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Abstract

Large language models are becoming increasingly practical
for translating code across programming languages, a pro-
cess known as transpiling. Even though automated transpi-
lation significantly boosts developer productivity, a key con-
cern is whether the generated code is correct. Existing work
initially used manually crafted test suites to test the transla-
tions of a small corpus of programs; these test suites were
later automated. In contrast, we devise the first approach for
automated, functional, property-based testing of code transla-
tion models. Our general, user-provided specifications about
the transpiled code capture a range of properties, from purely
syntactic to purely semantic ones. As shown by our experi-
ments, this approach is very effective in detecting property vi-
olations in popular code translation models, and therefore, in
evaluating model quality with respect to given properties. We
also go a step further and explore the usage scenario where
a user simply aims to obtain a correct translation of some
code with respect to certain properties without necessarily be-
ing concerned about the overall quality of the model. To this
purpose, we develop the first property-guided search proce-
dure for code translation models, where a model is repeatedly
queried with slightly different parameters to produce alter-
native and potentially more correct translations. Our results
show that this search procedure helps to obtain significantly
better code translations.

1 Introduction
Large language models (LLMs) are becoming highly rele-
vant for translating code across programming languages, a
process also known as transpiling. Transpilation is typically
used to translate an existing software system written in an
obsolete programming language into a modern language or
to integrate code bases written in different languages into
one. On one hand, automated transpilation tremendously in-
creases developer productivity. On the other hand, a key con-
cern is whether the transpiled code is correct.

Existing work used manually crafted test suites (Rozière
et al. 2020) to assess the quality of translations for individual
functions. These test suites were later generated automati-
cally using search-based testing (Rozière et al. 2022). How-
ever, given the small corpus of functions, it remains unclear
how well the models generalize to other code.
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Our approach. In this paper, we automatically test
functional properties of code translation models them-
selves. To this end, we extend NOMOS (Christakis et al.
2023), an open-source framework for expressing functional-
correctness properties of machine learning models and au-
tomatically testing models against these properties. In par-
ticular, NOMOS uses a declarative, domain-agnostic specifi-
cation language for writing hyperproperties (Clarkson and
Schneider 2008) (or k-safety properties), which capture
functional correctness by reasoning about k model execu-
tions. As an example, consider a recidivism-risk model pre-
dicting whether a criminal is likely to re-offend. The prop-
erty that “if a criminal’s number of priors increases, then
their recidivism risk should not decrease” is a 2-safety prop-
erty—we need two model executions to detect a violation of
this property, both of which take as input the same crimi-
nal but one with an increased number of priors. NOMOS has
been used to effectively test models from various application
domains, namely action policies as well as models that take
as input tabular data, images, speech, and natural language.

Here, we build on NOMOS to enable it to express and val-
idate a wide range of k-safety properties about code transla-
tion models, ranging from purely syntactic to purely seman-
tic properties of the transpiled code. An example of a purely
syntactic property is that “the number of loops in the trans-
lated code should match the number of loops in the origi-
nal code”; a purely semantic property is that “the translated
code should produce the same return values as the original
code for a given set of inputs”. We can also express compila-
tion preservation, that is, “if the original code compiles, the
translated code should also compile”. Note that compilers
typically perform both syntactic (e.g., parsing) and semantic
(e.g., type checking) analyses, and thus, compiler preserva-
tion could be viewed as a hybrid property, between purely
syntactic and purely semantic ones. These are examples of
standard (1-)safety properties—they can be validated by a
single model execution that generates the translated code.

A k greater than 1 enables specifying the expected model
behavior more comprehensively. For instance, violations of
the above compilation property may be unavoidable for
some programs—e.g., the source program uses a library
function for which there is no comparable version in the tar-
get language. Writing k-safety properties allows not label-
ing such unavoidable model behavior as “buggy” and iden-
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tifying more severe issues. An example of such a 2-safety
property is: “given a program P , if a function parameter is
renamed in P ′ and compilation preservation holds for one
of the two programs, then it should also hold for the other”.
More specifically, P ′ is an equivalent variant of P that is ran-
domly generated by renaming a function parameter in P . A
property violation is detected when P ′ (conversely, P ) and
its translated version compile whereas the translated version
of P (conversely, P ′) does not compile. Such a violation
indicates more severe buggy behavior of the model than if,
say, P compiled but its translated version did not (1-safety).
After all, we know that compilation preservation must hold
when applying a simple, equivalent transformation.

Properties like these can be succinctly expressed and val-
idated in our NOMOS extension. On a high level, the user
provides a code translation model and the (k-safety) proper-
ties that it should satisfy. The output is a set of tests that vio-
late the given properties. For example, for the above 2-safety
property, program P would be selected by NOMOS from an
existing corpus, such as the model test set, and P ′ would be
automatically generated. As output, NOMOS would produce
tests, each comprising 2 inputs to the model, namely P and
P ′, for which the property fails. Under the hood, we auto-
matically translate the given properties into a test harness,
that is, code that uses metamorphic testing (Chen, Cheung,
and Yiu 1998; Segura et al. 2016) to generate inputs to the
model under test and validate its outputs against an oracle
expressing the expected behavior.

As our results show, our approach is very effective
in detecting property violations in popular code trans-
lation models, such as TRANSCODER (Rozière et al.
2020), DOBF (Lachaux et al. 2021), TRANSCODER-
IR (Szafraniec et al. 2023), and STARCODER (Li et al.
2023). When testing these models against 38 properties that
we specified, we detect thousands of violations. When used
in this way, our approach can therefore help evaluate the
quality of the models under test with respect to given prop-
erties. Any detected violations could even help repair the
models although it could be costly (Ouyang et al. 2022).

In this paper, we explore another usage scenario in which
the user aims to obtain a correct translation of some code
with respect to a set of properties without updating the
model. As a result, we devise a property-guided search pro-
cedure for code translation models, where a model is repeat-
edly queried with slightly different parameters (e.g., temper-
ature) to produce an alternative translation that potentially
satisfies the desired properties. Note that, for this scenario,
there are certain guidelines for writing k-safety properties
that are compatible with our search (see Section 3).

In summary, we make the following contributions:

• We devise the first approach for automated, functional,
property-based testing of code translation models, which
we implement as an extension of NOMOS. Our imple-
mentation is publicly available1.

• We present the first formalization of k-safety properties
for this domain, ranging from purely syntactic to purely
semantic ones.
1https://github.com/Rigorous-Software-Engineering/nomos

• We develop the first property-guided search procedure
for code translation models to generate alternative trans-
lations that potentially satisfy a given set of properties.

• We evaluate the effectiveness of our approach in detect-
ing violations of 38 properties across four state-of-the-art
code translation models. We also show that our search
procedure can help obtain significantly better translations
for a given user-provided program.

2 Related Work
Code translation. The most closely related work uses
LLMs for code translation (Rozière et al. 2020; Lachaux
et al. 2021; Rozière et al. 2022; Szafraniec et al. 2023) and
manually written or automatically generated tests (Rozière
et al. 2022) to evaluate semantic correctness of the trans-
lated code (similar to our semantic 1-safety property) for a
relatively small, curated corpus of programs. In contrast, we
focus on testing the correctness of the models themselves.
Specifically, we enable NOMOS to express a much broader
and more comprehensive set of correctness properties; we
also automatically generate new programs, instead of only
relying on an existing, curated corpus.

Code generation. There is also work based on LLMs for
code generation that uses prompts in (primarily) natural lan-
guage and evaluates the correctness of the generated code.
HUMANEVAL (Chen et al. 2021) is a popular benchmark
in this context, but it uses a small number of tests to evalu-
ate the semantic correctness of the generated code (similar
to our semantic 1-safety property). EVALPLUS (Liu et al.
2023) extends HUMANEVAL to obtain more comprehen-
sive benchmarks—it uses fuzzing to automatically generate
many more tests. Other work (Cassano et al. 2023; Athi-
waratkun et al. 2023) has proposed methods for extending
benchmarks, such as HUMANEVAL and MBPP (Austin et al.
2021), to more programming languages. ReCode (Wang
et al. 2023) checks robustness properties (somewhat simi-
lar to our semantic 2-safety properties, but for code gener-
ation instead of code translation) by slightly perturbing the
prompts through over 30 transformations.

Constraining LLM outputs. Constraining LLM outputs
to enforce certain validity criteria has also been explored.
For instance, in the context of programming languages, such
criteria may enforce syntactic or semantic constraints on the
output programs or completions (Scholak, Schucher, and
Bahdanau 2021; Poesia et al. 2022). On a high level, our
search procedure pursues a similar goal in the context of
code translation, but phrases it as an optimization problem
that aims to minimize the number of violated properties.
More generally, such validity criteria can also consist of a
grammar (Shin et al. 2021) or a domain-specific query lan-
guage (Beurer-Kellner, Fischer, and Vechev 2023).

3 Approach
In this section, we first give an overview of our specifications
for code translation models through examples (Section 3.1).
We then describe our testing (Section 3.2) and search (Sec-
tion 3.3) procedures in detail.
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1 input pj;

2 output pc;

3 {

4 pc = transpile(pj, "java", "cpp")

5 }

6 ensures numConditionals(pj, "java")

7 == numConditionals(pc, "cpp");

(a) Syntactic 1-safety property.

1 input pj;

2 requires compiles(pj, "java");

3 output pc;

4 {

5 pc = transpile(pj, "java", "cpp")

6 }

7 ensures compiles(pc, "cpp")

8 ==> retValues(pj, "java") == retValues(pc, "cpp");

(b) Semantic 1-safety property.

1 input pj1;

2 var pj2 := addConditional(pj1, "java");

3 output pp1;

4 output pp2;

5 {

6 pp1 = transpile(pj1, "java", "py")

7 pp2 = transpile(pj2, "java", "py")

8 }

9 ensures numLoops(pp1, "py") == numLoops(pp2, "py");

(c) Syntactic 2-safety property.

1 input pj1;

2 var pj2 := renameParam(pj1, "java");

3 requires pj2 != null;

4 output pp1;

5 output pp2;

6 {

7 pp1 = transpile(pj1, "java", "py")

8 pp2 = transpile(pj2, "java", "py")

9 }

10 ensures compiles(pp1, "py") && compiles(pp2, "py")

11 ==> retValues(pp1, "py") == retValues(pp2, "py");

(d) Semantic 2-safety property.

Figure 1: Example k-safety specifications for code translation models.

3.1 Specifications
We introduce our extended NOMOS specification language
through four example properties, namely, two 1-safety prop-
erties (a syntactic and a semantic one) and two 2-safety prop-
erties (again, a syntactic and a semantic one). On a high
level, each specification typically consists of:
• A precondition, which expresses the conditions under

which the model under test should be called;
• A block of arbitrary source code (written in Python),

which invokes the model under test;
• A postcondition, which expresses the safety property that

the model should satisfy.
For a formal description of the language prior to our exten-
sion, we refer the reader to the NOMOS paper (Christakis
et al. 2023). We describe our extensions in the next section.

First, consider the syntactic 1-safety property shown in
Figure 1a expressing that, when transpiling Java code into
C++, the number of conditionals in the input (Java) pro-
gram should match the number of conditionals in the out-
put (C++) program. Line 1 declares the input program pj
and line 2 the corresponding output program pc. These dec-
larations are followed by the block of Python code (within
curly braces), which invokes the model under test to tran-
spile pj and assigns the resulting code to pc—see lines 3–5.
On lines 6–7, the ensures clause expresses the postcondi-
tion that the number of conditionals in pj should be equal
to the number of conditionals in pc. Note that there is no
precondition in this property, i.e., the precondition is true.

Figure 1b shows a semantic 1-safety property expressing,
with a precondition on line 2, that the model should be called
with a compiling Java program. Note that preconditions are
specified with requires clauses. The postcondition says

that, if the resulting C++ program is also compiling, then
the return values of the two programs should match. In other
words, given the same input values, the two programs should
return the same output values.

A syntactic 2-safety property about a Java-to-Python
translation is shown in Figure 1c. On line 1, the property de-
clares an input program pj1. Unlike the previous properties,
it also declares an additional program pj2 on line 2—pj2 is
generated by adding a random conditional to pj1 such that
the input/output behavior of the code remains unaffected.
For instance, the body of the conditional may just consist
of a print statement. On lines 3–4, the property declares two
output programs pp1 and pp2, which are assigned by the
two model invocations (lines 6–7). The postcondition checks
that the number of loops in pp1 and pp2 matches.

Finally, consider the semantic 2-safety property in Fig-
ure 1d. Here, pj2 is generated from pj1 by renaming a
random function parameter (line 2). The precondition ex-
presses that the model should be invoked if the renam-
ing succeeds. The postcondition checks that the return val-
ues of the two output programs match provided that both
compile—in Python, this means that both programs parse.

In this work, we specified a total of 62 properties—see
(Eniser, Wüstholz, and Christakis 2023).

3.2 Testing Procedure
Our testing procedure for these properties is based on the ex-
isting NOMOS framework (Christakis et al. 2023). Internally,
the NOMOS framework generates a Python test harness for
the given model and its specification. The harness tests the
model until a user-specified budget is depleted. Specifically,
for each budget unit, the harness generates inputs for the
model such that any precondition is satisfied, executes the
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block of Python code in the specification, and checks the
postcondition. Finally, the NOMOS framework records, pro-
cesses, and de-duplicates all detected property violations.

The harness essentially implements metamorphic test-
ing (Chen, Cheung, and Yiu 1998; Segura et al. 2016), which
constitutes a natural choice for checking k-safety proper-
ties. Given an input to a system under test (in our case, a
model under test), metamorphic testing transforms the input
such that the relation of the corresponding outputs is known.
For instance, given a criminal as input to a model that pre-
dicts recidivism risk, a metamorphic transformation could
increase the criminal’s number of priors (keeping all other
attributes the same). Then, we know that the recidivism risk
of the new criminal should be at least as high as that of the
original one. Similarly, a NOMOS property for k > 1 also
describes input transformations, and the expected relation
among outputs is the postcondition—see Figure 1.

To support code translation models, we extended NOMOS
to enable expressing and testing their properties. First, we
incorporated two new classes of domain-specific functions,
namely, program-transformation and program-inspection
functions. In Figure 1, we use transformation func-
tions addConditional and renameParam, and inspection
functions numConditionals, numLoops, compiles, and
retValues. In total, we added 7 transformation and 5 in-
spection functions to express our properties—see (Eniser,
Wüstholz, and Christakis 2023).

LLMs generate their outputs token by token, and by de-
fault, the next token is selected greedily by returning the
most probable token. The main drawback of this greedy
search is that there is a chance of missing high-probability
tokens that are hidden behind lower-probability ones, thus
generating sub-optimal predictions. A beam size of N to-
kens alleviates this issue by selecting the most probable N
tokens at every step, and in the end, generating N predic-
tions. We, thus, extended NOMOS to allow enabling a beam
size of N , which for a k-safety property means that we have
k model queries each producing N predictions. When gener-
ating the failing tests, NOMOS only reports inputs for which
all Nk prediction combinations violate the property.

Given that LLMs are expensive to query, we also added
a caching mechanism to avoid the cost of asking the same
queries repeatedly and thus slowing down our testing proce-
dure. More specifically, due to randomness in the program-
transformation functions, we might generate the same inputs
for a model under test when checking different (or even the
same) properties. We, therefore, cache model queries and
the corresponding outputs. Note that this also helps to avoid
inconsistent outputs in the case of stochastic models.

Finally, we extended the harness generator to allow users
to control different model parameters, like the temperature.

3.3 Search Procedure
Being able to check functional properties of code translation
models opens up a new use case, namely one where the user
only aims to generate a correct translation of a piece of code
without necessarily testing the overall model quality. To ad-
dress this use case, we developed a property-guided search
procedure that repeatedly queries a model with slightly dif-

Algorithm 1: Our search procedure
Input: properties, program P , searchBudget, testBudget,
Input: initModelParams
Output: bestTranslation

1: params = initModelParams
2: // Minimum number of violated properties
3: minVP = +∞
4: // Minimum number of total violations
5: minTV = +∞
6: bestTranslation = null
7: while searchBudget > 0
8: // Current number of violated properties
9: VP = 0

10: // Current number of total violations
11: TV = 0
12: /* We run the testing procedure for each property
13: with the current model parameters */
14: for all prop in properties
15: /* Function Test returns the number of violations
16: and the program translation */
17: v, tr = Test(prop, P , testBudget, params)
18: TV += v
19: if 0 < v
20: VP++
21: if VP == 0
22: return tr
23: if (VP < minVP) ∨ (VP == minVP ∧ TV < minTV))
24: minVP = VP
25: minTV = TV
26: bestTranslation = tr
27: params = Mutate(params)
28: searchBudget--
29: return bestTranslation

ferent parameters (such as the temperature) to produce alter-
native and potentially more correct translations with respect
to the given properties. In other words, our search procedure
takes as input an initial model instance (with user-provided
parameters) and searches for model instances (same model
but with different parameters) that can satisfy more proper-
ties for the particular piece of code.

On a high level, the search procedure repeatedly invokes
the testing procedure with mutated model parameters to op-
timize the number of violated properties. It returns the model
output as soon as all properties are satisfied by the current
model instance. If all properties cannot be satisfied within a
given search budget, it returns the best model output, which
results in the fewest violated properties.

Algorithm 1 describes the search procedure more pre-
cisely. It takes a set of properties, a program to be trans-
lated, a search budget, a test budget, and the initial model
parameters; it returns the best program translation found.
The while-loop on lines 7–28 iterates until the search budget
is depleted. Each iteration runs the testing procedure for all
properties with the current model parameters and calculates
the number of violated properties and the total number of
property violations (lines 14–20). If no properties are vio-
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lated, the current translation is returned (lines 21–22). Oth-
erwise, on line 23, we use a lexicographic fitness function
to minimize the number of violated properties before mini-
mizing the total number of violations. For the next iteration,
line 27 mutates the current model parameters. This essen-
tially performs stochastic hill climbing, but more sophisti-
cated optimization techniques could easily be used instead.

For this use case, each k-safety property should require
a single input (P1) from the user and generate the remain-
ing inputs (P2, . . . , Pk) automatically. For example, in Fig-
ure 1c, the user-provided input is pj1, whereas pj2 is gen-
erated from pj1. Then, our search procedure will optimize
the translation of P1.

In addition, note that a violation of a k-safety property
could be caused by sub-optimal model performance for any
of the k model invocations. However, for this use case, the
user is only interested in the model behaving as expected
for P1, ignoring any violations caused only by its vari-
ants P2, . . . , Pk. This preference can be encoded directly in
the property by ensuring that a violation occurs only if the
user-provided input is to blame. In particular, each property
should only generate equivalent or “harder” variants of P1,
where “harder” means containing additional code for trans-
lation. The postcondition should then express that, if the
model succeeds for (potentially harder) P2, . . . , Pk, then it
should also succeed for (potentially easier) P1. When this
postcondition is violated, we know that the model output
is sub-optimal for the user-provided input. For instance, to
make the property of Figure 1c compatible with our search
procedure, we could change the postcondition to:
ensures numLoops(pp2, "py") == numLoops(pj2, "java")

==> numLoops(pp1, "py") == numLoops(pj1, "java");

4 Evaluation
4.1 Experimental Setup
Models. For our experiments, we use the pre-trained mod-
els TRANSCODER (Rozière et al. 2020), DOBF (Lachaux
et al. 2021), TRANSCODER-IR (Szafraniec et al. 2023),
and STARCODER (Li et al. 2023). The first three expect
a function as input and predict the corresponding function
in the output language. For STARCODER, we use comple-
tion mode and send queries that provide an input function
and request the output function to be completed. We evalu-
ate TRANSCODER for both Java-to-C++ and Java-to-Python
translations. TRANSCODER-IR is evaluated for Java to C++
(it was not trained on Python) and DOBF for Java to Python
(it was not trained on C++). We evaluate STARCODER for
Java to Python since it was fine-tuned for Python.

Program benchmarks. We use the benchmark set intro-
duced in TRANSCODER (Rozière et al. 2020), including 545
solutions to LeetCode problems implemented in Java, C++,
and Python. On average, each program comes with ca. 10
tests that specify the expected output values for given input
values. (These are the input values used by retValues.)

Parameters. We run the testing procedure with beam size
1 and 3 and set the temperature to 0.1. For the search, the
beam size is 1, and we mutate the model temperature, which
is initially 0.1.

4.2 Results for Testing Procedure
We evaluate our testing procedure by checking a total of 38
properties found in (Eniser, Wüstholz, and Christakis 2023).

We introduced many inspection and transformation func-
tions; we now provide a summary of the remaining ones (see
(Eniser, Wüstholz, and Christakis 2023) for details). The
arity inspection function returns the number of parameters
of a given function. The addParam transformation function
adds a random parameter to the function without affecting
its input/output behavior, and addLoop adds a random for-
loop. The rmLoop function removes a random for-loop from
the function, while chBranchCond randomly changes the
branch condition of an if- or switch-statement. Both rmLoop
and chBranchCond may change the input/output behavior
of the original code and are thus not used in semantic proper-
ties. Finally, merge merges two functions by executing one
of them depending on an additional Boolean argument.

In our experiments, we set the testing budget to 500 for all
1-safety properties and to 2500 for all other properties. All
545 programs from our benchmark set may be used as inputs
when testing the models. Note that the testing budget for 1-
safety properties is lower since these properties only select a
single program from the corpus and invoke the model under
test on this program; thus, a higher budget would unlikely
result in a significantly higher number of unique violations.

Next, we present our results for the testing procedure or-
ganized in the following five research questions (RQs).

RQ1. Is the testing procedure effective in detecting
property violations? Tables 1 and 2 show the percentages
of (unique) property violations for all models. The absolute
numbers are included in (Eniser, Wüstholz, and Christakis
2023) but are summarized in Table 3.

When using a beam size of 1, our testing procedure
finds between 27 (TRANSCODER for Java to C++) and 37
(STARCODER for Java to Python) violated properties (out
of 38). The number of total property violations ranges from
5564 (DOBF for Java to Python) to 11213 (STARCODER for
Java to Python). Our testing procedure is, therefore, highly
effective in detecting violations.

When increasing the beam size to 3, we observe a reduced
number of violations and violated properties. In particular,
the number of violated properties decreases by between 3
(TRANSCODER for Java to Python) and 7 (TRANSCODER
for Java to C++). This confirms that increasing the beam size
can improve the quality of the translations.

RQ2. How do models perform with respect to differ-
ent properties? As shown in the tables, the models gener-
ally perform better for purely syntactic properties, i.e., using
the arity, numConditionals, and numLoops inspection
functions. In particular, for a beam size of 1, the number of
violated syntactic properties ranges from 13 (TRANSCODER
for Java to C++) to 23 (STARCODER for Java to C++) (out
of 24), whereas the number of other violated properties (i.e.,
using compiles and retValues) is 14 (out of 14) for all
models. For a beam size of 3, the number of violated syn-
tactic properties decreases for all models, and more specif-
ically, by between 3 (TRANSCODER for Java to Python)
and 6 (STARCODER for Java to Python). In contrast, the
number of other violated properties only decreases by 2 for
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BS k PT
PI arity numC/s numL/s compiles retV/s

1

1 – 0 0 <1 <1 0 <1 19 22 51 47

2

rnmP 0 <1 <1 <1 0 <1 14 9 8 19
addP 0 0 <1 <1 <1 <1 34 36 20 24
addC 0 0 <1 <1 0 <1 40 17 45 26
chBC 0 0 <1 <1 <1 <1 52 54 − −
addL 0 0 <1 <1 <1 <1 37 28 15 39
rmL 0 0 0 0 <1 0 2 10 − −

3 mrg <1 <1 <1 <1 <1 <1 61 61 2 2

3

1 – 0 0 0 0 0 <1 1 1 5 5

2

rnmP 0 0 <1 <1 0 0 < 1 4 0 < 1
addP 0 0 0 <1 0 <1 < 1 2 9 7
addC 0 0 0 <1 0 0 < 1 2 8 8
chBC 0 0 <1 <1 <1 <1 4 17 − −
addL 0 0 <1 <1 <1 0 < 1 1 < 1 18
rmL 0 0 0 0 0 0 < 1 < 1 − −

3 mrg <1 <1 <1 <1 <1 <1 12 24 0 < 1

Table 1: The percentage of property violations (i.e., unique failing tests / total number of tests x 100%) detected when running
the testing procedure on TRANSCODER and TRANSCODER-IR for translating from Java to C++. The first column (BS) shows
the beam-size parameter, and the second column the value of k of the corresponding k-safety property. The third column
shows the (abbreviated) program-transformation (PT) functions, which are combined with the (abbreviated) program-inspection
(PI) functions of the first row to form the properties in (Eniser, Wüstholz, and Christakis 2023). We report the percentage of
violations under each PI function—the left sub-column shows the percentage of violations for TRANSCODER and the right for
TRANSCODER-IR.

BS k PT
PI arity numC/s numL/s compiles retV/s

1

1 – 0 0 <1 2 <1 3 2 3 3 21 17 6 42 47 59

2

rnmP 0 0 0 1 1 3 2 <1 38 8 7 4 5 6 17
addP 0 0 <1 2 1 4 3 1 4 7 8 47 5 5 14
addC 0 <1 <1 1 <1 86 2 1 3 5 9 12 25 17 8
chBC 0 0 <1 2 <1 19 3 1 4 43 47 19 − − −
addL 0 0 <1 <1 1 5 <1 2 42 8 8 11 25 26 25
rmL 0 0 <1 <1 0 3 1 <1 4 4 5 3 − − −

3 mrg 0 <1 <1 7 4 10 9 4 7 40 45 19 5 6 21

3

1 – 0 0 0 <1 0 < 1 <1 <1 < 1 3 2 1 5 7 12

2

rnmP 0 0 0 <1 <1 < 1 <1 <1 < 1 < 1 < 1 < 1 < 1 < 1 1
addP 0 0 <1 0 <1 < 1 <1 <1 < 1 < 1 < 1 3 < 1 < 1 2
addC 0 0 0 0 0 82 <1 <1 1 < 1 < 1 8 15 8 3
chBC 0 0 0 <1 <1 11 <1 <1 1 28 35 15 − − −
addL 0 0 0 <1 <1 < 1 <1 <1 23 < 1 < 1 4 14 17 19
rmL 0 0 0 0 0 < 1 <1 <1 3 2 2 1 − − −

3 mrg 0 0 0 <1 <1 3 1 <1 2 15 22 56 < 1 2 9

Table 2: The percentage of property violations detected when running the testing procedure on TRANSCODER, DOBF, and
STARCODER for translating from Java to Python. Under each PI function, the left sub-column shows the percentage of viola-
tions for TRANSCODER, the middle for DOBF, and the right for STARCODER.

BS
TRANSCODER TRANSCODER-IR TRANSCODER DOBF STARCODER

Java-C++ Java-C++ Java-Python Java-Python Java-Python
TV VP VSP TV VP VSP TV VP VSP TV VP VSP TV VP VSP

1 8663 27 13 8603 30 16 5777 30 16 5564 31 17 11213 37 23
3 1035 20 8 2326 25 11 2240 27 13 2535 26 13 6611 31 17

Table 3: The total number of violations (TV), the number of violated properties (VP), and the number of violated syntactic
properties (VSP) detected when running the testing procedure on all models.
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TRANSCODER for Java to C++ and by 1 for DOBF for Java
to Python.

RQ3. How does TRANSCODER perform with respect
to the target language? We only evaluate TRANSCODER
for two target languages, namely C++ and Python. It gen-
erally performs better for C++, where it violates 27 (out of
38) properties for a beam size of 1 and 20 for a beam size of
3. For Python, it violates 30 and 27 properties, respectively.
This not unexpected since C++ is more similar to Java than
Python. Interestingly however, for TRANSCODER for C++,
we detect a total of 6084 violations of compiles properties
in contrast to 2996 violations for Python (for a beam size of
1). Again, this is not unexpected since these properties only
check program parsing for Python.

RQ4. How do translation models perform in com-
parison to the general-purpose model STARCODER?
We found significantly more property violations for STAR-
CODER than for the specialized translation models. In par-
ticular, for a beam size of 1, we detected 37 (out of 38)
violated properties and 11213 total violations for STAR-
CODER, 30 violated properties and 5777 total violations for
TRANSCODER, and 31 violated properties and 5564 total
violations for DOBF. This is not surprising given that the
specialized models are specifically trained for translation.

RQ5. What is the average running time for checking
a property on a given model? The average running time
(including model inference and test harness execution) for
checking a property ranges between 1.3s (DOBF for Java
to Python) and 42.9s (STARCODER for Java to Python) for
beam size 1. When increasing the beam size to 3, the running
time increases slightly for all models (for instance, to 3.3s
for DOBF for Java to Python and to 51.3s for STARCODER
for Java to Python). We include the average running time for
all models in (Eniser, Wüstholz, and Christakis 2023).

These experiments were run on cluster machines with
A100 Nvidia Tesla GPUs and Intel Xeon Gold 5317 CPUs,
running Debian GNU/Linux 11. Each GPU has 80GB mem-
ory allowing to host the larger STARCODER model.

4.3 Results for Search Procedure
We evaluate the effectiveness of our search procedure for
TRANSCODER and DOBF by generating Java-to-Python
translations for 100 randomly selected programs from our
benchmark set. We check 24 search properties (see (Eniser,
Wüstholz, and Christakis 2023)) for each translation.

We set the search budget to 20 and the testing budget to 50
(see Algorithm 1). We use relatively small budgets to keep
the running time small. We start the search with an initial
temperature of 0.1 and mutate it at every iteration by adding
Gaussian noise with µ = 0 and σ2 = 0.01.

RQ1. Is the search procedure effective in finding bet-
ter translations? Figure 2 (top) shows the number of “pass-
ing programs” (i.e., programs for which the testing proce-
dure reports no violations) out of 100 along the y-axis as
we increase the number of search iterations from 1 to 20
along the x-axis. As shown in the figure, the search signif-
icantly increases the number of passing programs (from 66
to 84 for TRANSCODER and from 71 to 83 for DOBF). It
also reduces the number of violated properties for the final
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Figure 2: The number of passing programs (top) and the
number of syntactic and other property violations (bottom)
as the number of search iterations increases from 1 to 20.

translation by almost half (from 78 to 35 for TRANSCODER
and from 100 to 63 for DOBF). Our search procedure is,
therefore, effective in improving the quality of the transla-
tion with respect to the number of violated properties.

RQ2. How long does the search take? As shown in
Figure 2 (top), exploring only a few (e.g., 6) model in-
stances leads to significant improvements. The mean num-
ber of search iterations is 4.5 for TRANSCODER and 4.7 for
DOBF.

RQ3. How does the search affect the number of viola-
tions of syntactic versus other properties? Figure 2 (bot-
tom) shows how the search affects the number of violations
of syntactic and other properties (i.e., using compiles and
retValues). Interestingly, the search helps the most in de-
creasing the number of violations of other properties, which
are the hardest to satisfy.

5 Conclusion
In this paper, we introduced the first approach for automat-
ically testing user-provided, functional properties of code
translation models. We extended the NOMOS framework
with domain-specific functions to formalize a broad set of
38 properties, which we evaluated by testing four popular
models. We also introduced a property-guided search pro-
cedure that aims to optimize the model output based on the
number of violated properties.

In future work, we plan to transfer this idea to other set-
tings to effectively enforce quality criteria on model outputs.
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