEEDBACK(q, p′,E−,E+) which

takes the query q, the candidate translation p′, and the ex-
amples E+,E− returned by the fuzzer, and returns a new

query that can be provided to G to generate a new candidate
translation.

The routine for code translation with feedback strategies is
shown in 1. We first use G to generate a candidate program p′

from the initial query q, which we then pass to the compilation
driven repair routine. If this is unsuccessful at making p′

compile, we exit the loop and fail. Otherwise, we invoke the
fuzzer to check for counterexamples. If none are found, we
assume p′ is correct, and return it. Otherwise, we invoke a
feedback routine, which generates a new q, and repeat the
process until a program is found that passes the fuzzer check,
or until some fixed budget is reached and we fail.

Algorithm 1 Iterative Code Translation Algorithm

Require: p : The program to translate, q: The initial task
description, FEEDBACK: A feedback strategy, b: A budget

1: while b > 0 do
2: p′ ← G(q)
3: if ¬COMPILATION-REPAIR(p′) then
4: break
5: end if
6: E−,E+ ← FUZZER(p, p′)
7: if E− = ∅ then
8: return p′

9: end if
10: q ← FEEDBACK(q, p′,E−,E+)
11: b← b− 1
12: end while
13: return FAIL

C. Motivating Example

We now illustrate our Rust translation approach with the
concrete example in Figure 2. In the example, our source
program p is the function add from the go-gt library. This
is a subroutine of the Hungarian algorithm [34] for finding
maximum matching, which adds two edges to an alternating
path during the search, and records the output by mutating the
receiver e.

We first create an initial query containing the Go code and
instructions describing the translation task, which is given to
the LLM to generate a candidate translation. If we continue
past compilation driven repair, the candidate translation p′ in
Figure 4 is guaranteed to compile, but not to be I/O equivalent
to the original source program. To check for I/O equivalence,
p and p′ are passed to the fuzzer, which uses an off-the-
shelf fuzzing technique to generate input states, execute both
programs, and check that they produce the same output state.
We capture side-effects by comparing whole program states,
rather than just the explicit output.

One of the challenges that we face is executing p and
p′ in two different languages on matching input states, and
then comparing their output state. Specifically for our running
example, we must convert primitive types as well as user-
defined data structures: Env has distinct representations in
Go and Rust; arguments i and p have type int64 in Go,



{"e": {
"n": 3,
"g": {

"n": 3,
"a": [0, 0, 0, 0, 0, 0, 0, 0, 0]

},
"s": [false, false, false],
"slack": [0, 0, 0],
"slackx": [0, 0, 0],
"prev": [0, 0, 0],
"lx": [0, 0, 0],
"ly": [0, 0, 0]

},
"i": 2,
"p": 0}

Fig. 5: Serialized JSON input state for function add

but i64 in Rust; e is a pointer to an Env value in Go, but a
mutable reference in Rust.

To solve this challenge, we develop a technique based on
serializing then de-serializing to exchange data between lan-
guages. We use the JSON [35] format, because most languages
support it. Most data types, including complex data types and
pointers can be automatically serialized into JSON, thus it
allows us to easily support real-world code. For our example,
Fig. 5 denotes a serialized valid input state. Once the two
programs are executed, the Go output state is again serialized
to JSON, deserialized to Rust, and compared against the Rust
output state. For our example, the expected output state, as
obtained by executing the Go code, is the same as the input
state in Fig. 5, with the only difference that the last element
of field s is set to true instead of false. The translation
in Figure 4 computes the expected output state, and it is thus
deemed I/O equivalent to the original Go code, and returned
by FLOURINE.

Conversely, if a counterexample is discovered by the fuzzer,
then we invoke a feedback method, which uses the counterex-
ample to create a new query to the LLM and generates a new
candidate translation. Designing a suitable feedback method
is another challenging aspect of the translation task. There are
many ways to re-query the LLM for a new translation, each
with their own likelihood of success. Moreover, most state-of-
the-art LLMs are operated as API services which charge per
input token, so different query strategies will have different
dollar costs. To address this, we propose and evaluate a set of
feedback strategies.

IV. LLM-BASED CODE TRANSLATION

A. Obtaining Translations

As mentioned in the previous sections, we are considering
the problem of translating a program written in C or Go to
Rust. We use zero-shot prompting and follow the best practices
given by the LLM’s provider. We construct the initial query q
(to be input to the LLM) as sketched in Figure 6.

We start with a preamble describing the overall task. Then,
we supply the program to be translated, and, finally, we
provide specific constraints to be followed by the LLM.

Human:
# Preamble
You are given a C/Go program. We need to translate
it to Rust.

# Code to be translated
{C/Go Program}

# Instruction
Give me a Rust translation of the above C/Go code.
# Constraints
Here are some constraints that you should respect:

• Give me only the translated code, don’t add
explanations or anything else. # formatting guideline

• Use only safe Rust. # code characteristic
• Do not use custom generics. # fuzzer limitation
• ...

Assistant:

Fig. 6: LLM Prompt for obtaining translations.

In particular, we have three types of constraints: formatting
guidelines, code characteristics and fuzzer constraints. Format-
ting guidelines describe how the generated code should look,
simplifying parsing and extraction of relevant information
from the response. For code characteristics, we instruct the
LLM to produce safe Rust code, and to maintain the same
function names, parameter names, and return types from the
input code. Finally, the fuzzer constraints ensure that the
generated code can be handled by our fuzzer (more details
on this in Section IV-B).

The translation generated by the LLM may not initially
compile. We address this with approach in [14]. At a high
level, we iteratively query the LLM to fix the error, until
the code becomes compilable. Each time, we provide both
the faulty translation and the error message from the Rust
compiler to the LLM, and ask it to use a specific format for
the suggested fixes, applying them only to the affected lines
of code.

B. Checking Translations

To test the I/O equivalence between the original source
program p and a candidate Rust translation p′, we develop
a cross-language differential fuzzer. For a given p and p′, we
automatically generate a fuzzing harness in Rust, which uses
Bolero and libfuzzer [36] to perform fuzzing. The test harness
generates program states from Sp′ , which are directly invoked
on p′. We implement the mapping function M ′ : Sp′ → Sp,
using JSON de/serialization. We serialize the Rust program
state s′ into JSON format, and then instrument the source
program p to deserialize the JSON into a program state of Sp.
The instrumented p is invoked on the serialized s′ from Rust
using a foreign function interface. To compare outputs, we map
the output state of p to one of p′ using JSON de/serialization
as well, which can then be directly compared.

We use JSON serializers for two reasons. First, the mapping
between fields of user-defined data types in the source and
target language are automatically determined based on the
field names. This requires the LLM to produce data types



with field names that match the source program, but in our
benchmarks LLMs always do this. Second, most languages
support automatic serialization of primitive, pointer, and user-
defined types.

We note an alternative approach, taken by [31], is to compile
both p and p′ down to a common IR, such as LLVM, and
then perform fuzzing on the IR. However, we find that IR
compilers for different languages typically discard type and
layout information (e.g. user-defined data types are represented
as a void pointer). This makes it nearly impossible for a fuzzer
to generate any meaningful inputs.

Soundness & Limitations. Our fuzzer can only make
heuristic based guarantees (e.g. coverage) on the equivalence
of p and p′. This is a limitation of fuzzing and testing in
general. However, our fuzzer achieves an average line coverage
of 97%.

In addition, JSON serialization is not automatically sup-
ported for all types. For example, features in Rust like trait
definitions, IMPL traits, and lifetimes in data type definitions
are only partially supported. This means that the equivalence
check may fail because serialization fails. We report these
errors in Section VI-B. In addition, we do not support fea-
tures like concurrency, network, and file I/O. Our benchmark
selection excludes these features.

V. FEEDBACK STRATEGIES

In this section, we present four feedback methods that can
be used if the fuzzer finds a counterexample E− for the
correctness of the translation p′ by the LLM in Alg. 1.

a) Simple Restart Restart: We discard the generated code
p′ and re-query the model with the same prompt q.

b) Hinted Restart Hinted: This builds on the previous
strategy by adding positive and negative examples from the
fuzzer, E+ and E−, to the original prompt q. The intention is
to suggest desirable behaviours to the LLM, as well as known
faulty cases to avoid. We separately group the examples in E+

and E− based on the paths they exercise in p′. Intuitively, this
corresponds to splitting them into equivalence classes, where
each equivalence class corresponds to a particular program
path. Then, the query constructed by Hinted only contains
positive and negative examples from a single equivalence class,
respectively.

c) Counterexample-Guided Repair (BaseRepair): Dis-
carding the generated code p′ when the fuzzer check fails may
not always be the optimal choice. For instance, if p′ is close
to passing the fuzzer, trying to repair it might work better.
As part of BaseRepair, we give counterexamples from the
fuzzer to the LLM. Similarly to Hinted, a query only contains
negative examples from the same equivalence class, which
correspond to bugs associated with the same program path.
The expectation is that the candidate translation generated in
the next iteration of Alg. 1 will produce the correct outputs
for the given examples. A sketch of the prompt used for
BaseRepair is given in Figure 7 (excluding the lines colored
in magenta). In Alg. 1, if the translation generated by G for
the query q constructed by BaseRepair still fails the fuzzer

Human:

# Preamble
You are given a C/Go program and its faulty Rust
translation. We need to repair the faulty Rust
program.

# Code to be translated
{C/Go Program}

# Code to be repaired
{Faulty Rust Program}

# Instruction
Make changes to the given code to obtain expected
outputs for the given test inputs.

# Constraints
Here are some constraints that you should respect:
...

# Counterexamples
CE1
CE1

Assistant:
{LLM generated rust translation}

Human:
That is incorrect on the following inputs:
# Counterexamples
CE1
CE2

Assistant:

Fig. 7: LLM Prompt for BaseRepair and CAPR. BaseRepair
is shown in black. CAPR is shown in black and magenta.

check, then this last faulty translation will be considered by
the next call to BaseRepair.

d) Conversational Repair (CAPR): Recent work in code
translation [8] and automated program repair [37], have
proposed conversational repair approaches, wherein previous
incorrect code is included in the prompt to the LLM to
discourage the LLM from producing the same code again. The
CAPR approach begins with the same prompt as BaseRepair,
however they differ if the new translation still fails the fuzzer
check. In BaseRepair, we create a new prompt from scratch,
but in CAPR, we keep the prompt, and append a new piece of
dialogue to it as shown in magenta Figure 7. This process can
be repeated multiple times, meaning the prompt is a dialogue
of failed translations.

The methods Restart and Hinted cost less than BaseRepair
and CAPR as they don’t include the incorrect translation in the
prompt. Therefore the former use about half the input tokens
of the latter.

VI. EVALUATION

In this section, we present our results for the following
research questions.

RQ1: How do LLMs perform on translating code taken
from real-world projects to Rust? We gather a large number
of benchmarks by extracting code samples from real-world



projects, and we use LLMs to generate translations which
are then checked for correctness by the fuzzer, and fixed
if needed by applying feedback strategies. We answer the
following concrete questions.

(RQ1.1) How many benchmarks can each LLM translate
from each of our projects? We report the percentage of
benchmarks from each project that are successfully translated
for each LLM. We show that success rates vary widely based
on the benchmark and LLM. LLMs achieve up to 80% success
rate on benchmarks from our “easiest” project, and between
15-40% on our “hardest” project.

(RQ1.2) How does code complexity affect the success rate
of translation? We look at how lines of code and number of
functions in a benchmark influence the success rate. We show
lines of code strongly influences success rates.

(RQ1.3) How idiomatic is the Rust produced by LLMs?
We run Clippy [38], Rust’s standard linter, on the successful
translations, and analyze the rates of different categories of
linter warnings. We show that LLMs occasionally (1-15% of
the time) produce code with linter warnings, suggesting that
the translations could be made more performant, concise, or
use unsafe code.

RQ2: How effective are feedback strategies at fixing
translation bugs? In addition to overall translation success
rates, we record the initial success rates – the rate at which
the first translation passes the fuzzer – and compare this to
the overall success rate. We answer two concrete questions.

(RQ2.1) How much do feedback strategies increase the
translation success rate? We compare overall success rates
directly to initial success rates. We show that the most effective
feedback strategy increases the success rate by an absolute 6-
8% on average for the best LLMs.

(RQ2.2) Which feedback strategies increase success
rates the most? We compare the increase in success rates
for each feedback strategy. We show that, surprisingly,
Restart and Hinted outperform BaseRepair and CAPR
consistently. We provide a plausible explanation for this result.

RQ3: How do LLM translations compare to rule-
based translation tools? We compare LLM translations
to translations produced by the rule-based translation tool
C2Rust [3]. While C2Rust theoretically can guarantee the
correctness of the translation, we show LLMs produce far
more concise and idiomatic translations.

RQ4: Why do translations fail? Translation can fail for
several reasons beyond the fuzzer finding counterexamples.
We report failure rates for different failure reasons.

A. Experimental Setup

1) Implementation: We implement an end-to-end transla-
tion tool FLOURINE, which takes as input (1) a program, (2)
a feedback strategy to apply, and (3) a budget. FLOURINE
outputs either a corresponding Rust translation that passes the
fuzzer, or it fails with an error. Algorithm 1 is used for the

implementation of FLOURINE. FLOURINE is written entirely
in python, except for the fuzzer, which is written in Rust.
FLOURINE currently supports C and Go for the input program.
FLOURINE is implemented as a framework, which can be
extended with new LLMs, feedback strategies, and language
support for the input program. We use GNU Parallel [39] to
run experiments in parallel.

2) LLMs: We limit our study to LLMs hosted by third
party providers. This is in part because they are the highest
performing on coding tasks, and they are the most accessible
in that they do not require the user to own powerful compute
resources. We use five LLMs in our evaluation: GPT-4-
Turbo [40], Claude 2.1 [41], Claude 3 Sonnet [41], Gemini
Pro [42], and Mixtral [43]. The first four are likely very large
(1T+ parameters). On the other hand, Mixtral is relatively
small (45B parameters), but is known for performing well on
coding tasks, and costs less than the others. We access GPT-4-
Turbo and Gemini Pro through OpenAI’s and Google’s APIs.
We access Claude and Mixtral through AWS Bedrock. Due to
lack of access to GPU machines, we do not attempt to run
open source LLMs like CodeLLaMA.

3) Benchmarks: We collect benchmarks from real-world
projects hosted on GitHub. We focus on C and Go as the
source program languages for multiple reasons. First, C, Go,
and Rust are typically used for lower-level programming tasks,
unlike other popular languages like Java or Python. Thus they
are likely candidates for translating to Rust. Second, and more
pragmatically, projects written in C and Go make less use of
third party libraries, which we do not attempt to support for
this work. Conversely, most Java and Python projects make
heavy use of third party libraries.

We choose seven projects with the aim of getting a diverse
set of application domains. Our projects are:

• ACH [44]: a Go library implementing a reader, writer,
and validator for banking operations

• geo [45]: a math-focused Go library implementing com-
mon geometry functions and interval arithmetic

• libopenaptx [46]: a C library for audio processing
• opl [47]: a C library for sound card emulation
• go-gt [48]: a Go library for graph algorithms
• go-edlib [49]: a Go library string comparison and edit

distance algorithms
• triangolatte [50]: a 2D triangulation library in Golang
As we will show in our experiments, LLMs are still not

capable of translating entire projects. To create benchmarks
of manageable size, we develop a tool for automatically
extracting benchmarks from these projects. Our tool takes as
input the entire project and a specific function identifier f in
the project. The tool then analyzes the project to find all of f ’s
dependencies, including all functions called by f (including
transitive calls), type definitions, standard libraries, global
variables, etc. and extracts them intro a single, compilable
file. The translation task is then to write a compilable Rust file
with a function equivalent to f ’s behavior. Our methodology
for selecting benchmarks is to iterate over all functions in a
project, create a benchmark for it, and keep it if it meets the



TABLE I: Benchmark details

Project Lang. #Benchs Min/Max/Avg LoC Min/Max/Avg #Func

libopenaptx C 31 13 / 173 / 69 1 / 9 / 2.9
opl C 81 19 / 460 / 67 1 / 15 / 2.8

go-gt Go 43 9 / 213 / 51 1 / 16 / 3.5
go-edlib Go 36 13 / 597 / 62 1 / 25 / 3.1

ach Go 121 43 / 194 / 64 3 / 7 / 3.4
geo Go 67 13 / 70 / 35 3 / 7 / 4.1

triangolatte Go 29 9 / 164 / 38 1 / 10 / 2.5

following criteria: (1) it does not use 3rd party libraries, (2)
the maximum depth of the call graph is less than 4.

Details on the benchmarks are given in Table I. The total
number of benchmarks extracted from each project is given
in the column “#Benchs”. LoC and number of functions for
individual programs vary from 13 to 597 and from 1 to 25,
respectively.

4) LLM Hyperparameters: All LLMs use a temperature
parameter for controlling the randomness/creativity of its
output. To make our results more deterministic, we use a lower
temperature (i.e. less random) of 0.2. Other hyperparameters,
e.g. topP and topK, are set to the default value recommended
by the LLM’s provider.

5) FLOURINE Hyperparameters: We set the budget b in
Algorithm 1 to 5. For the Hinted and BaseRepair strategies
we provide 4 examples in the prompt (more examples appeared
to reduce efficiency as the context window grew). For the
CAPR strategy, we keep conversation window size as 3, which
means that only the latest 3 incorrect translations are made
available to the LLM. A translation is deemed equivalent if 5
minutes of fuzzing does not return any counterexamples.

6) Compute Resources: We run our experiments on a
machine with an AMD EPYC 7R13 Processor with 192 cores
and 380 GB of RAM. Each translation task is run sequentially
in a single thread (we do not parallelize individual translation
tasks or fuzzing). As previously mentioned, all LLMs are
accessed through APIs provided by third party services.

B. Results

We run a translation experiment for each of our five LLMs,
four feedback strategies, and 408 benchmarks for a total of
8160 translation experiments. A translation is successful if
it compiles and passes the fuzzer. A translation is failed if
it: (1) does not compile, (2) the fuzzer cannot de/serialize
the types used in the translation, or (3) the fuzzer finds a
counterexample in the translation and the budget is reached if
applicable. We answer our research questions based on these
results.

RQ1: How do LLMs perform on translating code
taken from real-world projects to Rust? Our LLMs achieve
overall success rates of 47.7% (Claude 2), 43.9% (Claude
3), 21.0% (Mixtral), 36.9% (GPT-4-Turbo), and 33.8%
(Gemini Pro). We present detailed results for each LLM
in Figures 8, 9, 10, and 11. The success rate is the total
number of successful translations divided by the total number

of translation experiments in the category (experiments for
different feedback strategies are averaged together). We
answer our sub-questions below.

(RQ1.1) How many benchmarks can each LLM translate
from each of our projects? Figure 8 shows success rates by
benchmark and LLM. The best LLMs achieve success rates
of 20-60% depending on the benchmark, with one outlier of
80% by Claude 2 on ACH. The outlier is in large part due
to ACH having ∼40 extremely similar benchmarks, which
Claude 2 nearly always gets right. If we remove these similar
benchmarks, the success rate for Claude 2 drops to 55%,
which is in line with the other LLMs. A consistent trend
is that Mixtral, while somewhat capable, has 5-20% lower
success rates than the other much larger and more expensive
LLMs. However, the cost of running Mixtral (both in dollars
and compute) is at least 10x less than the other LLMs. Other
trends are that Claude 2, Claude 3, and GPT-4-Turbo perform
similarly on most benchmarks, and they outperform Gemini
in most cases.

(RQ1.2) How does code complexity affect the success rate
of translation? We use lines of code and number of functions
as proxy metrics for complexity, and we show success rates
for benchmarks grouped by level of complexity in Figures 9
and 10. The general trend is that increasing complexity,
especially in lines of code, reduces success rate. The spikes
for 3 functions and 48-82 lines of code are again due to
the ACH benchmarks mentioned in the previous research
question. Removing these flattens the spike. In particular,
success rates tend to drop off somewhere around 100+ lines of
code. We discuss approaches for handling larger benchmarks
in section VI-C2.

(RQ1.3) How idiomatic is the Rust produced by LLMs?
Figure 11 shows the rate of different categories of linter
warnings produced by Clippy [38], Rust’s standard linter. We
limit our analysis to successful translations. Clippy reports
five types of warnings, and we add unsafe. We describe
them below, and give specific examples of the warnings most
frequently reported by Clippy on the Rust translations.

Correctness: reports code that may have correctness bugs.
The common examples we find are: checking if an un-
signed integer is greater than 0, and using MaybeUninit
::uninit().assume_init() (i.e. assuming that poten-
tially unitialized data is initialized)

Suspicious: the same as Correctness, but could be a false
positive

Style: code that is unidiomatic, but still correct. The com-
mon examples we find are: not following naming conventions,
unnecessary borrows, using return statements, unnecessary
closure expressions (e.g. xs.map(|x| foo(x)) instead
of xs.map(foo)), using class types (e.g. String) when
a simple primitive type will suffice (e.g. str), and not
using idiomatic statements (e.g. using x <= z && z <= y
instead of (x..y).contains(z))

Complexity: code that could be simplified. Common exam-
ples are: unnecessary casting or type conversion, unnecessary



Fig. 8: Success rate for each LLM on each benchmark.
Averaged across all feedback strategies.

Fig. 9: Success rate for each LLM on benchmarks
grouped by lines of code.

Fig. 10: Success rate for each LLM on benchmarks
grouped by number of functions.

Fig. 11: Rates of different types of linter warnings for
each LLM.

parentheses, and unnecessarily putting a Box<..> around the
type of a function parameter

Performance: code that could be written to run faster. The
most common example is unnecessarily putting a Box<..>
around local variables or collection types (e.g. Vec)

Unsafe: code wrapped in an unsafe block
Overall, LLMs produce very few correctness warnings,

however they occasionally (1-15% of the time) produce code
that could be more idiomatic (Style warnings), more concise
(Complexity warnings), or more performant (Performance
warnings). Gemini’s high rate of Style warnings is due to its
preference for using return statements when not necessary.
We suspect that a large number of these warnings could be
eliminated through prompting (e.g. instructing the LLM to
prefer not using return statements, follow specific naming
conventions, and not use Box<..> in certain cases). We
also observe occasional use of unsafe, however the use of
unsafe code was not necessary in those cases.

RQ2: How effective are feedback strategies at fixing transla-
tion bugs? We answer this question by comparing the initial
success rate – the rate at which the first translation passes the

Fig. 12: Absolute improvement in success rates after applying
feedback strategies as compared to initial success rate.

fuzzer, after fixing compilation errors – to the final success
rate after applying feedback strategies to the unsuccessful
translations.

(RQ2.1) How much do feedback strategies increase the
translation success rate? Figure 12 shows the final success
rate subtracted from the initial success rate. Disappointingly,



the best feedback strategy only improves success rates by 6-
8% absolute across all of our benchmarks.

(RQ2.2) Which feedback strategies increase success
rates the most? Figure 12 also shows, surprisingly, that
the most reliable strategy is Restart (simply repeating the
same prompt). In fact, our results suggest that providing
counterexamples in the prompt may actually confuse the
LLM. We discuss this trend further in Section VI-C1.

RQ3: How do LLM translations compare to rule-based
translation tools? We compare the idiomatic-ness of LLM
generated Rust to C2Rust [3] on our opl benchmark (C2Rust
failed to produce code for most of libopenaptx). Rates of
linter warnings are presented in Figure 11. Overall we can
see that the majority of code produced by C2Rust is unsafe
and it is far less idiomatic, as indicated by the rate of style
warnings. In addition, we observe that C2Rust produces
far more verbose Rust than LLMs. On average C2Rust
translations have 1.98x more LoC than LLM translations.

RQ4: What is the main cause of translation failure?
There are three reasons a translation can fail. (1) A compiling
translation cannot be found. This accounts for only 7.0% of
failures. (2) The fuzzer cannot de/serialize the data types.
These account for 52.6% of failures. (3) A counterexample
is found in the final translation. These account for 40.3%
of failures. The implication of this result is that we likely
under-report the true translation success rate, because at least
some serialization failures might be successes.

C. Discussion & Future Work

1) Improving Feedback Strategies: Our result that coun-
terexamples harm performance contradicts several recent
works’ results [8], [9], [32], [33]. We note that two of the
works [8], [9] do not compare with a simple baseline like
Restart, so they cannot conclude if counterexamples helped or
hurt. However, the other two [32], [33] do report benefit from
counterexamples relative to a baseline, and they evaluate on
real-world code (though their task is automated program repair
as opposed to code translation). The most likely explanation
for their success and our failure is that their counterexamples
use inputs from human-written test cases, so they might be
more “intuitive” to an LLM. On the other hand, our coun-
terexamples come from random inputs generated by a fuzzer.
Our own manual analysis reveals that random fuzzer inputs
are not intuitive to a human and their textual representation
can be very large and unintuitive to an LLM as well. A
future direction is to study what types of counterexamples are
useful for LLMs. Studying input selection and input reduction
techniques would likely be immediately fruitful.

2) Handling Larger Benchmarks: We conjecture that the
stochastic nature of LLMs’ next token prediction poses fun-
damental limitations for translating large source programs in
one go. Larger input source programs require more Rust code
to be generated by the LLM, or in other words, more tokens
to be predicted. Each time a token prediction is made, there is

some probability that an erroneous prediction is made. Letting
e be the probability of an erroneous prediction, the probability
that the LLM correctly predicts n tokens is (1 − e)n. This
probability quickly goes to 0 as n increases. A future direction
that (at least theoretically) solves this problem is to develop a
solution that partitions the input source program into chunks
that can be individually translated and validated. The most
obvious way to partition an input program is by function, but
one could imagine even going down to the basic block level.

3) Improving the Fuzzer: Given the high rate of failure
due to serialization limitations, improving the serializer in our
fuzzer to handle more features data types is likely necessary
to make additional progress as well.

VII. THREATS TO VALIDITY

Our main results are that (1) LLMs can translate real-world
code, and that (2) providing counterexamples to the LLM
is not effective feedback. We discuss threats to the validity
of these conclusions. The biggest threat to (1) is that the
fuzzer may miss counterexamples. While we acknowledge this
limitation, we point out that the fuzzer achieves 97% coverage
on average, thus we are confident that the translations are
“mostly” correct. This limitation is also generally accepted
in prior work, which uses test suites to assess correctness.
Another threat to (1) is that our results do not generalize to
other languages. We argue this is unlikely for popular lan-
guages like Java and Python, given that they more represented
in LLM training data than C and Go. However, even if our
results do not generalize to other languages, translating C and
Go to Rust is still highly practical. The biggest threat to (2) is
that other prompting strategies may improve the LLMs ability
to use counterexamples. While possible, we believe this is
unlikely due to the complexity of inputs in our benchmarks,
as explained in Section VI-C1. Finally, recent work [51] has
shown high non-determinism in code generated by LLMs,
which poses a threat to both (1) and (2). While we don’t
run our experiments multiple times, executing our feedback
strategies for multiple iterations has a similar effect. It is
highly unlikely an additional run of experiments would give
significantly different results, and doing so would be expensive
(in dollar cost).

VIII. CONCLUSION

In this work, we study the ability of LLMs to translate real-
world code to Rust. We present FLOURINE, an end-to-end Rust
transpiler, and we use it to test the ability of five state-of-the-
art LLMs to translate C and Go code taken from real-world
projects to Rust. Our results demonstrate that LLMs are indeed
capable of translating code to Rust, though there room for
improvement. In addition, we show that counterexamples, at
least random fuzzer generated counterexamples, are ineffective
feedback for an LLM.
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