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Kurzfassung

Diese Arbeit untersucht die Transformation von Legacy-Systemen in Cloud-Infrastrukturen,
mit einem besonderen Fokus auf die Automatisierung des Migrationsprozesses unter Ver-
wendung eines neuartigen Tools. Dieses Tool ist darauf ausgelegt, Dockerfiles aus Snaps-
hots von virtuellen Maschinen (VM) zu generieren und spricht damit den wachsenden
Bedarf von Unternehmen an, ihre komplexen, über Jahre gewachsenen Legacy-Systeme
effizient in Cloud-Dienste zu überführen. Diese Systeme sind oft mit komplizierten Ab-
hängigkeiten und Konfigurationen belastet, was erhebliche Herausforderungen bei der
Migration darstellt.
Die Forschung führt eine Methodik ein, um VMs zu analysieren und die Migration
von On-Premise-Servern in die Cloud zu vereinfachen. Dies wird durch den Einsatz
von Containerisierungstechnologien wie Docker und LXC erreicht, die bei der Bewälti-
gung der oft in Legacy-Systemen anzutreffenden "Dependency Hellëine wichtige Rolle
spielen. Insbesondere Docker ist entscheidend für die Isolierung von Abhängigkeiten
und somit für die Vermeidung potenzieller versions Konflikte. Darüber hinaus befasst
sich die Studie mit verschiedenen Werkzeugen und Praktiken zur Erstellung zuverlässi-
ger Konfigurationsmanagement-Skripte, einem Schlüsselaspekt für einen reibungslosen
Übergang in Cloud-Umgebungen.
Ein bedeutender Beitrag dieser Dissertation ist die Entwicklung des Tools, das die Ex-
traktion von Bereitstellungsskripten von On-Premise-Servern automatisiert. Dieses Tool
vereinfacht nicht nur die Neuimplementierung dieser Systeme auf Cloud-Plattformen,
sondern konzentriert sich auch auf die Erstellung von Dockerfiles, die speziell für Migra-
tionen zur Infrastructure as a Service (IaaS) und Platform as a Service (PaaS) angepasst
sind. Dadurch wird eine der grundlegenden Herausforderungen bei der Cloud-Migration
angesprochen: die Umwandlung komplexer, alter Infrastrukturen in cloud-kompatible
Formate.
Diese Arbeit skizziert auch potenzielle Bereiche für zukünftige Forschungen, einschließlich
der Untersuchung komplexerer Systeme, die mehrere miteinander verbundene Dienste
wie Datenbanken, Backends und Frontends umfassen, sowie die Entwicklung umfassender
Docker Compose-Dateien zur nahtlosen Integration dieser Dienste.
Insgesamt präsentiert diese Arbeit einen strukturierten Ansatz zur Migration von Legacy-
Systemen und bietet Einblicke und Werkzeuge, die den Übergang von Unternehmen zu
cloud-basierten Lösungen erheblich erleichtern und beschleunigen können.
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Abstract

This thesis investigates the transformation of legacy systems into cloud infrastructure,
with a particular focus on automating the migration process using a novel tool. This tool
is designed to generate Dockerfiles from virtual machine (VM) snapshots, addressing the
increasing need for businesses to efficiently move their complex, legacy systems to cloud
services. These systems are often laden with intricate dependencies and configurations
accumulated over years, posing significant migration challenges.

The research introduces a methodology to analyze VMs and streamline the migration
of on-premise servers to the cloud. This is achieved using containerization technologies
like Docker and LXC, which are instrumental in managing the "Dependency hell" often
encountered in legacy systems. Docker, in particular, plays a crucial role in isolating
dependencies, thus mitigating potential conflicts. Additionally, the study delves into
various tools and practices for creating reliable configuration management scripts, a key
aspect of ensuring smooth transitions to cloud environments.

A significant contribution of this thesis is the development of a tool that automates the
extraction of deployment scripts from on-premise servers. This tool not only simplifies
the redeployment of these systems into cloud platforms but also focuses on generating
Dockerfiles that are tailored for Infrastructure as a Service (IaaS) and Platform as a
Service (PaaS) migrations. By doing so, it addresses one of the fundamental challenges
in cloud migration - transforming complex, legacy infrastructures into cloud-compatible
formats.

The thesis also outlines potential areas for future research, including the exploration
of more complex systems involving multiple interconnected services such as databases,
backends, and frontends, and the development of comprehensive Docker Compose files to
integrate these services seamlessly.

Overall, this thesis presents a structured approach to legacy system migration, offering
insights and tools that can significantly ease and expedite the transition of businesses to
cloud-based solutions.
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CHAPTER 1
Motivation

The market for cloud infrastructure services is witnessing a rapid expansion. An increasing
trend towards cloud migration is being observed among companies, moving away from
traditional on-premise infrastructures. This shift has been further accelerated by the
COVID-19 crisis, with a significant surge in cloud adoption [13, 12]. In the first quarter
of 2022 alone, business expanses on cloud services reached nearly $53 billion, marking a
34% increase over the previous year [14].

Despite this growth, the transition of long-standing on-premise servers to the cloud
presents considerable challenges. These servers, often operational for decades, represent a
complex patchwork of configurations and customizations. Over the years, they have been
altered by various individuals through the installation and removal of programs, updates
to configuration files, and additions of scripts. A common issue faced by many companies
is the lack of comprehensive understanding of the precise functions and dependencies of
these servers. This uncertainty often leads to reluctance in modifying or migrating these
systems, for fear of disrupting existing infrastructure.

The unique complexity of each server makes it difficult to establish common procedures
and effective migration tools, leading migration experts to rely on their own expertise and
simple tools for successful cloud migration, as noted in recent comparative studies [26].
Consequently, migration experts are forced to rely heavily on their personal expertise
and rudimentary tools in orchestrating successful cloud transitions.

This thesis aims to address these challenges by introducing an approach that assists
migration experts in redeploying on-premise servers to the cloud. The tool extracts
simple deployment scripts from existing machines, facilitating a more efficient and less
error-prone migration process.

This work introduces a new way to analyze VMs and create Dockerfiles from their
snapshots. It simplifies, turning complex, old systems into formats that work well in the
cloud. The research covers examining dependencies, setting up file systems, managing
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1. Motivation

environmental variables and starting the necessary applications. This leads to making
Dockerfiles that fit well with IaaS and PaaS migrations. By making these processes
automatic, the tool cuts down the manual work needed for cloud migration, making it
easier for businesses to move their systems to the cloud.
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CHAPTER 2
Related Work

As cloud computing increasingly becomes a cornerstone of modern IT infrastructure,
the shift towards cloud adoption is gaining momentum. Various strategies for hosting
data and systems in the cloud have emerged, each with its own set of methodologies and
challenges.

Pahl and Xiong conducted a comprehensive study [11] that compared migration strategies
on-premise to cloud. Their research focuses primarily on three cloud hosting solutions:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS). The study aims to dissect the cloud migration processes from traditional
on-premise architectures and identify common activities within these processes. Their
findings provide crucial insights for this thesis, particularly in understanding the core
mechanisms of cloud migration. Pahl and Xiong’s work helps to demystify migration
processes by breaking them down into manageable, operational-level activities, improving
transparency, and adapting them to various business needs.

A key aspect of their research is the development of a system to ease the transition into
Cloud Computing environments, with a special focus on assisting Small and Medium
Enterprises (SMEs). Despite the benefits of their standardized migration process, they
acknowledge the persistence of numerous individual tasks, particularly in architecture
migration - the primary focus of this thesis.

Studies by Hazi et al. [16, 19, 8] dive deeper into cloud migration, outlining detailed
steps in the migration procedure. Other works have extensively shown why it is difficult
to do cloud migration and what the issues are [11, 8, 29, 30]. Most issues fall back on the
uncertainty of what each part of a legacy system does and how and why they interact
with each other. Building on these frameworks, Balobaid and Debnath [4] provide an
overview and comparison of various cloud migration tools. They discuss the importance
of cloud migration, its benefits, and associated risks.
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2. Related Work

Most cloud providers offer proprietary tools tailored for migrating data to their respective
clouds, such as Azure’s and AWS’s data migration tools. However, these tools primarily
focus on data transfer, with limited support for migrating applications and processes.
Additionally, they often result in vendor lock-in.

Major cloud providers like Amazon [32], Oracle [23, 24], and Microsoft [21] offer guidelines
and solutions for cloud migration in their whitepapers. These documents serve as valuable
resources for understanding the best practices and methodologies for moving infrastructure
to the cloud.

This thesis aims to develop a more generalized, vendor-independent solution for cloud
migration. The focus will be on leveraging IaaS and PaaS to facilitate the migration
of on-premise machines into containers. This approach seeks to reproduce on-premise
environments in the form of maintainable Dockerfiles that can be built into images and
started as containers, enabling straightforward deployment to any IaaS or PaaS provider.

In the realm of containerization, technologies like LXC [1] and Docker [2] are pivotal.
Their ease of use, coupled with reliability and isolation capabilities [9, 33], make them
integral to this thesis’s strategy for cloud migration. While container orchestration tools
like Kubernetes add another layer of complexity by facilitating the dissection of an
on-premise machine and redistributing its components across multiple containers, this
aspect will not be considered in the current scope of work. The exploration of container
orchestration and the utilization of Kubernetes represent promising avenues for future
research and development. Delving into these technologies could further enhance the
process of replicating and managing complex systems within cloud environments.

One of the significant challenges in transferring legacy systems to Docker is managing
dependencies. These dependencies often conflict with one another, may be outdated, or
even unavailable. Horton and Parnin address this issue in their paper on “DockerizeMe"
[17], which focuses on Python scripts and their dependencies. Their work is pivotal in
creating Dockerfiles that include all necessary dependencies to run a specific Python
script. When encountering Python files on a machine, their methodology can be effectively
applied to containerize the script, ensuring it is ready for execution.

In addition to dependency management, the generation of configuration management
scripts is another crucial aspect, as explored by Hummer and colleagues in their papers
[18, 15]. They demonstrate, using Puppet as an example, how to reliably generate these
scripts to test for idempotence. While Puppet itself does not create Dockerfiles or images,
the theoretical underpinnings of this thesis draw conceptual inspiration from their work.
Moreover, the contributions of Fu et al. [10] and Shambaugh et al. [28] in developing
tools for Puppet are noteworthy. Their research offers substantial theoretical frameworks
for asserting the correctness and validity of Puppet scripts, which are crucial for ensuring
the reliability of the configuration management process.
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CHAPTER 3
Background

3.1 Operating Systems
An operating system (OS) [6] is an essential intermediary between the user and the
computer hardware. Defined by John Daintith and Edmund Wright as "The set of
software products that jointly controls the system resources and the processes using these
resources on a computer system" [6], an OS simplifies user interaction with complex
hardware operations. It manages tasks such as file handling, memory allocation, process
control, and operating input/output devices such as keyboards, mice, and printers. The
kernel, a central component of the OS, enables these functionalities by directly interacting
with the hardware.

3.1.1 Process
A process in operating systems is an execution instance of a program. Unlike a static
program, a process introduces dynamic elements such as CPU and memory usage.

The structure of a process includes:

• Text Section: Contains the executable code.

• Data Section: Space for static and global variables initialized pre-execution.

• Heap Section: Used for dynamic memory allocation, e.g., via malloc, free.

• Stack Section: Holds local variables during runtime.

Processes undergo several states:

• New: In the phase of creation.
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3. Background

• Ready: Waiting for execution.

• Running: Currently executing instructions.

• Waiting: Paused for an I/O operation.

• Terminated: Execution completed.

Diving deeper into the intricacies of process management, it becomes evident that the
transition of a process through various states – from creation to termination – is a
dynamic and complex journey. To adeptly manage this journey, the operating system
employs an important mechanism known as the Process Control Block (PCB). The PCB
is not merely a collection of process-related information; it is the cornerstone of effective
process management.

The role of the PCB is indispensable in an environment where multiple processes exist
simultaneously. Each process, while moving through states like Ready, Running, or
Waiting, must have its particular environment and requirements preserved.

It acts as a comprehensive dossier for each process, holding critical information such as
the process state, program counter, CPU registers and memory pointers. This memory
section is essential for the operating system to maintain continuity and coherence in
process execution, especially during context switches.

In essence, the PCB is the backbone of process management in an operating system. Its
detailed record-keeping ensures that despite the intermittent execution and the complexity
of multitasking, each process progresses smoothly towards its completion. To achieve
this task the PCB contains the following informations in the following order:

• Process State/Pointer: Reflects the current state of the process..

• Process ID and Parent Process ID: Unique identifiers for the process and its parent

• Program Counter: Address of the next instruction to execute.

• CPU Scheduling Information: Includes priority and process niceness.

• Memory Management Information: For instance, page tables.

• Accounting Information: Usage time and limits.

• I/O Information: Details about open files and used devices.

Each process that is being run and has one of those PCB also has an environment, which
normally has specific environment variables that are needed for its execution. Those
might be some user credentials or just information about how the process should behave
in its execution. When thinking back to the process stack, the environment variables
find their place above the stack with other command-line arguments. Those environment
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3.2. Package manager

variables are copied upon the fork of the parent process and can be looked at with the
following way.

There are several ways to retrieve environment variables. All of them involve getting
the process id of the target process. On Linux this can be via the following command
pidof <name>. To check for the environment variables of this process, the following
can be run: cat /proc/6110/environ. This then outputs one line of all environment
variables contained in this process. This might not be readable so replacing
0 with new lines will help. cat /proc/6110/environ | tr '\0' '\n'

3.2 Package manager

A package manager, in its core functionality, is a software application that helps the
user to find and manage other software applications on their operating system. Such
functionalities can be to search for an application, download, install, remove or update it.
By using a package manager, finding packages and installing them can be done in an easy
and fast way since normally Linux distros contain a list of sources where to download
software from. For the user, this not only brings the advantage to easily manage to
software that is on the OS but also security since there is not being used some arbitrary
site to get the software from and the package manager keeps the software up to date.

Packages are normally a binary executable, other dependencies and metadata. This gets
bundled into a “package” and has an extension to its name, so the OS gets a hint on how
to run it (for example: .rpm, .deb, . . . ). However dependencies that are also contained
in the package manager will not be in the package itself, but rather a requirements list
that needs to be available on the system to run the software. The package manager then
goes ahead and downloads all the software that is required to install the actual requested
software from the user.

An interaction with a package manger, in this example aptitude might begin with “apt
update”. By doing so the package manager creates a local cache of the metadata (package,
version number and description, etc.) on the local system and updates said local cache
with the metadata from the repository. When running “apt install” the manager checks
in the local cache to retrieve the package from the given address. This package now
might have dependencies which have to be met to successfully run the package. If there
are any unmet dependencies this is the moment where the package manager download
those dependencies and installs them before going forward with the installation of the
desired package.

Almost the same happens when a package is removed. Either the package manager
deletes the dependencies on its own or informs the user that there are unused packages
on the system that can be deleted.
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3. Background

3.3 Dependency hell
“Dependency hell" is a common challenge encountered in the development of large,
modern software applications, as well as systems installing different software on the same
machine. These applications often integrate various pre-existing components and rely on
multiple external services and applications. Each component typically has its own set of
dependencies, and sometimes these can conflict with the dependencies required by other
components.

For example, consider a program that integrates two applications: Application A and
Application B. Suppose that application A requires ’libexample’ version 1.1, while
application B needs ’libexample’ version 1.2. If the system cannot support different
versions of ’libexample’ simultaneously, a conflict arises. As a result, it becomes impossible
to run applications A and B together within the same environment. This leads to a
scenario where the entire program is unable to function properly due to these conflicting
dependencies.

Docker offers a robust solution to the dependency hell problem on a system level. It
allows each application to run in its isolated environment, known as a container, with
its specific set of dependencies. This isolation ensures that applications with conflicting
dependencies can coexist on the same system without interfering with each other. Thus,
Docker effectively resolves the conflicts inherent in dependency hell for system packages.

3.4 Strategies for Reproducible System Builds
The primary aim of this thesis is to replicate a system accurately and define the nec-
essary modifications to attain the desired system state. This process is at the heart of
Reproducible System Builds, the art of methodically defining system changes to reach a
specific state.

Achieving a reproducible system requires meticulous attention to several key elements:
version control, dependency management, build tooling, and configuration. This section
dives into the various available strategies for achieving repeatable build systems, exploring
how these strategies function, their appropriate use cases, and the advantages they offer.

3.4.1 Version Control and Tracking
Important technologies to ensure reproducibility are version control systems like Git or
Mercurial. These systems are pivotal in tracking modifications made to source code,
configuration files, and build scripts, allowing developers to pinpoint and recreate precise
build states. Essential practices in version control for reproducible builds include:

Committing Build-Related Files: It is crucial to maintain version control over all
build scripts, configuration files, and other pertinent files. This practice ensures that any
changes to these files are systematically tracked, linking them to specific build versions.
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Tagging Releases: Using tags in version control systems helps to mark specific points
in the development timeline that correspond to stable and reproducible builds. Tagging
facilitates easy identification and retrieval of these specific build states for future reference
or deployment.

3.4.2 Isolation and Virtualization

Isolation and virtualization techniques play a crucial role in creating self-contained and
independent environments for reproducible system builds. These techniques ensure the iso-
lation of software dependencies, configurations, and runtime environments, guaranteeing
reproducibility across different systems. In this section, the significance of isolation and
virtualization techniques, specifically focusing on containerization and virtual machines
(VMs) will be discussed.

Containerization, a lightweight virtualization technique, enables the creation of isolated
environments known as containers. Containers encapsulate applications and their de-
pendencies, providing a complete and portable runtime environment. Unlike traditional
virtualization methods, which involve running multiple operating systems on a single
physical machine, containerization allows for running multiple containers on a shared
host operating system. Popular containerization technologies include Docker, Podman,
and LXC/LXD.

Containerization offers several advantages compared to conventional virtualization meth-
ods. Firstly, containers ensure efficient resource utilization since they are lightweight
and share the host operating system’s kernel. This results in minimal overhead and
faster startup times, making containers well-suited for rapid deployment and scaling of
applications. Secondly, containers provide isolation at the application level, ensuring that
each container has its own isolated environment. This isolation facilitates reproducible
builds by avoiding conflicts between software components. Additionally, containers are
highly portable as they can be easily transported between different environments.

Container images capture the entire runtime environment, including dependencies and
configurations, simplifying the replication of the same environment on various systems.
Furthermore, container orchestration platforms like Kubernetes enable the management
and scaling of containerized applications across clusters, offering features such as auto-
matic scaling and load balancing. Containerized environments can be hosted in various
settings, including local development environments where containers run on developers’
local machines, on-premises setups where organizations establish their own container
orchestration platforms in data centers, and cloud platforms such as Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP), which provide managed
container services like Amazon Elastic Container Service (ECS), Azure Kubernetes Ser-
vice (AKS), and Google Kubernetes Engine (GKE). Containers also offer the flexibility
to deploy applications across hybrid and multi-cloud environments, taking advantage of
different cloud providers or on-premise infrastructure.
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In contrast, virtual machines (VMs) provide complete operating system environments
that are separate from the host system. VMs run on a hypervisor and emulate the entire
hardware infrastructure, including the operating system. This allows for the simultaneous
execution of multiple VMs on a single physical computer. Notable virtualization platforms
include VMware, KVM, and Hyper-V.

VMs offer distinct characteristics and use cases compared to containers. Firstly, VMs
provide complete isolation, enabling the running of different operating systems and
configurations on the same physical hardware. This level of isolation is particularly
advantageous for working with legacy systems or applications that have strict operating
system dependencies. Not only isolation is great for those systems but also with VMs
they are easier to maintain and support. VMs also allow for operating system flexibility,
supporting the simultaneous use of multiple operating systems on the same host. They
are commonly employed in environments that require diverse operating systems or specific
configurations.

VMs can be hosted on on-premise infrastructure using software like VMware ESXi or
Hyper-V, on cloud platforms such as Amazon EC2, Microsoft Azure Virtual Machines,
and Google Compute Engine, and in virtual desktop infrastructure (VDI) setups. VDI
allows for central control of user environments and the provision of virtual desktops for
remote access, contributing to reproducibility in user desktop setups.

When considering the difference between containerization and VMs, several factors come
into play. Containers excel in resource utilization as they are lightweight and share the
host operating system’s kernel, resulting in lower overhead and faster startup times.
They provide sufficient isolation at the application level. VMs offer stronger isolation
by running on separate virtual hardware, enabling the use of diverse operating systems
and configurations. VMs are suitable for legacy applications and scenarios that require
complete isolation.

Both containerization and VMs have their advantages and can be employed in repro-
ducible system builds depending on specific requirements. Containers are well-suited for
lightweight and portable deployments, offering efficient resource utilization, application-
level isolation, and easy portability. VMs provide stronger isolation, support for diverse
operating systems, and are ideal for legacy applications. The choice between container-
ization and VMs should consider factors such as resource efficiency, isolation needs,
compatibility requirements, and performance considerations.

In summary, isolation and virtualization techniques, including containerization and VMs,
are crucial for achieving reproducible system builds. These techniques ensure the isolation
and consistency of software dependencies, configurations, and runtime environments
across different systems. Containerization provides lightweight and portable deployment
options, while VMs offer stronger isolation and support for diverse operating systems.
The choice depends on specific requirements, balancing factors such as resource efficiency,
isolation needs, and compatibility requirements.
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3.4. Strategies for Reproducible System Builds

3.4.3 Containerization Technologies
Containerization technologies, such as Docker, have emerged as powerful tools in the
field of reproducible system builds. Docker is a widely used and popular containerization
platform that provides developers with a robust and user-friendly environment for
creating, deploying, and managing containers. In this section, the workings of Docker
are explored as a detailed example of containerization technology, and its key features
and functionalities are examined.

Docker operates based on the concept of container images, which are lightweight, stan-
dalone, and portable units that encapsulate an application, its dependencies, and the
necessary runtime environment. A Couple of different technologies are used to make
the interaction with those containers as easy as possible. LXC (Linux Containers), a
process for virtualization on OS level and create isolate environments for each of those
Linux systems on one single host, build the backbone of Docker. LXC does this by using
kernel-level name spaces to create a border between the virtual OS’s to the host machine.
This makes sure that a root user on a guest system has not root rights on the host system.
The process name space makes sure that processes are only listed on their system and
the network name space creates an isolated network stack. Other name spaces that are
being used are the ipc namespace (Inter Process Communication), the mnt name space
(Mount) and the uts namespace (Unix Timesharing System). LXC provides Control
Groups (cgroups) which make sure that a container gets a limited and specified amount
of resources compared to the name spaces which isolate the container. Images are built
using Dockerfiles, which are text files containing instructions for assembling the image
layer by layer. The Dockerfile specifies the base image, the required software packages,
configuration files, and any customizations needed for the application.

Once the Dockerfile is defined, the Docker Engine builds the container image by executing
the instructions step-by-step. Each instruction in the Dockerfile corresponds to a layer in
the image, allowing for incremental and efficient image builds. This layered approach
also facilitates caching and reusing of previously built layers, speeding up subsequent
builds and reducing bandwidth usage.

Once the container image is built, it can be instantiated as a container, which is a
running instance of the image. Containers are isolated environments that operate within
the host operating system’s user space, leveraging the host kernel for system calls and
resource management. This lightweight virtualization approach ensures that containers
have minimal overhead and startup time compared to traditional virtual machines.

Docker empowers containerization with a comprehensive range of features that enhance
usability and flexibility. These include image distribution, container lifecycle management,
networking and service discovery, volume management, and orchestration with Docker
Swarm or Kubernetes.

To facilitate image sharing and distribution, Docker offers Docker Hub, a central repository
where developers can publish their custom-built images. This fosters collaboration, enables
the sharing of best practices, and facilitates the deployment of pre-built images.
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Container lifecycle management is simplified through Docker’s commands for creating,
starting, stopping, pausing, and deleting containers. These commands ensure efficient
management throughout the container’s lifecycle, ensuring consistent and reproducible
behavior.

Docker’s networking capabilities enable seamless communication between containers and
external systems. Networking features facilitate easy network setup, routing, and port
mapping, promoting connectivity. Service discovery mechanisms simplify the dynamic
detection and connection of containers within distributed application architectures.

For data persistence and sharing between containers and the host system, Docker employs
volume mounts. Volumes serve as a mechanism for storing and sharing data, ensuring
that essential data is retained even when containers are stopped or removed.

Docker Swarm, the native orchestration solution, enables the management and scaling of
containerized applications across multiple hosts. It incorporates features such as service
discovery, load balancing, and automatic container rescheduling. Additionally, Docker
seamlessly integrates with Kubernetes, a powerful container orchestration platform, to
leverage advanced capabilities for managing large-scale container deployments.

Docker’s extensive ecosystem of tools and integrations further enhances its capabilities.
For instance, Docker Compose simplifies the orchestration of multi-container applications,
empowering developers to declaratively define and manage complex application stacks.

In conclusion, Docker exemplifies the capabilities of containerization technologies. It
leverages container images, Dockerfiles, and a robust set of features to enable developers to
create, deploy, and manage self-contained and reproducible environments. The flexibility,
efficiency, and portability offered by Docker contribute to the reproducibility of system
builds and facilitate the development and deployment of applications across diverse
environments.

Dockerfile and Container Image Construction

The Dockerfile is a vital component of Docker’s containerization technology, offering a
declarative and reproducible method to define the construction of container images. Let’s
explore the Dockerfile in more detail to understand how it facilitates image building.

Composed as a plain text file, the Dockerfile comprises a series of instructions that guide
the image construction process. These instructions are executed sequentially, resulting
in the creation of distinct image layers. Each layer represents a specific modification or
addition made to the underlying base image.

Every Dockerfile begins with the FROM instruction, specifying the base image from which
the container image will be built. The base image provides the starting point for the
construction process and typically contains a minimal operating system like alpine or
a pre-configured environment like a posgres database image. Multiple Dockerfiles can
share the same base image, allowing for the reuse and sharing of common configurations.
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After defining the base image, the Dockerfile includes a set of instructions for installing
dependencies and configuring the runtime environment of the application. Common
instructions include RUN, COPY, ADD, ENV, and WORKDIR:

1. RUN executes commands during the image build process, such as installing software
packages, running scripts, or configuring settings. These commands are provided
as they would be written into a terminal.

2. COPY and ADD copy files and directories from the build context (local directory)
into the image.

3. ENV sets environment variables within the image, allowing for customization and
configuration.

4. WORKDIR sets the working directory within the image, specifying the location where
subsequent commands will be executed.

The Dockerfile also supports other instructions for exposing ports (EXPOSE), defining
the entry point (ENTRYPOINT), specifying the default command (CMD), and configuring
user permissions (USER), among others. These instructions enable fine-grained control
over the behavior and configuration of the resulting container image.

The EXPOSE command does not have any effect on the resulting image. It’s only perpose
is to hint the reader that there is a port that can be reached from outside.

CMD as mentioned defines a default command which is executed upon starting the container
if nothing else is provided. This default command is not written like an ordinary terminal
command. Else it’s a list of string token that correspond to the terminal command split up
by whitespace. tail -f /dev/null will be CMD ["tail", "-f", "/dev/null/"].

It is important to note that Docker employs a layered file system for image construction.
Each instruction in the Dockerfile creates a new layer on top of the previous layers,
forming a stack of read-only layers. This layered approach allows for efficient caching
and incremental rebuilding. If an instruction in the Dockerfile remains the same across
builds, Docker can reuse the previously built layer, significantly speeding up subsequent
builds. More detailed information are in Section 3.4.3

Once the Dockerfile is defined, the Docker CLI (Command Line Interface) is used to build
the container image. The ‘docker build‘ command reads the Dockerfile and executes the
instructions, resulting in the creation of a new image. The image is then tagged with a
specific version or repository name to facilitate identification and sharing.

The resulting container image is a self-contained unit that encapsulates the application, its
dependencies, and the specified runtime environment. It can be shared, distributed, and
instantiated as containers on various systems and environments. By defining the container
image construction process using the Dockerfile, developers ensure the reproducibility of
the image and eliminate inconsistencies that may arise from manual configuration.
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In conclusion, the Dockerfile plays a crucial role in the construction of container images.
It provides a declarative and reproducible way to define the steps required to build
the image, including base image selection, dependency installation, and environment
configuration. The layered file system approach, caching mechanisms, and incremental
builds contribute to efficient image construction.

Docker Build Process and Image Layers

The Creation of container images is done in the build process. It is responsible for
executing the instructions defined in the Dockerfile and this creating the corresponding
container image. In this section, the details of the Docker build process are delved into,
and the concept of image layers is explored.

The Docker build process starts with the build context, which can be a directory
path, a URL or STDIN. The context contains all information that are needed for
the docker build command to successfully build the image. It always contains the
Dockerfile and if needed any additional files or directories that should to be copied into
the image during the build process. This is important if the context for example is a
URL to a .tar.gz archive. If the context is a local directory path files that should be
copied do not necessarily need to be in the context path. If the Dockerfile references it
and during the build process the file can be located on disk it does not matter where it
is stored.

Once the build context is established, Docker begins parsing the Dockerfile. It reads the
instructions sequentially and processes each instruction to perform the necessary actions.

Docker employs a layered file system approach to optimize image construction and
minimize duplication. Each instruction in the Dockerfile creates a new layer on top of
the previous layers, forming a stack of read-only layers. These layers are lightweight and
share common elements, such as the base image or previously built layers.

During the build process, Docker creates intermediate containers for each instruction in
the Dockerfile. Each container represents the state of the file system after executing a
specific instruction. These intermediate containers are not persisted and are discarded
once the instruction is completed. They serve as a means to capture the changes made
by each instruction and generate the subsequent layer.

The layered file system utilizes a copy-on-write strategy to ensure efficiency and avoid
duplication. When a new layer is created, it only contains the modified or added files
and directories compared to the previous layer. Any unchanged files are not duplicated
but are referenced from the lower layers. This copy-on-write mechanism optimizes both
storage space and build speed.

Once all the instructions in the Dockerfile are executed, Docker generates the final image.
The final image consists of a stack of layers, each representing a specific modification
or addition to the file system. These layers are stacked in a way that allows Docker to
reconstruct the complete file system of the container.
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After the image is built, it can be tagged with a specific version or repository name to
facilitate identification and sharing. Tags provide a way to label and reference different
versions or variants of the same image.

The resulting container image is a composite of the base image, the modified or added files
and directories from the Dockerfile instructions, and any dependencies or configurations
defined during the build process. It is important to note that container images are
immutable, meaning they cannot be modified once created. Any changes to the image
require rebuilding a new image. By leveraging the layered file system, caching, and
copy-on-write mechanisms, Docker ensures efficient and reproducible image builds. The
layered structure allows for incremental updates, faster rebuilds, and optimized storage
utilization. The Docker build process, combined with the Dockerfile, provides developers
with a powerful and declarative approach to construct container images with consistency,
portability, and reproducibility.

Layered File System

The layered file system is a fundamental concept in containerization, including Docker. It
is a technique used to optimize image construction and improve the efficiency of container
operations. In a layered file system, each modification or addition to the file system
is stored in a separate layer, forming a stack of read-only layers. In this section, the
benefits and drawbacks of the layered file system are discussed, along with its application
in containerization and the considerations to be mindful of.

Since each layer in the file system represents a specific modification or addition, Docker can
leverage layer caching during the build process. When a layer has been built previously
and its context remains unchanged, Docker can reuse the existing layer rather than
rebuilding it. This caching mechanism significantly speeds up subsequent builds by
eliminating redundant steps and reducing the overall build time.

Without this layered file system incremental updates to container images would not
be possible. When changes are made to an image, only the affected layer needs to be
modified or added, while the unchanged layers remain intact. This allows for faster
updates and reduces the amount of data that needs to be transferred or pulled when
deploying or distributing images.

Each is layer uniquely identified by its content and position within the stack. This enables
versioning and reusability of layers across different images. Layers that are common
across multiple images, such as base operating system layers or shared libraries, can be
reused, eliminating the need for duplication and improving storage efficiency.

This type of file system provides granular control over image layer management. Each
layer can be inspected, analyzed, and manipulated independently, allowing for efficient
troubleshooting, debugging, and image customization. Layers can be added, removed, or
modified without affecting the integrity of other layers, providing flexibility and agility
in image composition.
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By leveraging the copy-on-write mechanisms layered file system can improve container
performance. When a container modifies a file, the file is copied to a new layer, ensuring
that the original layer remains unchanged. This copy-on-write strategy reduces disk I/O
operations and optimizes container runtime performance.

Shared files and directories between layers are stored only once and referenced by multiple
layers and thus minimizes duplication of data across different images and containers.
This reduces the overall disk space required for storing images and allows for efficient use
of storage resources. But this is also a huge drawback. Each layer in a Docker image is
stored separately, which can result in increased disk space usage. Over time, as more
layers are added during the image build process or when images are updated, the disk
space usage can grow significantly.

Layered file systems add complexity to the management and maintenance of Docker
images. As the number of layers increases, it becomes more challenging to understand
and manage the dependencies and interactions between layers. This complexity can make
troubleshooting and debugging more difficult.

Another downside is that performance overhead that comes along with it, especially when
accessing or modifying files that are spread across multiple layers. Each layer needs to
be traversed to locate or modify a file, which can slow down operations. Additionally, if
multiple containers are running simultaneously and sharing layers, there can be contention
for resources, leading to performance degradation.

Once layers are added to a Docker image, it can be challenging to remove or modify
intermediate layers. This can impact image maintenance and make it harder to achieve
efficient image size management.

Security risks is another aspect that has to be considered. If a layer contains vulnerabilities
or malicious content, it can impact the overall security of the image. Additionally, as
layers are shared between images, any security vulnerabilities in shared layers can affect
multiple images, potentially leading to a broader security impact.

To mitigate these drawbacks, it is important to follow best practices when building
and managing Docker images. This includes minimizing the number of layers, regularly
cleaning up unused layers, using efficient image build techniques, and regularly updating
base images to ensure security patches are applied. Additionally, using tools and strategies
for image optimization, such as multi-stage builds, can help reduce the impact of layered
file systems on disk space usage and performance. Despite these drawbacks, the benefits of
layered file systems in Docker, such as efficient disk space utilization, faster image builds,
caching, and version control, make them a valuable component of Docker’s architecture.
By following best practices and optimizing image builds, the impact of the drawbacks
can be minimized while leveraging the advantages of layered file systems.
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Benefits of Containerization for Reproducible Builds

In summary of the last chapters containerization hase a couple of advateges that shine in
reproducable builds.

1. Dependency Management: Containers encapsulate applications along with their
dependencies, eliminating dependency conflicts and ensuring consistent build envi-
ronments across different systems.

2. Isolation: Containers provide isolation from the underlying host system, reducing
variations caused by differences in operating systems, libraries, and configurations.

3. Portability: Containers are portable units that can be deployed on different systems,
ensuring consistent builds regardless of the underlying infrastructure.

4. Version Control: Container images can be versioned, tagged, and stored in registries,
enabling precise control over the versions used in builds and ensuring reproducibility.

5. DevOps Integration: Containers seamlessly integrate with DevOps practices, en-
abling continuous integration, continuous deployment, and automated testing, which
further enhance reproducibility.

3.4.4 Configuration Management Tools
Configuration management tools play a crucial role in achieving reproducibility in system
builds. They enable developers to define and manage the configuration settings and
parameters of the software components used in the build process. These tools automate
the process of configuration management, reducing errors, improving efficiency, and
ensuring consistency. The following chapters will explore different popular configuration
management tools and it’s benefits as well as drawbacks.

Ansible

Ansible is an open-source configuration management tool that focuses on simplicity and
ease of use. It follows an agentless architecture, meaning that it does not require installing
any additional software on the target systems. Key features of Ansible that contribute to
reproducible system builds include: Infrastructure as Code (IaC), Idempotence, Version
Control Integration

Ansible allows developers to define the desired state of the infrastructure and software
components using code. This code, referred to as Ansible Playbooks, provides a clear
and reproducible description of the system’s configuration requirements. Playbooks are
written in YAML, which is human-readable and easily understandable by both developers
and operations teams.
Furthermore Ansible ensures idempotence, meaning that running the same configuration
repeatedly produces the same result. This guarantees that the system is consistently
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configured regardless of the number of times the configuration is applied. Idempotence
reduces the risk of unintended changes during system builds and promotes reproducibility.
Ansible Playbooks can be stored in version control systems such as Git. This enables
versioning, collaboration, and traceability, ensuring that specific versions of configurations
are used for reproducible builds. Developers can track changes, revert to previous versions,
and review the evolution of configurations over time.

Chef

Chef is an open source configuration management tool that allows DevOps to configure,
setup and manage automations. These automations can include anything as long as it
can be described in the form of code. Chef Infra allows DevOps to specify how, where
and when infrastructure should be deployed. What is the setup of the infrastructure.
Where does it operate on. Is it on-premise or is it deployed into the cloud. How are
infrastructures connected. How is the network structured. Everything can be configured
and is written into so-called recipe. These contain every information needed to setup
the infrastructure. Recipes are written in the programming language Ruby and are
collected in a so-called cookbook. Cookbooks provide the structure for a variety of
different services, resources, and infrastructure recipes and organizes them.

Chef Workstation is a suite of Chef tools for DevOps to administer and configure
infrastructure. It includes ChefSpec, Chef InSpec, Cookstyle and Test Kitchen. These
tools help properly writing recipes for the infrastructure to make sure it does what it is
intended to do.

These recipes are then uploaded to the Chef Infra Server. This server manages all the
cookbooks with its recipes. Not only manages them, it also is responsible for applying
policies, rolling out configurations and communication with nodes.

Infrastructure created by recipes is deployed to nodes. These nodes are computing
resources such as virtual machines, containers or servers. All of these nodes are managed
by the Chef Infra server and need to have Chef Infra Client running on them. The Client
checks in and compares its infrastructure with the infrastructure described in the latest
cookbooks. If they are not equal, then the client updates its infrastructure to reflect the
state defined in the cookbook.

Considerations for Configuration Management Tools

Configuration management tools offer numerous advantages that contribute to the
achievement of reproducible system builds.

One key benefit is the aspect of consistency. Configuration management tools ensure that
configurations remain consistent across different systems and environments, reducing
variations and improving reproducibility. By defining configurations as code and applying
them consistently, researchers and scientists can avoid discrepancies that may affect the
integrity of their experiments or analyses, thereby maintaining a reliable build process.
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Automation is another crucial advantage provided by configuration management tools.
These tools automate the process of configuration management, reducing the occurrence
of manual errors and ensuring the consistent application of configurations. By automating
repetitive tasks involved in system configuration, scientists can save time, effort, and
resources. Furthermore, the risk of human error is minimized, leading to more accurate
and reproducible system builds.

Version control integration is a vital feature offered by configuration management tools.
By leveraging version control systems, configurations can be effectively versioned, tracked,
and rolled back if necessary. This ensures reproducibility and traceability, allowing
researchers to precisely identify the configuration state used in a particular experiment
or analysis. Moreover, version control facilitates collaboration among team members,
enabling them to review changes and maintain a comprehensive history of configuration
states for auditing and troubleshooting purposes.

The scalability aspect of configuration management tools is particularly advantageous for
scientific endeavors. These tools provide efficient mechanisms for managing configurations
across a large number of systems. By defining configurations as code and leveraging
automation, scientists can easily scale their system builds to accommodate the growing
infrastructure required for their research. This scalability feature allows for consistent
and reproducible configurations across a diverse set of environments.

However, it is important to consider certain factors when utilizing configuration man-
agement tools for reproducible system builds. One such factor is the learning curve
associated with these tools. New users may need to invest time in learning the features,
best practices, and conventions of the configuration management tools they choose to use.
Adequate training and documentation are crucial to maximize the benefits and ensure
successful adoption, ultimately enhancing the reproducibility of system builds.

Security considerations should also be taken into account when employing configuration
management tools. These tools should adhere to security best practices to protect sensitive
configuration data and prevent unauthorized access. Encryption of sensitive data and
secure access control mechanisms for configuration repositories are important measures for
maintaining the integrity and confidentiality of configurations within scientific workflows.

To further ensure reproducibility, rigorous testing and validation processes should be
implemented. Automated testing frameworks can be utilized to verify the desired
state of the system, validate configuration changes, and identify any discrepancies or
errors. Thorough testing and validation contribute to the accuracy, completeness, and
reproducibility of configurations within scientific system builds.

In summary, configuration management tools such as Ansible and Chef offer powerful
capabilities for achieving reproducible system builds in scientific contexts. These tools
provide automation, version control integration, consistency, and scalability, enabling
scientists and researchers to define and manage configurations in a reliable and repro-
ducible manner. Proper consideration of learning curves, security measures, and testing
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practices is essential for the successful utilization of configuration management tools in
the pursuit of reproducible system builds within scientific endeavors.

3.4.5 Containerization Technologies vs Configuration Management
Tools

Containerization technologies and configuration management tools have emerged as
indispensable solutions for achieving reproducible builds in both scientific and industrial
software environments. Containerization technologies, such as Docker, provide isolated
and portable environments encapsulated within containers, enabling consistent and
reproducible execution of software applications. Configuration management tools, such
as Ansible and Puppet, automate the management of system configurations, ensuring
consistent and traceable deployments. Both approaches offer distinct advantages and
considerations for reproducible builds. Containerization technologies excel in providing
lightweight and encapsulated environments, facilitating the replication of complex software
dependencies. Configuration management tools excel in automating the provisioning and
management of system configurations, allowing for versioning and maintaining consistency
across multiple environments. Because of the overhead, system setup and steep learning
curve that configuration management tools have with longer times between iterations
containerization technologies are a better fit for prototyping and thus chosen in this
thesis.
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CHAPTER 4
Approach

4.1 Theoretical Approach
This section introduces a model of a system state and action that can be executed on the
system. The model and state transition definitions are later on used for implementing a
working prototype.

4.1.1 System Model
Table 4.1 describes each element of our model and the used symbols. Note that P denotes
the powerset of a given set. The notation x[j], xj is used to refer to the jth item of a
tuple x.

A task T consist of multiple state transition with dependencies DT between them,
assuming the total ordering ∀sti, stj ∈ T : (sti ̸= stj) ⇐⇒ ((sti, stj) ∈ DT ) ⊕ ((stj , sti) ∈
DT ).
The same applies to a process P . It consists of multiple tasks with dependencies DP

between them, with a total ordering defined as ∀ti, tj ∈ T : (ti ̸= tj) ⇐⇒ ((ti, tj) ∈
DT ) ⊕ ((tj , ti) ∈ DP ). A process is usually only executed once, and so is each task in it.
In contrast, state transitions within a task are usually executed multiple times.

4.1.2 State Actions
Operations applied on a system state can be categorized into two primary types. The
first type are system analysis operations, which are dedicated to verifying the existence
of specific properties or values within the state, such as files and their content. The
second type involves state transition operations, which actively apply modifications to the
current system state, thereby leading to the formation of a new state as a consequence of
these operations. This section explains the operations that are needed.

21



4. Approach

Symbol Definition
K, V Set of possible state property keys (K) and values (V).
d : K → P(V ) Domain of possible values for a given state property key.
A := K × V Possible property assignments.
S = {σ1, σ2, . . . , σi} Set of possible system states.
σi ⊆ [K → V ] The state is defined by (a subset of) the state properties

and their values.
σt Target system state.
T = {st1, st2, . . . , stn} A Task consists of a set of state transitions
st : (S × T ) → S′ State transition of each task. Pre-state S maps to post-

state S′ after applying all state transitions.
p : T → I Set of input parameters (denoted by set I) for a task.
P = {t1, t2, . . . , tm} A Process consists of a set of Tasks
DT ⊆ P(T × T ) State transition dependency relationship: state tran-

sition st1 must be executed before state transition st2 if
(st1, st2) ∈ DT

DP ⊆ P(P × P ) Task dependency relationship: task t1 must be executed
before task t2 if (t1, t2) ∈ DP

miss, add : (S × K) → V Compares the state property values of a key k between
system state S with target state σt and returns a set of
missing values in S and non-existing values in σt.

Table 4.1: System Model

State Analysis

The following actions are predicates used to obtain information about the current system
state.

• ⟨is_installed(pm, pn), σ⟩
Returns true if the package named pn is installed using package manager pm.

• ⟨file_exist(p), σ⟩
Returns true if a file at path p exists.

• ⟨file_is_same(p, d), σ⟩
Returns true if a file at path p contains content identical to d.

• ⟨environment_variable_has_value(n, v), σ⟩
Returns true if the environment variable n is set to the value v.
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• ⟨process_runs(n, p), σ⟩
Returns true if a process with the name n is running and was started with parameters
p.

State Transitions

The following state transitions are essential for the reconstruction of a target system
state.

• ⟨install_package(pm, pn), σ⟩
Installs a package with the name pn using the package manager pm, where pm ∈
{apt, apk, npm, pip}.

• ⟨file_change(p, d), σ⟩
Changes, modifies, or deletes the file at the given file path p. If the path does not
exist, all parent directories are created. d represents the content of the file as a
byte array. If d is null, the file is deleted.

• ⟨change_working_directory(p), σ⟩
Changes the current working directory to the path provided by parameter p.

• ⟨set_environment_variable(n, v), σ⟩
Sets the environment variable n to the value v.

• ⟨start_process(n, p), σ⟩
Starts the process named n and passes parameters p to the program.

Operational Semantics

The operational semantics for the state transitions are defined as follows:
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(INSTALL-PACKAGE) ¬⟨is_installed(pm, pn), σ⟩
⟨install_package(pm, pn), σ⟩ → σpac ∪ {pn}

(CREATE-FILE) ¬⟨file_exists(p), σ⟩
⟨file_change(p, d), σ⟩ → σfs[p �→ d]

(CHANGE-FILE) ⟨file_exists(p), σ⟩ ∧ ¬file_is_same(p, d, σ)
⟨file_change(p, d), σ⟩ → σfs[p �→ d]

(DELETE-FILE) ⟨file_exists(p), σ⟩ ∧ d = null
⟨file_change(p, d), σ⟩ → σfs \ {p}

(CHANGE-DIR) σcwd ̸= p

⟨change_working_directory(p), σ⟩ → σcwd �→p

(SET-ENV) ¬environment_variable_has_value(n, σ)
⟨set_environment_variable(n, v), σ⟩ → σenv[n �→ v]

(START-PROCESS) ¬process_runs(n, p, σ)
⟨start_process(n, p), σ⟩ → σproc ∪ (n, p)

Where:

σ Current system state.

σpac Set of all installed packages.

σpac ∪ {pn} Current state with package pn installed.

σfs Files system of current state.

σfs[p �→ d] Updated state file system writing data d to path p.

σfs \ {p} State with removed file at path p.

σcwd Current working directory in the state.

σcwd �→p Current working directory set to path p.

σenv Mapping of environment variables of current state.

σenv[n �→ v] Sets environment variable n to value v.

σproc Set of running processes of current state.

σproc ∪ (n, p) State with process n and parameters p running.
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4.1.3 Explanation

VM, Base
Image

VM Analysis

Dependency
Analysis

File Analysis

Environment
Variables

Process
Analysis

Dockerfile
Creation

Dockerfile Files

σ0, σt

σ1, σt, Actions

σ2, σt, Actions

σ3, σt, Actions

Actions

Stage 1

Stage 2

Stage 3

Stage 4

The analysis initiates by converting the VM
snapshot and base image into two key states:
the target state σt and an initial empty state
σ0.

Stage 1 (Dependency Analysis) uses σt

and σ0 to resolve dependency differences, re-
sulting in needed actions and state σ1, setting
the stage for further analysis.

Stage 2 (File System Analysis) aims to
align file system variances. Actions from
this stage, along with Stage 1 outcomes, are
combined and passed on. Altered files will
be written to disk separately for Dockerfile
creation.

Stage 3 (Environment Variable Aug-
mentation) uses the evolved state σ2 to
add missing environment variables, refining
the system to state σ3. Recording of all ac-
tions and states continues through this stage.

Stage 4 (Process Management) ensures
alignment of processes, aiming for congru-
ence between the target state and the cur-
rent state σ3. After this stage, σ3 and σt

should be the same and only logged actions
are passed on.

The last step takes the recorded actions and
saves them as a Dockerfile.

Figure 4.1: Flow graph depicting stage transitions from inputs Virtual Machine (VM)
and a provided Base Image all the way to the resulting Dockerfile

For a better understanding, the following example illustrates the system model applied
to a concrete case. The goal (in this example) is to recreate the target state, which is a
representation of the image built by the Dockerfile as listed in 1. It builds an Ubuntu
system which has python installed, a new directory with a new file created and one
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FROM ubuntu
RUN apt install python
RUN mkdir /app
WORKDIR /app
COPY main.py .
ENV DEMO_PORT=999
CMD python main.py

Listing 1: System Model Dockerfile example

additional process running. As mentioned in 4.1.2 State Actions, these transitions are
needed to recreate the system from an empty Ubuntu installation. Each system state
σ ∈ S consists of a number of system properties, that have been defined as key-value
pairs. The system possesses several key properties, namely: K ={files,dependencies,
environment_variables, running_processes}. Each of these properties plays a crucial
role in describing and understanding the system’s state. The files property provides
an essential snapshot of the system’s current state. It captures all file names and their
corresponding content that have been altered since the initial state. By analysing this
property, we can understand the specific modifications made within the system and how
they have shaped its current configuration.

Another crucial aspect to consider is the dependencies property. It contains comprehen-
sive information about the packages that have been added to the system. Changes in
the file system are not the only important information we need to consider, but also
what the current system configuration for running a new process would look like. The
environment_variables property stores all the additional environment variables that
have been introduced into the system. Lastly, the running_processes property sheds
light on the dynamic nature of the system. It encapsulates details about the processes
that have been initiated since σ0. The values of the system properties are at the initial
system, state σ0 all empty since nothing has yet changed. All these keys are needed to
rebuild an empty initial system state to be the same as an already predefined target
system state σt.

Figure 4.1 illustrates the necessary steps to transform a base image and document the
operations required to attain the target system state. Initially, a snapshot of the VM is
captured and analysed, leading to its conversion into the target state σt. The base image
is designated to serve as σ0.

All the mentioned keys are needed to achieve the desired system state σt, which is
derived from the initial empty system state σ0. This process involves three defined tasks:
resolving dependencies, recreating the file system, and starting the missing processes.
Table 4.2 provides an overview of the resulting process, including its associated tasks
and state transitions.

In the following, we illustrate this process based on a concrete example. The initial state
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σ0 has the following properties, with their descriptions provided in YAML format in
Listing 2.:

initial state σ0:
files: []
dependencies: []
environment_variables: []
running_processes: []

Listing 2: Properties of initial state σ0

The target state for this example can be represented as shown in Listing 3.

target state σt:
files:
- name: /app/main.py

content: <content>
dependencies:
- package_manager: apt

package: python
environment_variable:
- name: DEMO_PORT

value: 999
running_processes:
- command: python main /app/main.py

environment:
- name: DEMO_PORT

value: 999

Listing 3: Properties of target state σt

The defined process begins with the task of installing all missing dependencies. To
accomplish this, the differences between the current state (initial state σ0) and the target
state σt must be evaluated. Specifically, a function has been implemented to calculate
the difference between two states based on a given property key. The values represented
by miss indicate elements that need to be added to the current system to match the
target system, while add represents values present in the current system that are not
part of the target system and need to be removed.

For each task, the corresponding differences must be evaluated to determine the appro-
priate state transitions. The first task involves equalizing the dependencies, as they
significantly impact the file system. Upon comparing the initial state σ0 to the target
state σt for the dependency property key, the miss and add values are identified as
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follows: miss = {(apt, python)}, add = {}. Since the add, values are empty, only the
python dependency needs to be installed using the apt package manager. Therefore, the
first task t1 will consist of a single state transition st1 named install_package with the
input parameters apt and python. Applying the task t1 to the initial state σ0 results in
the new state σ1, defined in Listing 4.

intermediate state σ1:
files: []
dependencies:
- package_manager: apt

package: python
environment_variable: []
running_processes: []

Listing 4: Properties of intermediate state σ1

At this stage checking the difference between state σ1 and σt for key dependencies will
return empty miss and add values which means that those system properties are already
the same and therefore this task was successful, and the next one can be analysed and
created.

Having completed the task of equalizing dependencies between the target and the current
state, the next step involves aligning the file systems of both states. By examining the
miss and add values for the file property key, it is observed that add is empty and
miss is miss = {(/app/main.py, < content >)} indicating that only one file needs to be
modified. Consequently, the next task t2 will only include one state transition st1 named
file_change with the parameters /app/main.py and the file’s content. Applying task t1
to state σ1 yields a new system state σ2 with the properties in Listing 5.

intermediate state σ2:
files:
- content: /app/main.py

data: <content>
dependencies:
- package_manager: apt

package: python
environment_variable: []
running_processes: []

Listing 5: Properties of intermediate state σ2

The next task ensures that all missing files are added to the state. In this example, the
file main.py in the /app directory needs to be included.

28



4.1. Theoretical Approach

As same as in the step before when checking for differences after task execution, in this
case t1, σ2, σt for the property key file will result in two empty miss and add which
concludes to two same properties.

Next, the focus shifts to equalizing the processes and environment variables. Just like
in the previous steps, a task named t3 is defined to tackle this objective. To determine
the necessary actions, the differences between the required properties must be evalu-
ated. For the state σ2 and the key environment_variables, the add values are empty,
while miss holds a single value: miss = {(DEMO_PORT, 999)}. The miss of the
environment_variable property will be called missenv further on.
Similarly, when examining the differences between the same states but for the property
key running_processes, add remains empty, and miss again holds a single value:
miss = (python main.py, /app/main.py, {(DEMO_PORT, 999)}). From this point on-
ward, the miss of the running_processes property will be denoted as missproc.

missproc encompasses all the required information for restarting the same process. It
includes the command used, the working directory in which the command was executed,
and the environment variables set at the time of command execution. Armed with this
information, the final task t3 can be defined. Firstly, the missing environment variables
missenv align with the environment variables in missproc, indicating that the environment
variables only need to be set once right before starting the only process.

Now, let us move on to starting the processes. To achieve this, the working directory
must be changed, followed by initiating the process within that directory using the
correct command. Consequently, the task t3 consists of three state transitions. The first
transition, st1, involves the change_working_directory state transition with the input
parameter /app. The subsequent state transition, st2, is the set_environment_variable
state transition with the input parameters DEMO_PORT and 999. Finally, the last
state transition, st3, is the start_process state transition with the input parameters
python and main.py.

Applying task t3 to the state σ2 yields the new state σ3, the result state will look like
Listing 6:
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intermediate state σ3:
files:
- name: /app/main.py

content: <content>
dependencies:
- package_manager: apt

package: python
environment_variable:
- name: DEMO_PORT

value: 999
running_processes:
- command: python main /app/main.py

environment:
- name: DEMO_PORT

value: 999

Listing 6: Properties of intermediate state σ3

Upon comparing all the property keys for states σ3 and σt, it is evident that all have
empty miss and add values. This indicates that σ3 is identical to σt, thereby confirming
that the target state has been successfully achieved.

The sequence in which tasks are created and executed plays a crucial role in minimizing
the number of state transitions required to recreate the target state σt. For instance,
prioritizing the equalization of file systems before installing missing dependencies can
significantly reduce the number of additional file_change state transitions needed
to modify the files that would otherwise be handled by the package manager during
dependency installation.

The order of execution not only plays a critical role in minimizing the number of state
transitions required, but also ensures the effectiveness of each individual state transition.
This is demonstrated in the given example, where a python file is first copied and
then executed. If the start_process state transition were to be executed prior to the
change_file transition, it would fail due to the absence of the source file necessary for
the process. Therefore, careful sequencing is essential to achieving the desired effects, as
it guarantees that the requirements for every state change are satisfied.

In addition to the aforementioned state transitions, such as start_process and change_file,
other transitions can be incorporated to optimize the process and reduce the overall
number of required state transitions. For instance, introducing more abstracted state
transition actions like clone_from_git or download_from provides alternative means
of adding missing files to the system. These additions exemplify the potential for further
optimization and enhancement of the system recreation process.

By carefully designing and arranging the sequence of state transitions, the efficiency of
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# Task/State transition Parameter
t1 resolve dependencies
⌞−st1 ⌞−install_package apt, python

t2 recreate file system
⌞−st1 ⌞−file_change /app/main.py, <content>

t3 start missing processes
⌞−st1 ⌞−change_working_directory /app
⌞−st2 ⌞−set_environment_variable DEMO_PORT, 999
⌞−st3 ⌞−start_process python, main.py

Table 4.2: Defined Tasks & State Transitions

system state recreation can be refined while considering alternative transitions to meet
specific requirements and further reduce the total number of necessary state transitions.

4.2 Implementation
Initially, a tool is required to simulate the source system, which will be used for generating
the configuration. As discussed in the background section, there are three primary options
available. Among these options, namely Ansible, Chef, and Docker, Docker was identified
as the most fitting choice due to its similarity to a bare-metal server. Furthermore, Docker
eliminates the need for redundant configuration management, since a single configuration
suffices. Additionally, Docker images can seamlessly integrate with both Ansible and
Chef in case there is a requirement for configuration management. This positions Docker
as the ideal choice for mirroring the source system. Its setup process is straightforward
and involves fewer elements.

The tool devised to analyse the source system and mirror it in a different environment is
built using Python. Python’s ability for quick prototyping, strong Docker compatibility,
and adaptability in diverse deployment scenarios influenced this choice. Although C++
and Rust were potential contenders due to their seamless integration with the OS and
Docker, they weren’t selected. C++ was ruled out because of a familiarity gap. While
Rust has its merits, it was superseded by Python’s rapid prototyping, which bypasses the
compilation step. Moreover, Python simplifies the task of compiling for various target
platforms in multiple settings.

4.2.1 Workflow
Initially, an instance of the source image is launched, succeeded by an instance of the
base image derived from the source. The source container is triggered only if it remains
inactive. Exclusively read operations are executed on the source container, negating
the necessity for mutual exclusion, transactions, or multiple containers. However, this
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doesn’t hold for the target container. Initially empty, the target container is gradually
synchronized to reflect the source container. Hence, each iteration of Dockerfile generation
spawns a fresh target container.

The generation tool accepts the source and target image names upon initiation. An
optional flag detailing copy statement processing is also entertained. By default, each file
copy is uniquely represented as a copy command in the resulting Dockerfile. If the uni-
versal copy command flag is activated, data replication employs the lone COPY data .
command.

While Docker containers primarily rely on Linux OS containers, the tool is honed for this
specific genre. In Linux, every data action translates to file operations. Ideally, copying
every altered file from the source to the target container, followed by process execution,
would mirror the source container’s behaviour. Yet, this could inflate the Dockerfile with
redundant \COPY commands. Filesystem modifications mainly stem from three sources:

1. Direct File Addition: This arises when files are directly pushed into the container
via an explicit \COPY command in the source Dockerfile. Tracing the origins of
such files proves challenging.

2. Execution of RUN Commands: The \RUN command facilitates command
execution within the Docker container. Often, these commands are stealthy. Yet,
when triggering other software, some operations might get recorded, like package
manager activities. For a command resembling RUN apt install git, the
Ubuntu package manager will record this act while installing the ’git’ package.

3. Processes Causing File Alterations: Commands such as \EXEC or \ENTRYPOINT
can initiate processes that produce or modify files. Log files typify such modifica-
tions.

Tracing each file’s origin remains an intricate task. Yet, by acknowledging files possibly
introduced via package managers, an approach crystallizes: querying these managers
in both containers. By installing missing and purging surplus packages in the target
container, file copying significantly reduces. Given the diversity of package managers,
this technique must be replicated for each. Since evolving Dockerfiles primarily employ
Ubuntu images intertwined with Python or Node.js projects, inquiries target ‘apt‘, ‘pip‘,
and ‘npm‘.

Distinguishing between directly copied files and those spawned by processes is intricate.
Therefore, files not associated with a package manager are presumed to be directly copied.
In the rare event these files result from a process, this approach guarantees source-target
container consistency. Yet, this assumption could present complications in subsequent
phases.

After considering package manager operations, all source container files are evaluated
for deviations compared to the base image, and these differences are matched against
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the target container. Missing files in the target container but present in the source
are relocated to the target via the \COPY command. Unaltered files in the target
container, if modified in the source, are also migrated. Reducing copied files could entail
overwriting unchanged target files with their altered source versions and noting the
differences. However, crafting the bash command to reconcile the target file with its
source counterpart is challenging. Adding to this, such a method might obfuscate the
process, as interpreting an overwritten YAML configuration file is simpler than parsing a
multi-line bash command, showcased in Listing 7.

RUN echo "datasource:" >> config.yaml && \
echo " url:127.0.0.1:6543" && \
echo " username:admin" >> config.yaml && \
echo "address" >> config.yaml && \
echo " street:Hauptstrasse" >> config.yaml

Listing 7: Illustrative Dockerfile modification command

Thus, modified source files that remain static in the target container are copied over.
After filesystem alignment, the following steps encompass identifying active processes,
their initiation sources, and related environment variables. To identify active processes,
both container process tables are compared. Processes absent in the target container
are launched subsequently. But prior, the process ID fetches the working directory and
environment variables.

4.2.2 Implementation Details

While scrutinizing the source Docker container, only data accessible within the container
is considered. This mirrors real-world scenarios where actual systems don’t continuously
log Docker metadata.

Spotting modified or new files in the source versus the target container is straightforward.
If a file exists in the source but not in the target, it’s an addition and should migrate
to the target. When a file is in both containers, its source creation and modification
timestamps are checked. If different, the source file replaces the target file. In sizable
filesystems, like those with 10,000 files, this process can be protracted.

While real-world system analyses might lack Docker metadata, for prototyping and effi-
ciency, we’ve integrated it. It’s pivotal to realize Docker meticulously logs file alterations
during image builds, readable from the container’s metadata. Empirical evaluations
affirm that while working without Docker metadata is plausible, leveraging it drastically
enhances speed. For a thorough and prompt analysis, Docker metadata delivers a gran-
ular report on file changes. Nevertheless, a significant limitation is Docker’s exclusive
recording of build-time modifications; runtime alterations are unnoticed.
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4.3 Limitations
Generating a Dockerfile from an existing machine poses challenges, particularly concerning
the resulting file’s readability and accuracy. Not all steps delineated in a Dockerfile lead
to discernible changes when recreated, leading to discrepancies between the original and
the generated file. The main limitations of this method include:

• Inability to detect multi-stage builds

• Ambiguity in data origins

• Incapacity to identify volumes

• Indistinctness between ENTRYPOINT and CMD commands

• Some RUN commands leave no discernible traces

• Base image remains undetected

• Reliance on snapshot-based evaluation

4.3.1 Multi-stage Build
Analyzing a container crafted via a multi-stage build provides insight only into the final
build stage. Typically, data from preceding stages are transferred to the current stage
using a rudimentary copy command. As the data is replicated within the container,
its original creation process remains obscured, making it apparent only that data was
introduced to the container. Consequently, the generated Dockerfile will predominantly
reflect the last build stage.

4.3.2 Data Origin
When examining the file system for new or modified files, we can extract and replicate
them. Yet, the initial source of these files remains elusive. Thus, in the Dockerfile, while
COPY commands will replicate the appropriate file, the true source from which the file
was copied is indiscernible.

Moreover, it’s uncertain from the resultant Dockerfile whether a file was copied in-
dividually or as part of a broader directory in the source Dockerfile. For instance,
COPY source_data /app/target_data transfers all contents from the host’s source_data
directory to the container’s target_data directory. But the new Dockerfile can’t de-
duce if all items within source_data were copied collectively or if select files originated
elsewhere—like a config.json file from another directory.

Consider the example in Listing 8 which illustrates an original Dockerfile. It replicates
the local demo directory to the container’s /app/demo and also copies a local.yaml
config from the configs directory to the container’s demo directory. However, the
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resultant Dockerfile shown in Listing 9 clearly diverges from the source. Notably, the
generated version has a much larger command set, resulting from uncertainties about
data origins.

For bigger projects, this issue exacerbates. For instance, a multi-stage Angular project
might involve thousands of COPY commands solely for the node_modules directory.
One remedy is a bulk copy command such as COPY data /, which simplifies the
Dockerfile but sacrifices some clarity on file origins. Though improved in readability, the
resultant Dockerfile lacks explicit detail on the individual files. Fortunately, examining
the specified source directory or a generated log file can provide a clearer file breakdown.

Additionally, this ambiguity extends to environment variables. When sourced from
/proc/{process_id}/environ, the origin of environment variables is uncertain.
They might be custom additions during process initiation or from a copied file, making
the generated Dockerfile possibly differ from the source.

FROM Ubuntu
COPY demo /app/demo
COPY configs/local.yaml /app/demo

Listing 8: Source Dockerfile Copy Example

FROM Ubuntu
COPY data/demo/main.py /app/demo/main.py
COPY data/demo/utils.py /app/demo/utils.py
COPY data/demo/assets/favicon.png /app/demo/assets/favicon.png
COPY data/demo/assets/favicon.png /app/demo/assets/favicon.png
COPY data/demo/assets/background.png /app/demo/assets/background.png
COPY data/demo/static/index.html /app/demo/static/index.html
COPY data/demo/static/user.html /app/demo/static/user.html
COPY data/local.yaml /app/demo/local.yaml

Listing 9: Created Dockerfile from Copy Example

4.3.3 Metadata
There are different commands that add metadata to docker images. As the name suggests
that are commands that do not have any influence in the resulting image but adds
information. Since metadata are not reflected inside a container, no information can be
gained from inside and thus are not present in the resulting Dockerfile.

MAINTAINER was such a command, it set the Author field in the metadata of the resulting
image, but has been deprecated and have been replaced with the generic key-value pair
LABEL command.
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4.3.4 Variables
Dockerfile has the ARG command which allows arguments to be passed in during building
and stores them in a variable. This variable is used in the Dockerfile instead, and where
ever it is used late, the passed-on value is substituted. All the dynamic elements at building
have the same problem that they are not in the Dockerfile present. Using Listing 10 as an
example when building the image with docker build --build-arg DIRNAME=/app
the dummy.txt file will be copied into /app. During analysis, only the result is visible,
which is that the dummy.txt will have the path /app/dummy.txt. Therefore, the Docker-
file in Listing 11 will be created. The ARG command will not be present in the resulting
Dockerfile and will be simply removed.

FROM Ubuntu
ARG DIRNAME
COPY dummy.txt $DIRNAME

Listing 10: Source Dockerfile Copy Example

FROM Ubuntu
COPY data/dummy.txt /app/dummy.txt

Listing 11: Created Dockerfile Arg Example

4.3.5 Volumes
Dockerfiles do not contain information of volumes. Volumes are mounted when running a
container. That is where the problem lies. When analyzing a container, it is looked upon
which files exist in the container that do not exist in the Base Image. Since data from
mounted volumes are part of the file system, they are detected when checking for files.
These files are copied out of the container and added as a copy command to the resulting
Dockerfile. The Dockerfile will contain copy statements for all the files that were present
on the mounted volume while scanning. This can be prevented by not mounting volumes
during the scan, if possible, or excluding files with a certain path prefix from copying.

4.3.6 Expose
The docker file command EXPOSE describes which ports should be opened and reachable
from the outside, but EXPOSE does not have any influence in the actual behavior and
does not alter the anything inside the docker container. It is purely documentation to
users for easier and better understanding of the created docker container. The problem
with detecting open ports in containers is deciding whether or not EXPOSE should
be added to the Dockerfile. It might be that EXPOSE was not part of the source
Dockerfile, then adding it adds an inaccurate line to the Dockerfile and decreases the
accuracy. Not adding EXPOSE is wrong as well, since the Dockerfile could have contained
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the EXPOSE command, and that would mean another line difference in the resulting
Dockerfile.

4.3.7 Running Processes
Another big limitations is that executed CMD and ENTRYPOINT commands can be only
detected if the container is analyzed while these commands are still in execution. To detect
what might have been the CMD or ENTRYPOINT command, the process table is queried,
to see which processes are currently running and how they have been started. If a process
with a very short runtime it might happen that analyzing installed packages beforehand
takes longer than the executed command processes, and when checking for processes it
might not be running anymore which will cause that no CMD or ENTRYPOINT entry
in the Dockerfile. There are methods that keep track of running processes and process
history, but they require altering the source image by adding further dependencies.

CMD vs ENTRYPOINT

CMD and ENTRYPOINT have a very similar behavior. Both describe the command that
gets executed when running the container, but with the difference that ENTRYPOINT defines
the executable and CMD defines the default executable with parameters. ENTRYPOINT is
used when additional arguments are provided when running the container for the prede-
fined executable. When querying the process list, the command with its parameters is
listed, it can not be distinguished where the parameters came from. It could be from a
CMD command with parameters or an ENTRYPOINT command where the parameters
were provided during starting the container. Since there is no identification of which
command was used, the resulting Dockerfile will contain the CMD command with all
parameters.

4.3.8 Command Executions during build time
The limitation with the greatest impact on the correct lines is the RUN command.
The RUN command executes commands during build time inside the docker container.
RUN has the limitation that it does not leave traces of the command inside the container.
Since RUN commands executed during build time, they are not logged in the history file
or other files. The only thing that is present is the result of the RUN command. There
is the next problem, it’s not clear which command contributed to which change in the
container.

Fetching external data

wget, curl or git clone fetch data from external sources during building the image,
which has the effect that many additional files are present in the container. Since RUN
commands are not stored inside the container, there is no hint that certain files may
not have been copied into the container via the COPY command or were fetched during
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building. Therefore, it is assumed that the files were copied in via the COPY command.
This leads to huge discrepancies between target and source Dockerfile.

Packages

Globally installed packages can be figured out quickly, the problem is, that to install
packages the package manager need to know the remote address to it. When creating
a new image, it might be that no new packages can be installed because the remote
addresses are outdated and, therefore, not reachable anymore. In this case, the package
manager needs to update the local cache first. This update can cause several new and
changed files that can have different content compared to when the new image is built
with the newest information the package manager needs.

Dealing with packages that are not installed globally is harder. One issue is that it
cannot be said whether the package was copied into the container or if it was installed
inside the container via a package manager. It strongly depends on which languages were
used for the software that should be run.
Node.js projects are a great example for this case. It is easy to install packages since
they are listed in the package.json file, but it is hard to know where the package installed
via npm or maybe yarn or was not it installed at all, and it is part of a multi-stage build
and just copied into the container.
Python does not have the issue where packages might be copied into the container, but
has issues regarding installing them. Installing packages is mostly done in two different
ways, either installing them all explicitly with a pip install command or by installing
them reading from a requirements.txt file. Python does not have a lock file compared to
Node.js which means that python package versions might not be the same when installing
them by using the requirements.txt file in the source image and the build image from
the generated Dockerfile. To prevent this, instead of installing python packages via the
requirements.txt file, all packages are installed explicitly with their version.
Issues with package managers mostly occurred for scripting languages since for compiled
languages like Java, rust, . . . only the compiled software is copied into the container.
Building is done in a previous stage of a multi-stage Dockerfile.

4.3.9 Base Image
Base images defined in Dockerfiles have the problem that in the container, there is no
where mentioned what base image was used for creation. This means that when analyzing
all data, all changes that were caused by the base image except OS image will be added
to the Dockerfile. With an unknown base image, the resulting Dockerfile will be very
differently from the source Dockerfile. This can be prevented to some extent via using
the same base image from the source container for the target container.

Even knowing the base image can still cause a lot of discrepancies. This goes hand in
hand with the above-mentioned limitation about package managers. When the base
image was compiled significantly earlier, such that when installing new packages, these
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...
COPY setup.sh setup.sh
RUN setup.sh
COPY . .
...

Listing 12: COPY Order Example
...
COPY data/app/fencing.py /app/fencing.py
COPY data/app/location.py /app/location.py
COPY data/app/main.py /app/main.py
COPY data/app/setup.sh /app/setup.sh
...

Listing 13: COPY Generated Order Example

cannot be found and the package manager has to update its cache, then this will lead to a
lot of unnecessary and wrong COPY commands in the Dockerfile. This can be prevented
by building the base image with the source image or in a closely timed manner.

4.3.10 Order of Execution
When analyzing a container’s file system, it cannot be known in which order commands
were written in the Dockerfile. The example in Listing 12 shows part of a Dockerfile
where a setup script is first copied into the container and then later on different files. As
mentioned above, RUN commands mostly can not be detected, but also the order of the
COPY commands can not be traced back. It is only known that certain files need to be
copied into the container, but not when. Therefore, all files are copied at the same time,
which might look like Listing 13.

There is no precise order of commands, but the generated Dockerfile will the following
structure.

1. Installation of missing system packages

2. Installation of further missing packages

3. Coping missing files

4. Set environment variables

5. Changing working directory

6. Process run command

39



4. Approach

4.3.11 Snapshot based evaluation
The Dockerfile generator analyzes the file system and remembers what files have changed.
Any file that is changed beyond that point will not be registered and be ignored. Therefore,
the generated Dockerfile might not result in a container that is exactly the same as the
source container. Furthermore, the snapshot is taken after the source container had time
to run for several seconds. If in this time, changes are done to the file system inside the
Docker container, the state of the container’s file system does not represent the of the
file system of the image. This can cause differences in built images to be the generated
Dockerfile.
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CHAPTER 5
Evaluation

5.1 Methodology
For evaluation, the dataset used as ground truth are Dockerfiles from existing projects
on GitHub as well as Dockerfiles created manually that represent the target state.

The dataset contains several Dockerfiles with several different key aspects.

1. using COPY and CMD commands

2. RUN apt install <Package, ...>

3. different base images

4. different programming languages and executables (python, JavaScript)

5. minimize RUN commands like wget and git clone

6. minimize multi-stage builds

5.1.1 Evaluation Subjects
For the evaluation, ten Dockerfiles were utilized to generate source images. The created
images underwent analysis, which formed the basis for reconstructing new Dockerfiles.
The newly created Dockerfiles were then assessed of their performance and functionality.

The selection of source Dockerfiles was diverse, containing six from various open-source
projects, three that were custom-created for specific test scenarios, and one for a Postgres
image. The open-source projects were chosen based on their suitability on possibility of
occurences on real machines. Dockerfiles featuring multistage builds, the use of volumes,
and dynamic data loading during the build process were excluded from the selection.
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Name Reason Reference
Custom 1 tests file creation modification deletion Github [27]
Custom 2 tests dynamic file changes occurred during run time Github [27]
Custom 3 tests package managers Github [27]
Traefik common application proxy Github [31]
Nginx common application hosting web server and proxy Github [22]
Ansible testing python Github [3]
React webpage common technology for website Github [5]
Django backend common backend technology Github [5]
Postgres common database, testing data changed during

build and when running
Github [7]

OpenVPN common vpn sever and client Github[20]

Table 5.1: Evaluation Subjects

The custom Dockerfiles, based on Debian images, incorporated a range of functionalities,
including the installation of different software packages, file manipulation, and the
execution of tasks to simulate edge case scenarios. These scenarios involved operations
like running data generators and file deletion, emulating complex, real-world conditions.

5.1.2 Evaluation Procedure

1. Extract base image from source Dockerfile.

2. analyse the source Dockerfiles base image.

3. If base image container runs shorter than Dockerfile generation task.

3.1. Create a Dockerfile for the new temporary base image.

3.2. Set base image of new temporary base image to source Dockerfiles base image.

3.3. Prevent container termination before analysing finished.

3.4. Replace the base image in the source Dockerfile with the new base image.

4. Build source image fresh from scratch.

5. Run the Dockerfile generator.

6. Post-processing of generated Dockerfile.

7. Evaluate the generated Dockerfile
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Extracting the base image from the source Dockerfile is straightforward. Most of the
time, it is identified in the first line, defined by the FROM command. For container
analysis, the source container is consistently compared to an empty container that shares
the same base image. However, maintaining a container with only the base image running
throughout the duration of the analysis is essential but not always straightforward.
Take the official Python image as an example. Executing docker run python in the
terminal results in an empty line. Since there’s nothing to run inside the container, it
shuts down immediately. Consequently, it will be listed as exited with status 0 when
inspecting all containers. Fortunately, the analysis will not be affected if the container
exits early. To prevent the early exit of the container, it is necessary to initiate a
process that keeps the container active. Various solutions exist for this challenge, but
the simplest is creating a new base image for analysis, derived from the source image’s
base image. The choice of the base image influences the pre-installed utilities and
packages that can be leveraged. One universally applicable method is to include the
command CMD ["tail","-f","/dev/null"]. This command effectively prevents
the container from exiting prematurely. However, a downside of this approach is that the
CMD command may appear in the generated Dockerfile, necessitating manual removal.
Before every analysis, it is ideal to construct both the source and the new base image
from scratch. This ensures that if package managers like apt or apk are required, both
the source container and the temporary container used for analysis are in the same state,
ready to install new packages. Otherwise, there is a risk of encountering errors during
package installation due to outdated mirrors. In such situations, the package manager
must update its cache, leading to modifications in numerous files. If cache updating
occurs only in the temporary target container, these altered files are marked as differences
from the source container, resulting in their manual transfer into the container.
Once the base image for analysis and the source image are prepared, the tool is then
utilized to generate a Dockerfile.
The Dockerfile generated may include the command implemented to keep the base image
container running, which, as previously mentioned, requires manual removal. The tool
does not automatically remove this command, as doing so could lead to unintended
deletions. It is impossible to determine solely from container analysis whether the
command was added merely to prevent premature container termination. Furthermore,
upon creation of the Dockerfile, the tool lacks the capability to identify the base image
used. Consequently, a manual substitution of the base image is required afterward.
Then, the Dockerfiles can be compared. Comparing the number of lines between the
original Dockerfile and the one generated through container analysis can reveal significant
discrepancies. When assessing line-by-line similarities, where the nth line in the original
Dockerfile is compared to the nth line in the generated Dockerfile, the difference is nearly
100%. Typically, only the first line, which specifies the base image, remains consistent.
Manually setting of the base image is necessary for initiating the comparison with an
empty container. Subsequent lines invariably differ. Numerous subtle variations can alter
a line while preserving its original intent.
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The COPY command often varies as the analysis tool assigns its preferred naming
conventions to directories. For the RUN command, there can be a variation in the
formatting of installed packages, the original Dockerfile might employ a multiline format,
whereas the generated Dockerfile typically uses a single line. Furthermore, the order in
which the packages are listed may also differ. This holds for any command. The order of
arguments is not guaranteed to be the same.

Additionally, the order of commands in the Dockerfile might have been rearranged. A
strict line-by-line comparison often fails to provide meaningful insights into Dockerfile
content. Instead of merely assessing equality, analysing the impact and implications of
each command offers greater informative value. Due to inherent limitations and necessary
abstractions, certain commands might be absent in the resulting Dockerfile, such as RUN
wget commands. These are not visible from within the Docker container, leading to the
generation of COPY statements for each downloaded file.

In contrast, there are instances where the generated Dockerfile contains commands
that were not found in the original source Dockerfile. For instance, ENV commands
are encountered more frequently in the generated Dockerfile compared to the source
Dockerfile.

Measurements

To evaluate the similarity between Dockerfiles, the analysis initially focuses on identifying
if a line from the original Dockerfile or a variation of it exists in the generated Dockerfile
in short line diff. When generic copy statements are used additionally, we evaluate the
number of differences in files that are changed. This measurement is called file diff. When
such a correspondence is established, that particular part is deemed equivalent. In cases
where no analogous line in the generated Dockerfile matches the original, a more in-depth
investigation is necessary. This process involves two critical aspects:

1. Determining whether the function of the original line has been fulfilled by a
previously matching command in the generated Dockerfile.

2. Assessing whether a combination of commands in the generated Dockerfile cumula-
tively achieves the same purpose as the specific line in the original Dockerfile.

Should both aspects match all Docker instructions, then the Dockerfile is seen as similar.

The generated Dockerfile often merges or groups several commands from the original
Dockerfile into a single command. This is particularly evident with COPY commands.
In such cases, the generated Dockerfile typically replaces multiple COPY commands
with one generalized COPY statement. An example is when the original Dockerfile
includes multiple copy commands for various files at different stages. Conversely, the
generated Dockerfile might incorporate all these actions into a single generalized COPY
command, thus reducing the number of individual copy statements. Instead of copying
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files at different stages, it copies all of them in the first stage. However, the opposite
can also be true. Several commands in the generated Dockerfile might achieve the same
result as a single, more precise command in the source Dockerfile. Consider again the
COPY command: if the original Dockerfile contained one COPY command for a directory
followed by a RUN command that deletes a file, the tool cannot replicate this and will
instead copy files individually, resulting in more COPY commands.

5.1.3 Evaluation Procedure Example
Listings 14, 16, 15 and 17 show an example of such an evaluation procedure. Listing 14
is an example Dockerfile for a small flask python project. It uses an Ubuntu image as a
base. The first command updates the package manager cache and installs python3. It
then copies the requirements.txt into the image and installs the necessary dependencies.
Subsequently, all remaining files are copied into the container, and the server is started.

Ubuntu does not work as a base image since, as a target container, there is nothing inside
that keeps the container running, and therefore it will immediately exit, and no analysis
can be done. To prevent this, a different base image must be chosen. In this case, the
image base_image 15 is created and then used. The base_image itself has Ubuntu as
its base image. To ensure that the container instance does not close immediately, lines
6 and 7 add the tail -f /dev/null command so that the container runs during
evaluation. The source Dockerfile in Listing 14 updates its package managers to ensure
that the cached mirrors are still valid. This command can cause a lot of file changes and
thus results in several additional lines of COPY commands. Those copy commands have
nothing to do with the essence of the container, which is the flask server. To make it
easier to analyse the generated Dockerfile later, the update statement is also moved into
the base_image, ensuring that the basis for the analysing container can easily install
packages.

Following the creation of the new base image, the source Dockerfile must be adjusted.
The base image was changed from Ubuntu to base_image 15, and the package manager
update command was removed. By removing it, the base_image container instance
ensures that it has the same cached package manager data as the source container. These
modifications will result in the Dockerfile in Listing 16.

After running the analysis, the resulting Dockerfile will look something like Listing
17 (although the order of lines may vary). It is immediately clear that the generated
Dockerfile is not a valid Dockerfile because no base image is declared. This is because
just by analysing the base_image container instance, it is not clear what the base image
actually is. In this case, it is referred to as base_image, which is similar to Ubuntu but
not identical. That is why the base image has to be set manually. While Line 4 aligns
with the Dockerfile used for analysis in Listing 16, it deviates from the original Dockerfile
shown in Listing 14. Therefore, to maintain consistency with the original, the update
command apt update -y, which was present in the original, must be reintroduced
into the generated Dockerfile.
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1 FROM Ubuntu
2

3 RUN apt update -y && apt install -y python3 python3-pip
4

5 WORKDIR /app
6

7 COPY requirements.txt requirements.txt
8 RUN pip3 install -r requirements.txt
9

10 COPY . .
11

12 CMD [ "python3", "-m" , "flask", "run", "--host=0.0.0.0"]

Listing 14: Source Dockerfile Evaluation Example

In the source Dockerfile, on line 5, the working directory is changed to the ’app’ directory,
facilitating the installation of packages. However, the generated Dockerfile postpones
this working directory change until later in the script, since package installation does not
occur directly from the requirements.txt file. It becomes necessary just before executing
the Flask server. On lines 7 and 8 of the source Dockerfile, the requirements.txt file is
copied, enabling the installation of all necessary dependencies from it. In contrast, the
generated Dockerfile takes a different approach. It reads the Python packages already
installed in the source container and directly installs them using the pip install
command. As a result, the requirements.txt file is disregarded. While this approach
enhances precision by reducing the number of code lines required, it simultaneously
diminishes readability and complicates comprehensibility.

Line 10 from the source Dockerfile is almost the same as line 7 in the generated Dockerfile.
The generated Dockerfile stores all files inside the data folder, therefore the data source
is different, but their result will be the same. Therefore, the precession stays the same in
the Dockerfile, but there might be hidden files copied that cannot be seen with this copy
command. The running process is not analysed and is mostly ignored, but it might have
an effect on the file system. For example, in this case, the flask server is logging into a
file called log.txt. During the analysis phase of the file system, all files that are not the
same in the source and target containers are extracted. Therefore, the log.txt file is also
extracted. The COPY data . command in the generated Dockerfile will then copy the
log.txt file. It guarantees that all the data from the source container are in the target
container later on but log.txt would not be needed to copy since it is overwritten when
the flask server starts.

5.1.4 Comparison tool
To facilitate comparative analysis and gain insights into the result of other tools with
Docker, the Docker images generated by the Dockerfiles will be compared to a tool called
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1 FROM Ubuntu
2

3 RUN apt update -y
4 RUN apt install -y bash
5

6 ENTRYPOINT ["tail"]
7 CMD ["-f","/dev/null"]

Listing 15: Base Image Dockerfile Evaluation Example

1 FROM base_image
2

3 RUN apt install -y python3 python3-pip
4

5 WORKDIR /app
6

7 COPY requirements.txt requirements.txt
8 RUN pip3 install -r requirements.txt
9

10 COPY . .
11

12 CMD [ "python3", "-m" , "flask", "run", "--host=0.0.0.0"]

Listing 16: Source Dockerfile Evaluation Example

1 # insert base
2 # FROM <base_image>
3

4 RUN apt install -y python3 python3-pip
5 RUN pip install Flask==2.2.2 click==8.1.3 itsdangerous==2.1.2 ...
6

7 COPY data .
8

9 WORKDIR /app
10 CMD [ "python3", "-m" , "flask", "run", "--host=0.0.0.0"]

Listing 17: Generated Dockerfile Evaluation Example
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Whaler [25]. According to its developers and contributors, Whaler is described as follows:
"Whaler is a Go program designed to reverse engineer Docker images into the Dockerfile
that created them." It is important to emphasize that Whaler is specifically designed
to operate on Docker images and does not function with running containers or actual
virtual machines (VMs). During the reverse engineering process, Whaler examines the
layers, file system differences, and other metadata that are part of an image, and it
reverses these elements to reconstruct the original Dockerfile. Notably, Whaler does not
take into account any changes in data that may have occurred during the operation of a
container. Its focus is solely on the metadata associated with a Docker container created
during the build process. Whaler is used in this context as a reference point to assess
the capabilities of the tool developed in this thesis. It is important to note that while
Whaler is designed for Docker, the tool in this thesis leverages Docker as a means of
creating simple and efficient "machines", along with a method for preserving changes to
facilitate the recreation of these machines. This approach is versatile and can also be
applied to other tools such as Puppet, Chef, Ansible, Vagrant, and others for managing
and creating machines.

Whaler vs Our Approach

The output of Whaler’s Dockerfile generation depends strongly on the base image
selected. If the base image is Debian, the resulting Dockerfile closely resembles the
original Dockerfile. However, if a different base image is used, everything done by that
base image is included in the resulting Dockerfile.

In the case of the example Dockerfile mentioned earlier 16, the output appears as shown
in Listing 18. Note that there is no "FROM base_image" statement in the output because
Docker metadata does not contain this information. Instead, it is resolved and substituted.
Lines 21 and 22 originate from the "base_image," which itself is based on Ubuntu (lines 1
to 20). These lines represent approximately, 2570 lines of files that constitute the Ubuntu
image.

Switching from Ubuntu-based images to Debian-based images results in significant
differences, as evident in Listing 19. The initial section that involves copying all the files
is omitted.

This underscores the crucial role of the base image. Depending on the chosen base
image, the resulting Dockerfile can vary substantially. For a fair comparison, lines part
of the base image in Whaler’s reverse-engineered Dockerfiles are excluded from accuracy
calculations.

Additionally, as mentioned earlier, Whaler does not consider files that change during
container execution. For instance, the generic copy command in the Dockerfile generated
by the thesis tool (line 7, 17) includes not only requirements.txt, app.py, and Dockerfile
but also log.txt, which was generated while the server was running. For a comparison
of the Dockerfile output that’s tolerable but would result in an unacceptable docker file
since the behavior would not be the same anymore.
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1 ARG LAUNCHPAD_BUILD_ARCH
2 LABEL org.opencontainers.image.ref.name=ubuntu
3 LABEL org.opencontainers.image.version=22.04
4 ADD file:c646150c866c8b5ecbc79....fa22502bdba3d38c53fc9a9 in /bin
5 boot/
6 dev/
7 etc/
8 etc/.pwd.lock
9 etc/adduser.conf

10 etc/alternatives/
11 etc/alternatives/README
12 etc/alternatives/awk
13 etc/alternatives/nawk
14 etc/alternatives/pager
15 etc/alternatives/rmt
16 etc/alternatives/which
17 etc/apt/
18 etc/apt/apt.conf.d/
19 .... <2550 files creating ubuntu file system>
20 CMD ["/bin/bash"]
21 RUN apt update -y
22 RUN apt install -y bash
23 RUN apt install -y python3 python3-pip
24 WORKDIR /app
25 COPY file:bfdeeaa41d38c2c11....e34a27924811da in requirements.txt
26 app/
27 app/requirements.txt
28

29 RUN pip3 install -r requirements.txt
30 COPY dir:5cc3660f227c81ed884d58....ea74b259d854960be85ca61b1 in .
31 app/
32 app/app.py
33 app/dockerfile
34

35 CMD ["python3" "-m" "flask" "run" "--host=0.0.0.0"]

Listing 18: Generated Dockerfile by Whaler for Evaluation Example
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1 CMD ["bash"]
2 RUN apt update -y
3 RUN apt install -y bash
4 RUN apt install -y python3 python3-pip
5 WORKDIR /app
6 COPY file:bfdeeaa41d38c2c11....e34a27924811da in requirements.txt
7 app/
8 app/requirements.txt
9

10 RUN pip3 install -r requirements.txt
11 COPY dir:5cc3660f227c81ed884d58....ea74b259d854960be85ca61b1 in .
12 app/
13 app/app.py
14 app/dockerfile
15

16 CMD ["python3" "-m" "flask" "run" "--host=0.0.0.0"]

Listing 19: Generated Dockerfile by Whaler for Evaluation Example

Thesis Whaler
line diff files diff similar line diff similar

custom 1 0 0 ✓ 0 ✓

custom 2 1 1 ✓ 0 ✓

custom 3 1 693 ✓ 7 ✗

postgres 4 174 ✓ 1 ✗

traefik 3 5 ✓ 2 ✗

nginx 3 6 ✓ 3 ✓

fastapi-react backend 2 12 ✓ 4 ✗

fastapi-react frontend 4 3 ✓ 4 ✓

openvpn 2 10 ✓ 0 ✓

ansible 5 32 ✓ 1 ✓

Table 5.2: Result comparison of our approach vs Whaler

5.1.5 Findings

Table 5.2 presents a the results obtained of the tools against those obtained using
Whaler. The table is structured to provide insights into the two metrics defined above:
line differences, and behavioral similarity between the original and the reconstructed
Dockerfiles. For Dockerfiles generated by our approach, it shows the additional files that
needed to be copied into the container because they could not be reconstructed based on
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commands available in the metadata alone.

• Line Difference (line diff): Quantifies the number of lines that differ between
the original Dockerfile and the reconstructed one.

• File Difference (files diff): Reflects the count of files that required relocation
after the movement described in the Dockerfile.

• Behavioral Similarity (similar): Indicated by symbols (✓for similarity and ✗for
dissimilarity), showing whether the behavior of the reconstructed Dockerfile aligns
with the original source.

The evaluation reveals that ’Custom 1’ and ’Custom 2’ are remarkably consistent in both
our approach and Whalers, demonstrating minimal differences in lines and files. These
images show little change during runtime, which explains the similarity in outcomes from
both tools. However, ’Custom 3’ presents a stark contrast, as it was specifically designed
to test file changes during runtime. This difference is highlighted by the substantial
number of files that had to be loaded additionally into the container, which Whaler fails
to detect, leading to a reconstructed image with altered behavior. Additionally, Whaler
couldn’t detect an extra process started by ’Custom 3’.

For applications like Traefik, Nginx, FastAPI-react frontend, and OpenVPN, the evalua-
tion shows minimal line differences between the methods. The configurations of these
applications are largely static, with the exception of logs and SSL renewal, thus showing
little change during runtime.

In contrast, the ’FastAPI-react backend’ and ’Postgres’ differ considerably. In these cases,
data generated or saved is not preserved by Whaler, potentially leading to significant
data loss upon running the new image, hence not maintaining behavioral similarity.

Furthermore, the execution of Ansible led to the creation of some logs and an internal
state, resulting in additional files. These files mainly improve Ansible’s operational speed
and are not crucial for replicating the same behavior.
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CHAPTER 6
Conclusion

In this thesis, the focus was on formalizing the state, actions, and transformation functions
necessary for evolving an empty system state into a desired target state with the goal of
migrating legacy server snapshots into reproducible Dockerfiles used for cloud deployments.
The process involved a detailed analysis and recording of all actions undertaken during
the transformation. These recorded actions then served as the foundation for the creation
of Dockerfiles.

After background research and evaluation of possible approaches the next phase involved
developing a theoretical model that articulated the relationship between the system
states and the actions required to transition from an initial, empty state to a specific
target state. This model provids a structured approach to understand and replicate the
processes in a system.

Due to practical constraints in sourcing VM snapshots for testing, Dockerfiles were used
as an alternative, as they simultaneously function as ground truths for our evaluation.
In the practical application phase, Docker images created from these Dockerfiles were
analyzed. The objective was to reconstruct the original Dockerfiles, thereby testing the
effectiveness of the theoretical model in real-world scenarios.

The tool developed for this purpose showed promising results in installing missing
packages, tracing file changes, and starting missing processes. However, it also revealed
areas for improvement, particularly in the detection of base images as well as detecting
file downloads.

In conclusion, this thesis not only introduces a novel approach to Dockerfile generation
from existing legacy systems, but also sets the stage for further advancements in this field.
The insights gained offer a pathway to simplify the containerization process, making it
more accessible and efficient. Future research can build on these findings, enhancing the
tool’s capabilities for more accurate and user-friendly Dockerfile generation.
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6.1 Future Work
We envision future developments in this field in the following areas:

• The development of a tool to identify the optimal base image for a source container
could significantly streamline the process of recreating containers.

• Implementing a mechanism to detect file downloads, particularly from sources like
git and via wget/curl, with the aim of reducing unnecessary file copying.

• Separation into multiple Dockerfiles.

6.1.1 Base Image Detection
Currently, determining the base image from within a container is challenging due to the
lack of relevant information. There is a need for a tool that can accurately infer the
best-suited base image for a source container, ideally one that requires minimal changes
for an accurate recreation of the original container. Such a tool would not only simplify
the Dockerfile creation process, but also enhance its accuracy and specificity.

6.1.2 Tracing Data Downloads
A significant advancement would involve tracing file downloads, particularly those initiated
via git, wget, or curl. Although finding git directories is relatively straightforward,
challenges arise when repositories are inaccessible due to privacy settings or deletion.
Additionally, detecting wget and curl downloads is complex due to the lack of clear
indicators such as the .git folder in the git repositories. Potential solutions might include
examining shell history or identifying downloaded but unremoved tar files, which could
indicate extraction operations that were part of the Dockerfile.

6.1.3 Identify multiple possible containers
A potential area for future investigation involves analyzing more complex systems that
encompass a variety of services such as databases, backends, and frontends. The objective
would be to detect and isolate these components and generate separate Dockerfiles for
each. Ideally, this process would also include the creation of a Docker Compose file that
seamlessly integrates these components, ensuring they function cohesively as they did
previously.
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