
Security and Privacy Concerns in
Shared Configuration

Repositories

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Gerhard Jungwirth, BSc
Matrikelnummer 01227311

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito
Mitwirkung: Assistant Prof. Dipl.-Ing. Dr.sc. Martina Lindorfer

Univ.Ass. Dipl.-Ing. Michael Schröder
Aakanksha Saha, BSc MSc

Wien, 4. Mai 2023
Gerhard Jungwirth Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Security and Privacy Concerns in
Shared Configuration

Repositories

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Gerhard Jungwirth, BSc
Registration Number 01227311

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito
Assistance: Assistant Prof. Dipl.-Ing. Dr.sc. Martina Lindorfer

Univ.Ass. Dipl.-Ing. Michael Schröder
Aakanksha Saha, BSc MSc

Vienna, 4th May, 2023
Gerhard Jungwirth Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Gerhard Jungwirth, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. Mai 2023
Gerhard Jungwirth

v

Danksagung

Mein Dank geht an meine Betreuer:innen, Martina Lindorfer und Jürgen Cito, die dieses
Projekt ermöglicht haben und mir die Chance gaben, in diesem Team zu arbeiten. Weiters
möchte ich mich bei den anderen Teammitgliedern, Michael Schröder und Akanksha Saha,
für ihr Feedback, Hilfestellungen und Tipps bedanken. Außerdem danke ich Katharina
Krombholz für ihre Beratung betreffend die empirische Umfrage und Auswertung. Zum
Schluss möchte ich mich bei meiner Familie und allen Freund:innen bedanken für all die
Motivation und Unterstützung, die sie mir gegeben haben. Besonderer Dank geht hier an
Laura, Sandra, Lisa, Michi, Peter und Marcel für ihre Freundschaft und immerwährende
Unterstützung in allen Belangen.

vii

Acknowledgements

First of all, I want to thank my advisors, Martina Lindorfer and Jürgen Cito, for making
this project possible and giving me the opportunity to work on this subject. I also want
to thank the other members of our team, Michael Schröder and Akanksha Saha for their
help, tips, and feedback. In addition, I want to thank Katharina Krombholz for her
counseling regarding the empirical survey. Finally, I want to thank all my friends and
family for their endless hours of support and motivation. Special thanks go to Laura,
Sandra, Lisa, Michi, Peter, and Marcel for their friendship and incredible support over
the last years.

ix

Kurzfassung

Der Begriff „dotfiles“ bezeichnet Textdateien, die zur Konfiguration in UNIX Systemen
genutzt werden. In den letzten Jahren hat sich eine Gemeinschaft gebildet, in welcher
sich über solche Softwarekonfigurationen ausgetauscht wird. Repositories mit solchen
Dateien sind auch auf GitHub zu finden und können als spezifische Gruppe betrachtet
werden. Obwohl diese Dateien sehr personalisiert sind, enthalten sie auf den ersten
Blick keine sicherheitskritischen Informationen. Bei näherer Betrachtung ergeben sich
aber eine Reihe von möglichen Problemen die zu beachten sind: von Passwörtern und
API-Schlüsseln hin zu persönlich identifizierbaren Daten (PII). Wir verwendeten zwei
verschiedene Ansätze, um dieses Phänomen zu quantifizieren. Um das Ausmaß und die Art
möglicher Sicherheits- und Privatspähreprobleme zu erörtern, führten wir eine Analyse
von 124 230 öffentlichen Repositories auf GitHub durch. In einem iterativen Prozess fanden
wir mögliche Lücken in 73,6 % der Repositories. In einem zweiten Schritt kontaktierten
wir die betroffenen Author:innen und führten zeitgleich eine Umfrage (n=1 650) durch,
um die Motivation für das Teilen von Konfigurationsdateien und das Wissen bezüglich
Sicherheit und Privatsphäre zu erörtern. Wir fanden heraus, dass wichtige Gründe für
das Teilen ideologischer Natur sind, eine soziale Ursache haben (zum Beispiel Angeben)
oder in Bequemlichkeit zu finden sind. Die meisten Benutzer:innen sind zuversichtlich,
was die Sicherheit ihrer Daten betrifft und geben an, die Sicherheitsaspekte gut zu
verstehen. Schlussendlich geben wir noch Empfehlungen an Plattformbetreiber:innen und
Nutzer:innen um dieses Feld sicherer zu gestalten.

xi

Abstract

Dotfiles is a common term for text-only configuration files in the UNIX ecosystem. A
community of sharing and exchanging of these files has formed in the last years. Configu-
ration files, therefore, constitute a highly idiosyncratic domain of GitHub repositories.
They are highly personalized but do not pose a potential threat at first glance. But on
closer examination, they may provide a range of potential pitfalls, from passwords and
API keys to personally identifiable information (PII). We used a twofold approach to
analyze these issues. To find out the extent and existence of such issues, we conducted
a large-scale analysis of 124,230 public dotfiles repositories on GitHub. In an iterative
process, we found issues in 73.6 % of the repositories. We then contacted the authors
and did a large-scale survey (n=1,650) on their motivation for sharing and their security
considerations. We found that the main reasons for sharing are ideological, to show off
(“ricing”), and to ease machine setup. Most users are confident about the contents of
their files and claim to understand the security implications. After our search, we provide
recommendations for Platforms as well as users to make this domain more secure.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Background 3
2.1 UNIX Configuration Files . 3
2.2 Distributed VCS and Trends . 3
2.3 Security Basics . 4

3 Related Work 7
3.1 Mining GitHub . 7
3.2 GitHub Security Research . 8
3.3 User Surveys Related to Security and Privacy 8

4 Quantitative Research 11
4.1 Research Goals . 11
4.2 Methodology . 11
4.3 Results . 14
4.4 Discussion . 20

5 Qualitative Research 25
5.1 Methodology . 25
5.2 Results . 29
5.3 Discussion . 38

6 Conclusion 41

7 Further Work 43

A Survey Questions 45

xv

B Survey/Disclosure Email 49

List of Figures 51

List of Tables 53

Bibliography 55

CHAPTER 1
Introduction

GitHub is an online service and host for collaborative software development. It is widely
used in open source software development, reaching a reported 100 million live repositories
in November 2018 [49]. Apart from allowing users to publicly share versioned content
of any type, it also includes collaborative and social functionalities. This has recently
led to the trend, that users share their personal software configurations on GitHub.
These repositories are typically called “dotfiles”. This name is due to the fact, that in
UNIX-based systems, software configuration files usually start with a dot. In this way,
they are hidden in the default file view. A detailed explanation of dotfiles and this trend
can be found in Section 2.1.

Software engineering research was performed by extracting and mining large-scale datasets
from GitHub and other source code hosts. A wide variety of qualitative and quantitative
studies have been conducted to assess social interaction, development practices, and
processes. Furthermore, security research has been conducted on this data. This has,
however, primarily focused on software development projects. But many repositories on
GitHub are not primarily part of software development projects [17].

Our research tries to close that gap and analyze possible security-relevant aspects of
shared configuration repositories. These repositories contain information, that is closely
linked to individual users, therefore the potential for vulnerabilities is high. Other
research has shown that sensitive data is committed to GitHub regularly by accident to
dotfiles as well as other repositories [23].

An example of the effects of security leaks in public repositories is the "2020 United States
federal government data breach". Besides US government departments, the European
Union, NATO, Microsoft, and others were affected. While numerous attack vectors were
used, one that could have played a role is a vulnerability in Orion, a popular network
monitoring software of SolarWinds. As a security researcher pointed out, the credentials

1

1. Introduction

to their update and build system have been leaked on GitHub already a year earlier [18,
38, 46].

In this paper, we investigate the risks of publicly sharing personal configurations on
platforms like GitHub. In particular, we want to answer the following research questions:

RQ1 What are the security and privacy implications of public shared configuration
repositories (a.k.a. dotfiles) on platforms like GitHub?

RQ2 What are the primary motivations of repository owners for sharing their dotfiles?

RQ3 How aware are repository owners of the implications of sharing their dotfiles?

To this end, the contributions of our work are:

• A large-scale analysis of 124,230 public dotfiles repositories on GitHub,
revealing 10,942,606 potential security and privacy threats, affecting 73.6 % of
analysed repositories. These include leaked email addresses, RSA private keys,
API keys, history and log files, and more. We classified the types of leaks and the
possible attack vectors, such as hijacking, impersonation, spamming, or phishing.

• The responsible disclosure to 5,199 repository owners of relevant issues,
wherever this was possible.

• A survey of 1,650 repository owners to understand their motivations and
their perceptions of security risk. Our results show a common intent of sharing
and learning from each other, with an added motivation of showing off one’s
highly configured system configuration (“ricing”), as well as convenience when
synchronizing and restoring dotfiles. Our findings indicate that users readily
understand the risk of sharing sensitive information through dotfiles, and a majority
of participants will continue sharing their dotfiles. Our survey materials and
questionnaires are available in our appendix.

Chapters 2 and 3 cover the background research and related work. Next, Chapter 4
describes the process and results of the in-depth iterative analysis of dotfiles-repositories
on GitHub, while Chapter 5 explains the survey on dotfile-repository owners on GitHub.
Finally, we close with a conclusion and proposals for further work.

2

CHAPTER 2
Background

2.1 UNIX Configuration Files
UNIX-based systems usually follow a number of standards. One of them is, that files
that start with a dot are hidden by default when viewing the contents of a directory. It,
therefore, has become a common practice for tools, to store user-specific configurations
in such a file in the user’s home directory (e.g .profile for shell configurations or
.emacs for configurations of the EMACS file editor). Due to these properties, they are
typically called “dotfiles” [51].

Originally, these files were simple text files, that were written by the user and read
once during program initialization. With the emergence of complex graphical desktop
environments and “modern” GUI applications, hidden files, and folders started to contain
a lot of stuff (e.g. extensive default configurations, runtime and cached data, user/session
data, named pipes). It, therefore, became harder to synchronize these configurations
between different machines and software versions [48].

Nonetheless, users have started to use version control systems and dedicated tools to
manage these files which became increasingly complex. An overview of these approaches
will be shown in the next section.

2.2 Distributed VCS and Trends
Version control systems are a popular technology in software development and other
IT-related applications for fine-grained tracking of changes and authorship – especially
in plain-text files like source code. One of the most popular choices is Git1, originally
developed by Linus Torvalds for the Linux Kernel. One of the most popular online

1https://git-scm.com/

3

https://git-scm.com/

2. Background

Figure 2.1: Structure of a typical dotfiles repository exposing sensitive information that
brought together could form an attack vector

platforms to host Git repositories is GitHub. It allows private users free online storage
for public and private repositories.

In order to share their personal configuration files with others or synchronize them onto
different machines, users have recently started to share their dotfiles on platforms like
GitHub. These are typically personal repositories which are often named “dotfiles”. An
example of such a dotfiles repository structure can be seen in Figure 2.1. A search for the
string dotfiles shows 162,964 results in November 2021. A community has evolved out
of this trend, promoting a sense of sharing and collaboration. Dotfiles are often copied
and cloned from popular users and a number of tools have been developed to manage
them [26]. Groups on Reddit (like the board r/unixporn) also often share their dotfiles
in an effort to establish subculture identity and credibility.

The Reddit board r/unixporn also coined a term called ricing - which means showing
off a good, often self-made desktop configuration [12].

2.3 Security Basics
The field of scientific security research often concentrates on two areas: Formal Methods
to prove the absence of certain risks or an applied approach of finding new attack surfaces,
privacy problems, or other characteristics of a system, protocol, or technology or evaluate
these properties therein. In order to categorize vulnerabilities, threats and attacks the
Open Web Application Security Project (OWASP) publishes various lists of the most
frequent issues in different fields. Another categorization is provided by the MITRE
corporation – the ATT&CK framework [43]. It lists tactics, techniques, and documented
usage of those and may be used to classify actual attacks in retrospect. Figure 2.2 show
an exemplary part of the MITRE classification tree.

4

2.3. Security Basics

Figure 2.2: Exemplary section of the MITRE ATT&CK framework classification [24]

5

CHAPTER 3
Related Work

3.1 Mining GitHub
Kalliamvakou et al. [17] present an overview of the benefits and pitfalls when mining
GitHub. They showed that repositories are not only used for active software development;
rather, users have personal repositories for different purposes, many of which are inactive.
According to their survey, other use cases include experimentation, website hosting,
school and university projects, as well as just storage.

Since GitHub offers many social features, and collaboration is a major use case of
distributed version control, a number of studies have targeted social interaction and
collaboration on GitHub, focusing on the frequency, type, and duration of collaborators’
participation: Tsay, Dabbish, and Herbsleb [44] measured the likelihood of acceptance of
pull requests on open-source projects on GitHub based on social and technical parameters.
They show that social ties and prior interaction of the involved developers with the
project strongly contribute to an accepted pull request.

Casalnuovo et al. [9] took a look at the onboarding process of new project members.
They found out, that prior social ties as well as language experience are two factors that
improve the chances of prolonged participation.

Pinto, Steinmacher, and Gerosa [29] also followed a mixed-methods approach including
two surveys (n=197 and n=64). They intended to examine the work of casual contributors
to open-source projects including their motivation, their type of contributions and their
share of the overall contributions. They conclude that casual contributors are an important
part of many projects and they deliver many non-trivial fixes and improvements. A main
motivation for casual contributors is a personal need.

Qiu et al. [32] conducted a mixed-methods empirical study to find out, whether social
capital has a different effect on the dropout rates of male and female developers at

7

3. Related Work

open-source projects. They found out, that diversity across various categories is beneficial
to prolonged participation and has a positive effect on gender differences as well. The
survey received n=88 responses which were evaluated.

Other papers have questioned how people navigate and evaluate projects and how this
impacts their inclination towards contribution [7, 54, 22]. Ray et al. [33] have analyzed
the relationship between code quality and programming language choice, while Schröder
and Cito [39] investigated the use of shell aliases.

Our research enriches these endeavors in that it mines GitHub repositories for a specific
subdomain going further into detail on the possible ramifications for that domain (being
configurations repositories).

3.2 GitHub Security Research
A number of studies have focused on source code vulnerabilities and security issues
surrounding the software development process [25, 55, 13]. Lazarine et al. [20] leverage
graph embedding algorithms to study networks and relationships of vulnerabilities in
GitHub repositories to better identify vulnerable projects and organizations. Closer
to our interests, Yasar [52] investigated secrets that are accidentally committed into
repositories as part of continuous integration (CI) pipelines, and Meli, McNiece, and
Reaves [23] have performed the first large-scale analysis of secret leakage in GitHub
repositories. They found that a significant amount of API keys and private key files in
existing repositories on GitHub, and that thousands of new leaks are committed every
day. They also found that a purely regular-expression-based search delivers many false
positives, however—mostly test keys and placeholder strings. To validate their findings,
they used a combination of filters based on entropy and pattern detection. Saha et al. [36]
and Lounici et al. [21] use machine learning to improve detection accuracy and eliminate
more false positives.

These references show that the existence of secrets in source-code repositories has been
well-researched and multiple approaches have been taken to improve the matching
accuracy. In comparison, our work explores further attack vectors and provides an
overview of possible attacks using a combination of those individual threats. We also
show that the domain of personal configuration files has some differences from plain
source code repositories as it may contain more personal data and individualized content.

3.3 User Surveys Related to Security and Privacy
Several surveys have targeted users’ perceptions and knowledge of security and privacy
in the field of online software repositories and distributed software development.

Bühlmann and Ghafari [8] conducted a long-term, large-scale analysis of discussions on
security reports between 2014 and 2020. They studied security issue reports on 182
repositories and found that the rate of new reports was increasing over time. On the other

8

3.3. User Surveys Related to Security and Privacy

hand, there is a large number of reports which are not resolved, or the time until they
are resolved is rather long. Issues are rather reported and handled by a small fraction of
core “expert” developers.

Dietrich et al. [11] performed a survey where they investigated the system operators’ per-
spective on security misconfigurations. They did this via a qualitative and a quantitative
survey. One finding was, that two third of security-relevant misconfigurations exist for a
long time, without ever leading to an actual incident, although they were critical. They
also propose some measures to prevent such configuration mistakes and lead to more
secure systems.

Pletea, Vasilescu, and Serebrenik [30] analyzed the sentiment of participants in security-
related discussions on the platform GitHub. They found that about 10% of all discussions
on GitHub are on a security-related topic. These discussions typically contain more
negative emotions than other discussions. As a result of their findings, they propose
to address security throughout the whole project lifetime, take measures in improving
discussion culture and handle upcoming issues professionally in order to improve the
general atmosphere and increase overall security.

Alqhatani and Lipford [2] used semi-structured interviews with 30 users of wearable
fitness devices in order to explore their practices of sharing the data generated on those
devices on different (social) platforms. They found that most of the users are more
concerned with self-presentation and social norms than about the sensitivity of the data
itself.

Kariryaa et al. [19] conducted an online survey (n=353) to evaluate users’ understanding
of the security aspects of browser extensions, in particular the reception of permission
dialogues. Their conclusion was that users have little knowledge of the actual capabilities
of browser extensions and that current designs are insufficient in helping users understand
the impact of their choices.

Wermke et al. [50] conducted surveys with 200 users of Cloud Office suites to investigate
their understanding, perception, and expectation of the security and privacy of those
products. While users seemed to have strong opinions on how their documents should
be shared and to whom they should be visible, they often do not know whether this
expectation is met in reality. There was a lack of technical understanding in some cases
but on the other hand, a general awareness of the implications of cloud solutions was
available. Wermke et al. [50] also provide some recommendations to the different parties
involved so that cloud office users can make an informed decision about their security
and privacy.

Ponticello, Fassl, and Krombholz [31] conducted semi-structured interviews (n=16) in
order to evaluate users’ risk-assessment when performing sensitive tasks like home banking
on voice-controlled assistants. They found that users are less willing to use token-based
authentication, e.g. via a smartphone, as it undermines the convenience of smart-home
appliances. Users strongly favor biometric authentication methods, although some are
aware of their flaws in current systems.

9

3. Related Work

Bailey, Markert, and Aviv [3] conducted an online survey (n=235) to find out users’
perceptions and understanding of the PIN feature of the messaging app Signal. They found
that only enthusiasts have a full understanding of the PIN as an account recovery key
and choose a sufficiently strong alphanumeric one, while casual users do not understand
the purpose of this feature and just set a minimal 4-digit numerical code. They conclude
that phrasing and in-app explanations are crucial for such a security-relevant feature.
Vasilescu, Filkov, and Serebrenik [47] conducted an online survey (n=816) in order to
understand collaboration factors on GitHub participation. They found that GitHub with
all its social features and transparent contribution options (like pull requests) provides a
low barrier for newcomers and that teams largely benefit from diversity across technical
and social categories in their group of contributors.

10

CHAPTER 4
Quantitative Research

In this chapter, the first part of our research efforts is presented: the exhaustive mining
of GitHub for dotfiles-repositories. First, the goals and methodology are presented. Then
the results are described and finally, we present a discussion of possible reasons and
implications.

4.1 Research Goals
As we described in the previous chapters, there has not been a study so far that specifically
addressed the security and privacy concerns of shared configurations. Therefore, our goal
was to perform an iterative, exhaustive search of dotfiles repositories on GitHub and
evaluate their contents with a focus on security and privacy issues. A special interest
lies in the question, of whether there are also more complex attack vectors apart from
one-dimensional ones like leaked credentials.

4.2 Methodology
Here we describe how we defined the target boundaries and how we collected the resulting
data. After that, we will explain the general approach of processing this data. In
general, we conducted our research on 124,230 repositories, which have a total size of 993
GB. These include the full history, as well as a checked-out working directory for each
repository. They have been downloaded between October 2020 and January 2021.

In the next two sections, we will describe this process in more detail.

4.2.1 Data Collection
Our goal was to search and analyze shared configuration repositories, also known as
“dotfiles”. See section 2.1 for a description of these files and repositories. We found that

11

4. Quantitative Research

not everyone who shares a repository containing dotfiles also gives it the name “dotfiles”.
Therefore we used the GitHub repository search API [16]. In contrast to the code search
API, this endpoint delivers reliable, complete information. We, therefore, queried the
API to search for the string “dotfiles” in either the name or description of the repository.

Nonetheless, the API has two more limitations. First, a number of (variable) rate limits
apply, to prevent abuse and secondly, each query only delivers a maximum of 1,000
results. We therefore facilitated a custom-made API tool, developed at TU Wien which
regularly queries the rate limits and dynamically set delays to maximize throughput and
modified it to use the repository API1,2. To circumvent the limit of 1,000 results per
query the results are split by adding search parameters for the size of the repository and
repeating the query while varying this parameter to reach a result set below this limit
per call. Also, we excluded forks from our search to limit the result space and get a
broad insight into the domain without dealing with duplicates.

We began our repository enlisting on October 10th, 2020, and took about ten hours
including some manual adjustments to the search parameters. Querying the GitHub
API with these properties – “dotfiles” in name or description, excluding forks – in an
exhaustive search resulted in 125,171 repositories, that matched our criteria. Out of
these, the majority (113,860, about 91 %) included the string “dotfiles” in the repository
name.

We then used git clone with ssh public key authentication and a small delay to
download these repositories. Due to technical constraints on the server used for our
experiments, we ran our cloning process in two batches. We started the first cloning
process on October 28th, 2020, and collected 75,710 repositories. We started the second
batch on January 4th, 2021, and collected a remaining 48,520 repositories. Out of 125,171
repositories, 884 found via the API search tool could not be cloned, probably because
they had been deleted in the meantime. We further excluded 56 repositories from our
analysis because of their size (greater than 1 GB).

About 46 % of the total repositories we cloned had their last commit in 2020, and we
therefore consider them active. On average, each repository has 81 commits and three
different authors — although the number of authors per repository can be misleading, as
the same person can commit to a repository using different authorship information. This
has also been shown by other research [14] and was confirmed by us through manual
inspection.

4.2.2 Data Processing
After the cloning step, we collected some general metadata and stored it in an SQLite
database. We will present the dataset below and give an overview of how it looks like
and what it contains. All data was stored in an access-controlled server at university

1https://github.com/ipa-lab/github-searcher
2https://github.com/ipa-lab/dotfiles-repositories-analysis

12

https://github.com/ipa-lab/github-searcher
https://github.com/ipa-lab/dotfiles-repositories-analysis

4.2. Methodology

Table 4.1: Frequency of MIME Types (Top10)

MIME Type # Files % Files Avg. Size Avg. Lines
text/plain 9,235,370 46.29 % 9.8 KB 193
image/svg+xml 3,820,771 19.15 % 3.4 KB 38
image/png 1,955,465 9.80 % 23.5 KB 85
application/octet-stream 635,244 3.18 % 82.0 KB 464
text/x-shellscript 580,310 2.91 % 2.8 KB 63
application/json 507,723 2.54 % 7.6 KB 116
text/html 488,127 2.45 % 10.5 KB 178
text/x-lisp 306,868 1.54 % 17.3 KB 436
text/xml 294,727 1.48 % 25.8 KB 501
text/x-python 208,948 1.05 % 9.1 KB 247

Table 4.2: Frequency of File Names (Top10)

filename # Files # Repos
README.md 333,164 69,845
.gitignore 85,550 51,734
.vimrc 42,180 41,180
.zshrc 34,117 33,219
.gitconfig 29,071 28,587
config 59,760 28,554
.tmux.conf 26,565 26,061
.bashrc 26,970 25,981
vimrc 23,718 22,672
.gitmodules 20,123 19,018

premises. To get an overview over the data, we collected some statistics. We indexed all
files that were present at the latest state of the repositories (working copy). For these
files we analyzed their size and number of lines (which is only useful in the case of text
files). We also used the UNIX file utility[28]. which uses a heuristic to determine the
MIME type and stored the file type for each file in all repositories. In total, we analyzed
about 20 million files. We found that the majority of files in these repositories (61 %)
were textfiles like text/plain, text/x-shellscript, application/json, and so on. A more
detailed overview of the ten most common MIME types can be found in Table 4.1. The
most common file name was README.md, appearing in more than half of the repositories,
followed by .gitignore and typical editor and shell configuration files like .vimrc
and .zshrc (see Table 4.2).

We also tried to index the contents of all text files to identify typical or common content.
We used a fuzzy hashing algorithm to also match similar files. For this purpose, we

13

4. Quantitative Research

intended to use ssdeep3, a very common algorithm/tool, which is among others used in
malware detection. Nonetheless, the size of our data made it impossible to complete the
matching. Therefore, this process was not completed and hence can be explored in the
future.

4.2.3 Data Analysis
After collecting and processing the dotfiles repositories, we identified potential security and
privacy threats (RQ1). Related work has already focused on identifying authentication
credentials in repositories [23, 36, 21]. We extend this line of work, in particular building
on Gitleaks [34], which searches a repository and its history based on regular expressions.
We sampled our dataset and iteratively identify further relevant types of information that
are common in dotfiles. We crafted regular expressions for each of them and integrated
them into Gitleaks to identify them in our dataset at scale.

We further map the identified security and privacy issues against the MITRE AT&CK
framework [24]. This knowledge-base documents attacker tactics and techniques and
is commonly used in industry to understand attacker models and methodologies. In
particular, we discuss how the individual pieces of information available in the repositories
could aid attackers in the reconnaissance phase of their attacks.

4.3 Results
We now describe the security and privacy issues we found in our dataset. An overview of
the found quantities can be found in Table 4.3.

4.3.1 Generic Credentials
A well known problem of GitHub and similar platforms is, that authentication credentials
are accidentally committed into repositories [23, 36, 21]. This can be in the form
of username/password, API tokens or asymmetric private keys. We used the tool
Gitleaks[34]. to find such occurrences. In its default configuration, it uses a number of
regular expressions to find common API keys of popular services such as the Google APIs
as well as private keys. An advantage of this tool over a plain fulltext search is that it
also searches the full history of each repository.

We identified possible leaks in 11,758 repositories (which corresponds to 9.5 % of all
repositories). The most common credential was a GitHub API key, followed by Twitter.
Table 4.4 gives an overview of all the credentials found in our scan.

To some extent, these results represent the general popularity of the different platforms,
and are of course constrained by the regular expression set we used. Similar findings
have been reported by Meli, McNiece, and Reaves [23], although they found Google API
keys to be the most commonly leaked credentials, which also matches the GitGuardian

3https://ssdeep-project.github.io/ssdeep/index.html

14

https://ssdeep-project.github.io/ssdeep/index.html

4.3. Results

Table 4.3: Overview of all findings after mining dotfiles repositories on GitHub. We
quantify the prevalence of particular security and privacy relevant information in these
repositories. We also note where some of our findings replicate existing studies and
which possible attacks are represented by these findings. The number of vulnerabilities is
counted once per file.

Type of Information # Repos (%) Notes Possible Attacks
API Keys Hijacking,
Github API keys 65,589 6,898 (5.51 %) Example:

ghp_16C7e42F292c69
12E7710c838347Ae178B4a4

Impersonation,
Spamming

Twitter Key 38,752 3,936 (3.14 %) [23]: 20,760 keys
Other 19,166 4,470 (3.57 %)

RSA Keys Hijacking,
RSA Private Key 9,452 1,489 (1.19 %) [23]: 158,011 keys Spamming
Public Weak Key 111 n.a. Key length ≤ 1024 bit
Public Vulnerable Key 6 n.a. Debian RNG attack [53]

Software Packages Hijacking
Python Dependencies 16,315 1,036 (0.83 %)
Javascript Dependencies 145,050 585 (0.47 %)

Private Data Hijacking,
Firefox Logins 40 29 (0.02 %) Impersonation
Thunderbird Profiles 2 2 (0.002 %) Actual user data, not meta-

data
Mailboxes 52 52 (0.04 %) Inbox files from Thunderbird

and Mutt
PII Spamming,
Email Addresses 1,227,175 88,442 (70.7 %) Phishing

2021 report [15]. The difference probably stems from the fact that our research focuses
on personal configuration repositories, which are typically used for non-code purposes.

These matches definitely include false positives. This became evident by reviewing the
file paths or the matching line of the results for components like "dummy" or "test".
For example, this string was found in the filename a total of 6,294 times or 4.73 % of
all matches. We did not further focus on differentiating true and false positives, since
this has already been done by other research with various means, including machine
learning [36, 21]. On the other hand, a significant amount had no such indicator and
must therefore be counted as real credential.

4.3.2 Weak Public Keys
Apart from 9,452 RSA private keys, which obviously should never be shared, we also found
a number of problematic public keys. Normally, public keys are supposed to be shared [4]
and GitHub itself even provides access to all public keys of its users. Nonetheless, if used
incorrectly, asymmetric encryption can be weakened and poses a potential threat [53].

We analyzed two kinds of files: Files with the string id_rsa.pub and files with the

15

4. Quantitative Research

Table 4.4: Number of matched Gitleaks Rules

Count Rule
65,589 Github
38,752 Twitter Client ID
9,452 Asymmetric Private Key
4,981 LinkedIn Client ID
2,880 Google API key
2,761 AWS Access Key
2,169 AWS Secret Key
2,051 LinkedIn Secret Key
1,557 Facebook Client ID
1,255 Twitter Secret Key

657 Facebook Secret Key
560 Slack
149 Google (GCP) Service Account
85 Slack Webhook
39 Mailgun API key
11 SendGrid API Key
7 MailChimp API key
3 Stripe API key
1 Picatic API key

string authorized_keys in their file name or path. In total we found 1,566 repositories
where one of those conditions were true. Files with the first described format are public
key files belonging to a key pair of a user, typically found in their .ssh folder. We
already analyzed these folders when analyzing the private keys and found no further
interesting properties in these files. The second type of file also contains public ssh keys
and is typically found in ssh server configurations. The public keys which are listed in
that file, grant the owner of the respective private key access to that server, depending on
the configuration usually without a second factor. We found 1,050 such files. In those, we
found 2,844 parseable RSA public keys, 192 DSA keys and 109 ECDSA keys. Out of the
RSA keys, 111 had a key length of ≤ 1024 bit. This is a potential security risk, depending
on the criticality of systems, which are accessed by it [5]. We also verified, if any of these
keys are vulnerable to an attack, where an insecure random number generation had led
to weak keys in the past [53], by comparing them to an available dataset of affected keys5.
In this process, we found six affected keys. This is a relatively low number and shows
that the vulnerability was first discovered 2008 and has had a lot of publicity over the
years. After a discovery in 2015 that a lot of users still use those weak keys [10], GitHub
has proactively started to check the keys, which were used to log in to the platform and
invalidate the weak ones they found.

5https://github.com/g0tmi1k/debian-ssh

16

https://github.com/g0tmi1k/debian-ssh

4.3. Results

Table 4.5: Cryptographic algorithm used in SSH public keys

Algorithm
2,844 RSA

192 DSA
109 ECDSA

4.3.3 Personally Identifiable Information (PII)
An obvious issue with personal repositories is that they may contain a lot of personally
identifiable information (PII). We found that we could extract, among others, the following
information out of the dotfiles dataset:

• Personally Identifiable Information

– Name/Email/Username
– Language
– Geographical Information
– Used OS and Software

• Organizational Information

– Workplace or Place of Education
– Internal Networking Infrastructure

This information could be mined at a large scale and could be used as intel for different
attacks like spear phishing or impersonation attacks or sold for other purposes.

As an example, we extracted all email addresses from the repositories, which are a huge
source of information themselves, e.g.: usernames, social graph, company affiliations,
country. In order to extract all emails from the timelines of all repositories, we configured
Gitleaks to use our own regular expression to extract email addresses. In total we
extracted 22 million email addresses from our dataset. If every unique email address is
counted only once per file, this still gives us 9.3 million email addresses. Table 4.6 shows
the most common email domains. In order to evaluate the significance of each email
address, we calculated the TF-IDF metric [35]. This gave us a hint on the significance of
each email and highlighted the most important addresses for each repository. We found
1.2 million unique non-trivial email addresses in total.

In the course of this analysis, we found that in some cases people have included whole
email inboxes into their repository (i.e., files with received and sent raw email messages
as they are typically stored by email clients). This was most likely unintentional. We
found 23 repositories, where this was the case. After an exhaustive search with email

17

4. Quantitative Research

Table 4.6: Top five most common email domains

Domain
824,753 gmail.com
35,080 github.com
28,224 example.com
24,046 yahoo.com
20,351 gnu.org

Table 4.7: Frequency of occurrence of certain software profiles

Software #repos
Firefox 361

Google Chrome 152
Discord 46
Skype 12

inboxes in mind, we discovered 52 files with valid emails in total. Most of these inboxes
were found in historic states of the repositories and have been deleted. Nonetheless, they
were still present in the git history. We will discuss the issue of sensitive historic data in
section 4.4.5.

4.3.4 Private Data

During the iterative refinement of our qualitative analysis, it became evident, that
some of the repositories also contain unintentional user data. Apart from the email
inboxes described in section 4.3.3, we also found private data from web browsers and
chat programs. This data includes, among others, cache data, cookies, browsing history
and even unencrypted passwords from the browsers’ password managers. We developed
queries to systematically search all repositories for the frequency of occurrence of such
data and found that between 46 to 361 repositories contain such data – depending on the
software that we searched for. This corresponds to a maximum of 0.3% of all repositories
but we still consider it a significant problem due to the severity of such cases. Table 4.7
shows an overview of the prevalence of these findings. Through manual inspection we
found that our data contains false positives (where no sensitive data is present and the
profiles contain only plain configuration) as well as true positives.

We also saw that our data contains IRC (internet relay chat) logs. Since these chat
rooms are often public and even logs are often publicly available, it was not possible to
determine the privacy status of this data.

18

4.3. Results

4.3.5 Software Packages

By analyzing common software dependency files, we can infer that particular users are
using certain software packages. Several attack vectors are associated with this kind of
information. Typosquatting and dependency confusion have recently gained the attention
of security researchers. Both can be rated as supply chain attacks [27]. Typosquatting
has been popular with domain names for over two decades, where similar domains to an
existing one (like “netflix.om” instead of “netflix.com”) have been used to spread malware
or other malicious activities [40]. With package dependencies, it is even easier because
anyone can typically upload packages to package repositories like PyPI and it has been
proven to be a very effective attack [45]. Dependency confusion is a new technique that
is supported by the fact that big companies often have a mix of open-source and private
packages which they use internally and which are installed by common package managers
from a mix of public and private package archives. The problem is that the package
managers often prefer the highest version of a package so malicious packages with the
same name as an internal dependency of a company can be uploaded to public archives
and then have the same impact as with typosquatting – or even a higher impact since
this is typically used by larger companies [6].

Therefore – even though they are probably not as relevant to shared configuration reposi-
tories as they are for active software development projects – we wanted to analyze library
dependencies. We found that the main source of structured dependency information
comes from Python and JavaScript dependency definitions. Even though only a maximum
of about 2% of all dotfiles repositories contain such dependency files, vulnerabilities can
still have a high potential impact.

We cross-checked all found dependencies with the publicly available package archives of
the respective languages to find out, how many packages are not listed there (they may
be installed from another source or be simple typos). The majority of those packages
just came from other sources than the official package indices and may not immediately
pose a vulnerability. They still may be vulnerable, depending on how the installation
process is done. In order to find actual typos, the Levenshtein distance was used to find
similar packages for those, which could not be found in the archive. It was possible to
identify clear typos in this way, which would be susceptible to typosquatting.

We also analyzed how dependency versions were specified on the example of javascript
dependencies. The majority of version definitions were specified with the caret ^version
(62%), which only increments the patch version of that package. 14 percent used the
tilde (~version) or an exact version specifier (version) respectively. Especially the
latter may be problematic because important security fixes could be missed.

19

4. Quantitative Research

Table 4.8: MITRE AT&CK classification of our findings [24]

TA0009: Collection T1602: Data from Configuration Repository
TA0043: Reconnaissance T1592: Gather Victim Host Information

T1589: Gather Victim Identity Information
T1590: Gather Victim Network Information
T1591: Gather Victim Org Information
T1593: Search Open Websites/Domains

TA0006: Credential Access T1555: Credentials from Password Stores .003: Credentials from Web Browsers
T1552: Unsecured Credentials .001: Credentials in Files

.004: Private Keys

4.4 Discussion
4.4.1 Security Implications
Our research has shown, that dotfiles are a sensitive example of public data on GitHub.
Even though they are supposed to contain personal data, they are typically shared with
the public intentionally. The existence of (API) keys and credentials is documented [23,
36, 21] and there exist several solutions including GitHub’s Code Scanning6, yet secrets
are still present at large scale in users’ repositories. Besides secrets, we found a range
of other information with a potential of exploitation by a malicious actor, especially
during reconnaissance, which is an important phase of contemporary attacks [1]. This
information can be seen as host information (like credentials), identity information (like
emails), network information or organisational information. Table 4.8 maps our findings
to the relevant attack stages and classes in the MITRE AT&CK framework [24]. Private
data (browsing history, emails...) and personally identifiable information are types of
data that have privacy implications and can indirectly even be used in the reconnaissance
for further targeted attacks (e.g., by feeding brute force password lists). On the other
hand, we also found data that leads to more direct attack surfaces: credentials, vulnerable
dependencies, and weak keys. These can be used directly for targeted attacks. The
combination of direct and indirect data can lead to targeted and sophisticated attacks
as the attacker has better familiarity with the target’s infrastructure. For example,
knowledge of a vulnerable web server package coupled with a domain credential can lead
to privilege escalation within a target environment (see Figure 2.1). In the next section,
we are going to lay out a few attack scenarios that pose a high threat.

4.4.2 Possible Attacks
The highest potential threat lies in a combination of the data that we found and described
in our findings. The reason for that is, that dotfiles repositories naturally contain highly
personal information which provide potential for attacks individually and even more so
in combination. Here we want to lay out some examples of what might be possible attack
strategies with the available data. The availability and occurrence of combinations of

6https://docs.github.com/en/code-security/secret-security/
about-secret-scanning

20

https://docs.github.com/en/code-security/secret-security/about-secret-scanning
https://docs.github.com/en/code-security/secret-security/about-secret-scanning

4.4. Discussion

the different features we analyzed is visualized in Figure 4.1. For example the middle
number means that five repositories contain at least one item of all five categories of
findings that we analyzed. The five categories correspond to the findings we described in
Section 4.3. This graphic just serves as an overview and proof, that the “features” we
found can be combined in various ways.

Summarizing our findings, dotfiles repositories can – among others – enable the following
potential attack scenarios:

• Credential Stuffing: Malicious actors can simply use the API credentials to get
access to the respective services. Alternatively, they can use the found passwords or
private keys (and possibly usernames, emails, and other data) in combination with
host information to authenticate against the target services (e.g., cloud computing
and storage services).

• Vulnerable Packages: Vulnerable packages can be identified from the package
information, combined with host information can consequently give access to a
specific system. For example, an attacker identifies a web server vulnerability that
allows for unauthenticated access to data stored within a web server.

• Impersonation: Personal, organizational, and domain knowledge combined with
private data such as email inboxes, browsing history or chat logs can be used for
identity theft. For example, using the aforementioned pieces of information, a
malicious actor can open bank accounts for money laundering.

• Spear Phishing: The knowledge of internal/private data in combination with
organizational, and domain information can be used to orchestrate targeted phishing
campaigns. Thus, increasing the susceptibility of the potential victims to perform
the attacker’s desired action.

4.4.3 Limitations
We selected the dataset specifically to only repositories which contained the string
"dotfiles" in the name or description. Therefore, there may be a wide range of other
non-code repositories, even some that contain personal configuration files which are not
captured by this process. There may also be a bias in the frequency of findings due to
copy-pasted configurations, which are probably not even used. This is limited though,
since we focus on vulnerabilities which are typically not copied intentionally as well as
the exclusion of forks from our dataset. We excluded repositories, which were larger than
one GB, but that only affected a few. We also only fetched data from GitHub, although
there are other shared version-controlled hosters available (such as GitLab or BitBucket).

Also, we did not test any secrets or vulnerabilities we found (see “Ethics” in Section 4.4.6).
Therefore we cannot tell for sure, that any credential or vulnerability is valid. We even
have evidence to believe, that the biggest platforms automatically invalidate secrets that

21

4. Quantitative Research

Figure 4.1: Venn Diagram of all available combinations of our findings per repository

are leaked through GitHub (see Section 4.3.1). We also did not focus on separating false
positives from true positives, since that has already been covered by other research -
among others with AI methods [36, 21].

Another inherent limitation comes from our approach of iteratively exploring the dataset.
We provided a range of possible attack vectors, however, those scenarios are neither
exhaustive nor indicative of all potential attacks.

22

4.4. Discussion

4.4.4 Root Causes

Our iterative dotfiles analysis did not conclusively answer the question of what motivates
people to share their dotfiles online and why sensitive data ends up in these repositories.
We observed that an important aspect is convenience – the advantage of having version
control and easy distribution of a repetitive task like configuring a new system to one’s
preferences. Since most configuration files in UNIX systems are text-only files, this is
perfectly suitable for a VCS like git. Also, the tech community has advanced this trend
through discussions, blog posts, tutorials, and helper scripts that automate the process
of creating dotfiles and managing them. Many of these tools even address the issue of
secrets and provide solutions (see Section 4.4.5). Nonetheless, there is a wide variety of
tools available and many developers even prefer not to use any tools except for plain git.
Based on these results, we decided to conduct the present survey to learn more about
the motivation of developers to publicly share their dotfiles.

When secrets get added to a repository, they often are deleted incompletely by creating a
new commit, without rewriting the history. Around 59 % of the leaks (on the example of
API keys) we found were in the historic states of commits but not in the most recent state
(HEAD), thus supporting our claim. This may be due to users being unaware of the secret
they committed or insufficient knowledge how to delete sensitive data correctly from git.
GitHub provides help for this task (see section 4.4.5), but it seems, this information has
not reached everyone.

4.4.5 Recommendations

The use of dotfiles has many benefits to users, but everyone should think carefully about
what to share and how. With the availability of unlimited private repositories in the free
plan of GitHub, the first consideration should be, whether a private repository is the
better choice.

Secondly, there is a very good collection of tutorials and tools provided by some users on
GitHub7, which developers should read into, before creating their own dotfiles repositories.
The adoption of a well-known strategy and a popular tool may decrease the risk handling
ones dotfiles in an insecure way.

Lastly, we noticed, that not everyone seems to know, how to delete information from a
git repository safely. It is important to note that, once an information has been online,
no matter how short, it should be considered compromised and appropriate steps should
be taken. This is because any upload is immediately propagated to the Events API
and also could end up in other places like GHTorrent swiftly as pointed out by Meli,
McNiece, and Reaves [23]. Remediation actions include deleting the information from
the git history, deleting the credentials from the repository and revoking the credentials.

7https://dotfiles.github.io/

23

4. Quantitative Research

GitHub’s documentation on removing sensitive information from a repository provides
several useful guidelines in these regards.8

4.4.6 Ethics
This section explains the ethical considerations that have been conducted for this research.
First of all, we only worked with public data. All repositories we examined were available
on GitHub to the public and have been found through the public API.

We also never tried to use any of the secrets and vulnerabilities we found through GitHub
or test their validity. We therefore cannot guarantee the validity or up-to-dateness of the
data but we can rule out any legal or personal consequences, such as red team testing
would have.

Lastly, we responsibly disclosed the issues we found directly to those repository owners,
which we had a contact from and all published information that stems from our dataset
is aggregated or anonymized.

8https://docs.github.com/en/github/authenticating-to-github/
removing-sensitive-data-from-a-repository

24

https://docs.github.com/en/github/authenticating-to-github/removing-sensitive-data-from-a-repository
https://docs.github.com/en/github/authenticating-to-github/removing-sensitive-data-from-a-repository

CHAPTER 5
Qualitative Research

5.1 Methodology
Since dotfiles are highly idiosyncratic and closely linked to individual owners, we wanted
to get a deeper insight into the motivation for sharing them. This motivated us to conduct
a survey to learn more about the motivations, security knowledge and considerations and
develop conclusions and recommendations on the base of the results. We will describe
the process and the findings in this chapter.

5.1.1 Understanding Dotfile-Users
In the previous chapter, we showed numerous potential attack vectors possible in the
dataset containing GitHub dotfile repositories. These repositories contain personal
configurations and other user-related data. Therefore they are tightly bound and unique
to individual persons. This leads to the question of what motivates people to share their
dotfiles and whether such data should be published openly at all. During our research,
we found that people share and discuss their dotfiles on diverse platforms like specific
communities on Reddit as well as other fora. In this chapter, we try to explore users’
motivation and perceptions of sharing dotfiles on diverse platforms.

In order to get a representative and comprehensive answer on how and why people share
their dotfiles and learn more about these motivations, we decided to conduct a survey.
Broadly, we were interested in who the people are that publicly share their dotfiles on
GitHub and why they do it (RQ2) and what their knowledge is, if any, of the attendant
security and privacy issues (RQ3). In order to develop our survey, we first defined the
following survey-related (sub-)research questions. The first two are about finding who
and when and the third and fourth are about the motivation of sharing.

SRQ1 “Who” shares their dotfiles on GitHub?

25

5. Qualitative Research

SRQ2 Since when/for how long do they share them?

SRQ3 Why do they share it publicly?

SRQ4 Why do they share it in general?

SRQ5 What is their relationship with and competence in security and privacy (w.r.t
dotfiles and in general)?

In the next sections, we want to explain, how we designed our survey and questionnaire
to best answer these questions, mitigate possible biases and maximize the return rate.

5.1.2 Survey Design
We formulated the following general goals to which we intended to design our question-
naire:

• Inductive approach (grounded theory alike) to minimize validation bias
• Quantitative questions to get a “bigger picture” of context
• Demographic questions to find unknown correlations
• Open questions to provide respondents the freedom for new ideas / their opinions /

etc. and minimize bias
• Similarity to other GitHub/developer surveys to aid comparability

As noted above, we intended to follow an approach that is similar to the grounded-theory
methodology [37, 42]. This means that we conducted our survey with no preset theory in
mind and generated our findings inductively based on open-ended responses. To achieve
this goal, we carefully formulated the two main concepts (the reasons for sharing dotfiles
publicly and plans for future changes) as open questions with as little presupposition as
possible. We conducted open coding after receiving the responses in order to evaluate
the results. This will be explained further in Section 5.1.3.

Participants

As for sample selection, we decided to use the full sample of available contacts because
we expected a low return rate. This is based on existing knowledge about this mode
of survey propagation – unsolicited mass email. Based on our dataset (about 124,230
repositories), we selected those users, who publicly set an email address in their profile
and would therefore express agreement to be contacted via mail. In total, these were
44,472 email addresses. We personalized the emails by addressing everyone with their
username. In addition, we utilized this opportunity to disclose any security or privacy
vulnerability we found in these repositories. These disclosures were also personalized to
the individual recipients: each user received one or more sentences according to the five
categories we present in our investigative study part. The exact email text is listed in

26

5.1. Methodology

the appendix as well. We automatically flagged the filled surveys with the information
on whether a user received a disclosed vulnerability or not. Apart from that the surveys
were identical to these two user groups (those who received a disclosure and those who
did not). With this sample selection strategy we minimize the sampling and coverage
error as far as possible. The bias which may result from the fact, that we can only send
emails to people from which we have a usable email address lies outside our control. To
further explain this, users who do not provide a public email address in their GitHub
profile are probably more security-aware or have bigger corporations at stake. They
would have therefore answered the survey differently, which would have given us different
results. This issue can be seen as a form of sampling bias.

Survey Structure

Our survey (see Appendix A) contains four sections and a total of twenty questions. The
first section is about the usage of GitHub in general. The goal is to make participants
comfortable, make them familiar with the survey-topic and question style, and allow for
a comparison of our user-base with the general group of GitHub users. The questions are
formulated as single-choice, multiple-choice, and one numerical text field asking for the
number of own repositories.

The second section is on the main topic of our survey, i.e., the use of dotfiles. It consists of
six questions. The first is a binary question of whether the dotfiles repository of the user
is still actively used. This allows us to compare their self-assessment with the definition
we chose for our analysis (namely that active repositories are those, that have been
updated in the current year). The question about the first usage of dotfile repositories
follows the same purpose (to cross-check this data with the age of dotfile-repositories in
our quantitative dataset) and also allows to get insights into the trend we only saw in
individual statements in online communities so far (a trend about collecting, sharing and
discussing configuration collections as well as system setups). The next three questions –
what are the platforms and tools used to store and manage dotfiles and what proportion
of copy-pasted contents constitutes dotfiles – also follow the purpose of understanding
the trend better and allowing for a comparison with our existing dataset. We want to get
an in-depth insight, into the questions when this trend emerged and in what direction it
emerged. The final question is an open-ended one, formulated as “Why did you share
your dotfiles on GitHub?” This allows participants to provide qualitative responses about
their motivation and allows us to get an unbiased response, and rigorous picture, and
sheds light on the thoughts and opinions of the participants on the matter – why they
started to publish their dotfiles to GitHub. By balancing formality and directness, we
tried to be as neutral as possible while challenging them to give this question a serious
thought.

The third section evaluates the knowledge and stance on security and privacy of the survey
participants – in general and in terms of dotfiles. The first four questions are presented
as seven-point Likert scales. This choice has the disadvantage of the central tendency
bias, on the other hand, it avoids the forced choice and the likelihood of acquiescence

27

5. Qualitative Research

bias. The seven-point scales allow for a more fine-grained spectrum in contrast to the
five-point ones and give the participants more options apart from the extremes and the
middle, so that we shall get a clearer picture. The last question is our second open-ended
question:

We found several security & privacy issues across dotfile repositories on
GitHub. If you are affected, you have received an email from us with further
information. With this knowledge, what are your planned changes to your
repository?

This question has multiple purposes. First, we wanted to evaluate, whether our disclosure
was successful and had the desired effect of raising awareness for existing security
problems. Secondly, we wanted to give participants a choice to evaluate their own security
considerations and express further details about them. This way, they are incentivized to
take action, even on issues we didn’t uncover yet or as a general means of precaution. As
we will see in the results sections, the mention of an email (see exact question above)
caused some irritation and misunderstanding.

The last section of the survey tries to capture the general demographics and software
development-related information of the participants. These questions allow us to compare
our target group to those of similar studies such as, general developer studies done by
GitHub or Stackoverflow. For this reason, the question design tries to mimic that of
existing surveys.

Pilot and Testing

We refined our questionnaire and formulation through some internal iterations as well as
pilot studies with two users, who fall into the target group of dotfile users although they
do not share their dotfiles in a public GitHub repository. In addition, we consulted an
internal expert on empirical studies. This way we made sure that our questionnaire is
easily understandable by the target group and the questions are perceived as intended.
We incorporated the feedback from the pilot study into the final survey design before it
was sent out to the 44,472 recipients.

5.1.3 Survey Analysis
Execution

We sent out our survey via a mass-mail provider using a subdomain of our institute
as From-address. Out of the 44,472 emails, 98.1 % were delivered, the rest had invalid
addresses or were rejected by the receiving email server. We received 1,650 (response
rate of 3.78 %) responses in the time frame of about three months (Oct 2021 - Dec 2021).
Therefore we had to design an exact process in order to evaluate especially the two main
open questions in an objective and reproducible way.

28

5.2. Results

Coding

The coding of the data was done inductively, inspired by grounded theory [42]. The idea
being, no presumptions or theories were developed before analyzing the data. Therefore,
the first iteration was done without any limits or guides. Whenever a coder came across a
statement that did not fit into any category already developed, a new category was added.
After that, a synthesis was done horizontally across the coders as well as vertically across
the categories. Our coding method for the first cycle can therefore be categorized as
“initial coding” with the concrete realizations of “in-vivo coding” as well as “descriptive
coding”. Initial coding, which is sometimes also called open coding is the first round of a
coding process with the goal of finding important topics and codes to further examine in
the next steps. This closely relates to our intention as described above. In-vivo coding is
defined by extracting the codes directly and literally out of the source data. We noticed
during the initial phase, that the answers themselves sometimes provide just the right
categories to use. Descriptive coding is a broad term and expresses that the goal of the
coding process is a general description of the content to be coded. [37]

The final approach we chose was to select a random sample of one hundred answers. This
sample was then independently coded as a first iteration by four members of our research
project using open coding as described above. After that, an interrater agreement was
calculated and a final coding guideline was formulated out of the reduction of these
results. With this guideline, the rest of the answers were coded only once by individual
members of our research.

5.2 Results
In this section, we will first describe our respondents in terms of some general categories
and then go into more detail about their answers and opinions with regard to their use
of dotfiles and notion of security. We will have a look at interesting correlations as well
as other novel and notable statements from our dataset of answers.

5.2.1 Who are the Owners of Dotfile-repositories?
The majority of our survey respondents is quite young. As presented in Figure 5.1,
around fifty percent are in their twenties and another third are in their thirties. The
majority – i.e. 88 % – identify as male, about five percent identify as “Other” and about
three percent as female as seen in Figure 5.3. The most frequent countries of origin of
our respondents (who chose to answer this question) are the United States, Germany and
the United Kingdom. More details can be found in Figure 5.2. The majority of them
describes their occupation as software development, while the second most mentioned
occupation is student. About three out of four respondents have an undergraduate or
postgraduate degree. These results are similar to other developer-surveys [41].

Most of our respondents use GitHub for private projects. A large group is also involved
actively in open-source development (54 %). Also, half of them already contributed to a

29

5. Qualitative Research

Figure 5.1: Survey results for the age of GitHub users

Figure 5.2: Survey results for the country of origin of GitHub users

project or fixed a bug. More details can be found in Figure 5.4. Many of them are quite
active on GitHub and use it every day (49 %) or at least once a week (31 %), as seen in
Figure 5.5. It is important, to keep the nonresponse bias in mind for this question. This
means that active users are more involved and interested in the security and contents of
their GitHub repositories and therefore – as we suspect – also more likely to respond to
our survey.

30

5.2. Results

Figure 5.3: Survey results for the gender of GitHub users

Figure 5.4: Survey results for the usage purpose of GitHub

5.2.2 Dotfiles Usage

As an extension to the previous question, we asked about the frequency and usage of the
particular dotfiles repository. Four out of five respondents claim that they actively use
the dotfile repository. This differs greatly from our assumption of active repositories. But
it is essential to consider that active users are probably much more likely to answer such

31

5. Qualitative Research

Figure 5.5: Survey results for the frequency of GitHub usage

a survey. More than half of them started to use dotfiles in the last five years and almost
90 % in the last ten years. We can therefore conclude that this trend has emerged in
that timeframe, even though the concept of dotfiles themselves is very old. The majority
uses only GitHub to share their dotfiles, but of course, this answer is biased since we
targeted only GitHub users in our survey. Nonetheless, one-third of the respondents
also reported some other sharing service. Out of those, the highest ranked answer was a
private server with 16 %, followed by other online version control systems like Gitlab with
11 %. It is important to mention here, that also on this question, multiple answers were
allowed. We were also interested in learning about participants’ way of managing their
existing dotfiles repository and what tools or technology they use, if any. The different
responses and their percentages are summarised in Figure 5.6. A minimalistic approach
to using basic git utilities for dotfiles management is the most popular method, followed
by third-party management tools such as yadm, stow, dotbot, and chezmoi, which are
also frequently discussed among the online communities. We also received additional
open-ended responses where respondents mentioned using self-made tools and solutions
to manage their dotfiles. Finally, in response to our question, "How many (approx) of
your dotfiles are self-written?" most of our respondents claim that all or the majority of
their dotfiles are self-written.

After the general understanding of participants’ current usage methods of dotfiles, their
sharing patterns and management approaches, the survey focuses on security and privacy-
related questions. We collected the responses to our security-related questions in 7-point

32

5.2. Results

Figure 5.6: Survey results for the tool for dotfile management

Likert scales described in the previous section. The responses are visualized in Figure 5.7.
We can see that the users rate the importance of security quite high and the actual
security of their dotfiles repository, even though they are a bit modest about their own
knowledge and competence on security.

Figure 5.7: Security-related self-assessment based on survey

33

5. Qualitative Research

5.2.3 Motivation for using Dotfile Repositories
As described above, we intentionally asked about the motivation for using dotfile reposi-
tories as an open question. For our study, we were primarily interested in knowing about
the motivation for using and sharing dotfile repositories. After two iterations of open
coding and cross-validations between multiple coders (described in Section 5.1.3), we
categorized and quantified the most common themes, and present them here.

Sharing (59 %) A majority of the respondents noted that they upload their personal
dotfiles on GitHub and actively share them with others.

I often chat about my config with friends that are also into config manage-
ment. Having it on GitHub makes it easy to show some lines while chatting.
– n0492

Many answers also emphasized a sense of community around personal configuration
and learning from others.

Because we all learn from each other when we share. – n1168

Setup (53 %) Another large share of respondents claimed that they used the repository
to either quickly set up new machines or synchronize their configurations between
physical machines and virtual machines.

So I can pull them from a new machine when setting up my dev environment.
– n0666

Backup (31 %) About one-third of the respondents also claimed they are using the
repository particularly as a convenient storage or backup solution. This answer
also includes people who are using it for its version control capabilities.

Reason number one was probably to have a cloud copy [...] – n0117

Synchronization (23 %) About a quarter of respondents uses the dotfiles repository
specifically to propagate changes between machines and operating systems. While
synchronization and setup may sound similar, they distinctly emerged as two
different themes in our data, so we decided to create separate categories.

Reference (9 %) Another class of responses argues about direct links in order to ref-
erence certain parts of their configuration. They use it for example when talking
with friends or colleagues.

Mostly for quick reference when explaining how I do certain things on my
system. – n0894

Convenience (5 %) This category contains answers which emphasize the simplicity of
using GitHub in general for storing or couldn’t be matched to any other category
(like: “for convenience”).

Because it’s convenient. – n0705

34

5.2. Results

No free private GitHub repositories (<1 %) Some people also mentioned that GitHub
didn’t have private repositories earlier - otherwise they would have made it private.

Figure 5.8: Survey results for the reasons for using dotfile repositories

A summary of the responses is shown in Figure 5.8. The survey responses show that
a sense of community and open-source spirit is essential among the dotfiles repository
users. The users believe in the ideology of sharing. They acknowledge learning by looking
at others’ configuration files, discovering best practices, tricks and eventually sharing
their dotfiles, hoping others can benefit from it in the future. The second major reason
stated by the survey takers falls under the broad category of convenience, where users like
having their dotfiles in an easy-to-access location to help with backup and quick setup
and synchronization between devices. Some respondents also mention that the lack of
availability of private repositories made them switch to a public repository, thus making
their configuration files publicly accessible. Furthermore, another set of respondents
argued about the inconvenience of using a private repository and dealing with extra
credentials, thus opting for the easiest way to share files between devices and platforms.
These responses imply that people tend to choose convenient solutions over security and
raise the question on how we can make secure solutions more usable.

Apart from the insights mentioned above, some of our participants also mentioned the
term “ricing”. The term “Rice” is commonly used to refer to making visual improvements
and customizations on one’s desktop. The community shares their nifty configurations
and customizations of the default *NIX system to make it visually attractive on a Reddit
group called r/unixporn [12]. This Reddit community currently stands at 366,560 ricers
sharing and showcasing their configuration, aka dotfiles, with the community.

35

5. Qualitative Research

The dotfiles I share are simply cosmetic Linux configurations and/or small useful
utilities, scripts, and customizations. There is a big community of "ricers" who
like to show off these customizations, and so share and remix each other’s dotfiles.
I share mine because I want them in version control (I’ve lost them before), and
so that folks who find aspects of them useful can use them. – n0758

5.2.4 Possible changes
Finally, we asked our participants, what changes they plan to incorporate on their
dotfile repository after reading our email and participating in our survey. We equally
asked this question to participants which received a disclosure report about a possible
privacy/security issue as well as those who didn’t. After the coding process (cf. Section
5.1.3), we developed the following codes:

No change (58 %) More than half of the participants responded that they would not
change anything in their repository. The participants were confident about the
content of their files and considered it safe with no exposed vulnerabilities and
security leaks.

I am careful to segregate sensitive information from configurations, so am
fairly confident that I have not leaked anything. – n0013

Check (5.8 %) Those who agreed to make changes claimed that they are mindful of
committing sensitive information and make an effort to proofread the file contents
regularly.

I routinely evaluate my dotfiles repo, and am not aware of any security
risks beyond basic things like my email, editor preferences, etc. – n0339

And those who received a vulnerability disclosure email from us claimed to look
into the issues and take appropriate actions.

I will take a good look on what might be there that you found and remove
it from all of that repositories history. Thank you for your project! – l0041

Update (2.8 %) The third most frequent response was to delete any sensitive files and
update the contents of their repository to make it safe while acknowledging the
presence of sensitive contents.

The first thing I did was to delete my history backup file. Though it was a
sqlite db file but anyone who had the deserializer that I was using, can get
in plain text which contained a bunch of secret credentials. – l0114

Delete repo (1.0 %) Some respondents went to the extreme end of stating that they
will delete their entire repository from GitHub.

Make repository private (1.2 %) Another group of users claimed, they were going
to make their repository private.

36

5.2. Results

I changed its visibility to private. Before, githib didn’t allow to go private
for free. – n1244

Tool (0.7 %) Interestingly for us, a small number of respondents also plan to use a tool
to manage their dotfile repositories or the sensitive data within the repository.

Maybe encrypting my secrets in git repo (if any) with git-crypt – n0182

From the survey results, we see that 58 % of respondents agree that they will not make
any changes to the current state of their repository as we did not report any security or
privacy issues pertaining to their repository, or they are reasonably confident about the
content of their files and consider them safe. The second most common response was
to verify and update the repositories. Here, the users were thankful for the research of
identifying the security implications of openly sharing configuration files. The participants
genuinely responded to review the contents of their files and update/delete any sensitive
information leakage that might have occurred either due to carelessness or being unaware
of the consequences of storing them in public.

Thanks for having my dotfiles repo scanned. Fortunately no leaks were found!It’s
a cool project and can help us, careless devs! Once in a blue moon I do some
manual searching about such leaks and mail the owners in case I can find their
email address. The last time I found some crazy stuff, such as bash_history files
with inline mysql-client invocations including username, password and public
server hostname! The sad thing is that about one out of twenty-thirty people do
respond or take any action. The last one that replied to me, said he doesn’t care!
I hope you have fun with the project and crush your goal helping people fix their
leaks. – n0067

About 1.2 % of the participants responded that they would make the repository private.
They claimed that the repository does not need to be public, and since GitHub now offers
the creation of a private repository for free, they can safely switch to it. Apart from this,
we also observed some other themes that fell into the category of Additional Information
where participants asked for more details on the survey and the disclosed vulnerability;
Tooling where a small number of respondents plan to use a tool to manage their dotfile
repositories containing sensitive data such as git-crypt. Finally, Unused where 0.7 % of
the respondents claim that they no longer actively use the repository and plan to delete
it or make it private.

In summary, while most of the participants understand the security concerns related to
shared configurations files, a decent number of participants do not plan to make any
changes to their repository as they do not think of it as an issue or do not have any
private information leakage in their dotfiles. On the other hand, it is motivating to see
responses that benefited from our dotfiles research and urged the participants to be aware
and mindful of committing sensitive data. Finally, we received a few critical responses
on using non-privacy-preserving infrastructure such as Google Forms and personal email

37

5. Qualitative Research

addresses for a mass survey. As mentioned, we included a proper ethics and disclosure
statement on our survey and made sure only to use publicly identified email addresses
from the recipients’ profiles.

5.3 Discussion
5.3.1 Reasons for Sharing Dotfiles on GitHub
As we saw from these results, there are two main reasons, as for why people share
their dotfiles on GitHub. The first group is the idealistic ones. They believe in the
spirit of sharing - the spirit of the open-source community. They intend to show their
results to friends, colleagues, or in online communities. Some mentioned specific boards
on the online platform Reddit for that purpose. The answers, which we tagged as
reference, follow a similar purpose. These include respondents who like to refer to a
specific configuration when talking to someone or explaining something. This group is
very well suited for the social and collaborative aspects of GitHub. The second group
of explanations includes pragmatic reasons. For those users, it is convenient to have a
centralized storage or backup for this kind of files. They take advantage of the benefits of
version control. Many users also argued that this repository allows them to quickly set
up new machines or synchronize configuration changes between running machines. For
this second group, a private repository would probably be sufficient. But there are also
some shortcomings with private repositories – one user responded for example, that they
appreciate the convenience of downloading their configuration quickly on virtual machines
without any authentication. This would not be possible with a private repository. But
in general, a private repository is most likely the best option, and easily available since
GitHub nowadays allows unlimited private repositories for free.

5.3.2 Relationship between Convenience and Security
We even got some explicit answers from participants saying, that if free private repositories
were available at the time they started to use dotfiles, they would have used those. Another
common statement was, that participants were planning to switch to a private repository
after reading our email and participating in the survey. We, therefore, think that
convenience is an important concept to consider for platforms to aid security. This means
security-related features should be provided by platforms as conveniently as possible and
free of charge.

5.3.3 Side-effects and Suggested Next Steps
As for the disclosure part of our email (and survey), we received interesting responses as
well. Independently of whether users received it as part of a disclosure (or just the general
information and the survey link), many of them were thankful for our dissemination and
said they were planning to make some changes to their dotfiles repository. Out of those,
the majority were planning to go through their files or update them individually. But

38

5.3. Discussion

still, 1.1 % is planning to make their repository private, and 1 % is planning to delete
their repository from GitHub altogether. Furthermore, it is interesting, that 0.7 % said,
they were going to use a tool to manage their dotfiles or check for security and privacy
issues. This may be a good alternative since from the answers to other questions we see
that not using any supporting tooling or using something self-written is by far the most
common approach. As the community grows and evolves, we hope to see more tools that
can strengthen the security and privacy aspects of personal configurations. These will
also be able to provide more sensible defaults of what files to include and warnings if any
keys or credentials are about to be committed.

5.3.4 Problems of Understanding
We also received a large number of responses per mail and in the survey answers that
indicated different problems of communication. First of all, many of our respondents
notified us about the fact that the issue we reported on their repository was a false-
positive. We were aware of that already, but – as mentioned also in Section 4.3.1 – we
focused on different aspects and therefore didn’t take efforts to eliminate those.

Another clear issue of miscommunication was, that those who did not receive a disclosure,
received the statement “No leaks have been found in your repository”. Nonetheless, they
were asked to fill out the same survey. In the survey, we asked about their changes in
reaction to our disclosure. That is why many of them expected a second email with a
disclosure or more details about it. We clarified the arising questions by setting up an
information website and writing a response to the questions we received.

5.3.5 Limitations and Ethics
We sent our survey to owners of public dotfiles repositories on GitHub, who had set
a public email address on their profile. This naturally limits the responses to exactly
this user group. Users who are more privacy- or security-aware would not be contacted,
because they may already use a private repository or do not have a public email address
to contact them. This is a form of sampling bias which is also mentioned in Section 5.1.2.

Our university does not have an ethics board, therefore we followed our internal guidelines
and procedures and are going to lay them out here. To contact our survey participants,
we only used publicly available information - as stated above. The email has been sent
once, and only those who specifically asked for further information or the results of our
study have been contacted again to answer those requests. In the email they have been
informed about the purpose of the survey and the usage of their data. We are never –
and cannot – link individual answers to specific repositories. The answers we published,
have been checked to not reveal any information that is directly linkable to a specific
user.

39

CHAPTER 6
Conclusion

This study provided a comprehensive insight into the security and privacy implications
of publicly sharing personal configuration files (dotfiles). We performed a large-scale
analysis of 124,230 public dotfiles repositories on GitHub and discovered potential sensitive
information leakage in 73.6 % of the analyzed repositories.

Since personal configurations are closely linked to a singular user’s particular system –
dotfiles repositories pose a highly personal security risk. In our research, we evaluated and
classified several attack vectors such as credential stuffing, impersonation, or phishing due
to direct and indirect security vulnerabilities identified in the dotfiles. We also surveyed
1,650 repository owners to understand their motivations, awareness, and perceptions of
security and privacy risks. We found that sharing is mainly ideological (an end in itself)
and to show off (“ricing”), and for providing a reference to other users. Our study also
found that participants commonly use and share dotfiles for the convenience of machine
setup, synchronization, and backups. Most users are confident about the contents of
their files and claim to understand the security implications, and will continue sharing
their dotfiles after taking appropriate actions.

In light of the popularity and widespread use of dotfiles repositories, participants should
be able to make informed decisions about the security and privacy of their files. In that
regard, we hope our research can help inform future standards, usage, implementations,
and sharing of dotfiles repositories.

41

CHAPTER 7
Further Work

We recommend further work in the field of security and privacy issues of public data. This
is necessary because the risk not only impacts individuals but also possibly larger entities
like companies or open-source software projects. Therefore we suggest the development
of more sophisticated automated tools like Gitleaks. Gitleaks and others already do a
great job, when it comes to private keys or API credentials and a well integrated into
automated checks by GitHub itself or within organizations. But they need to be extended
to find non-trivial issues like the ones we described. There are already a lot of tools to
find outdated dependencies for example. An automatic correlation of certain packages or
configurations with new CVEs would be even better in that regard.

The survey we conducted specifically targeted users within our dataset. This had the
advantage of finding correlations between what they responded to and our mining results.
But it would be really interesting, to extend this study to active users e.g. in the Reddit
Community, on Social Networks, or on other Platforms like GitLab or BitBucket. This
would reveal a broader picture and eradicate the possible sampling bias we might have in
our study.

We also want to emphasize the active mitigation strategies we recommend. On a direct
user level, we recommend campaigns to raise knowledge about security and privacy issues
of configuration data. This may be done directly in the community, e.g. with Reddit
Posts and a Wiki entry. Also, the (private) dotfiles landing page on GitHub would be an
opportunity to emphasize this information. Tools that sensibly manage one’s dotfiles could
be recommended as well as information on how to deal with compromised information.
Also, tools that are specifically designed for private information like Gitsecret could be
promoted.

On a platform level, there is on one hand the possibility of automated checks and
issuing of warnings. On the other hand, sensible defaults can have a great impact. For
dotfiles repositories, there are a few options: (1) the suggestion to make it private; (2) a

43

7. Further Work

.gitignore file that only includes real configuration files and no databases containing
caches, cookies, or passwords; (3) a template including the setup of one of the tools,
mentioned above.

44

APPENDIX A
Survey Questions

Thank you for participating in our survey. The survey consists of 4 sections and will take
about 5–10 minutes. All responses are anonymous. Our research is done by [anonymized
for review]. It focuses on the security and privacy related aspects of shared configurations,
a.k.a. “dotfiles”. Your response provides valuable information and helps us formulate
recommendations on the security of this domain for the open source community. Our
findings will be published as a paper. If you want to send us additional feedback, concerns
or want to get notified about the results please send us a message at [anonymized for
review]

* required

Q1. What do you (mostly) use GitHub for?
◦ Private projects
◦ Active opensource software development
◦ Contributions/Bug fixes
◦ Github issue reporting/Discussions
◦ School/University projects
◦ Other: _______

Q2. How many repositories of your own do you have on GitHub (self-created)?

Q3. How often do you actively use GitHub?
◦ every day
◦ at least once a week
◦ at least once per month
◦ at least once per year
◦ less than once per year/not regularly

45

A. Survey Questions

Q4. Do you still actively use the dotfile repository?
◦ Yes ◦ No

Q5. When did you first start to use dotfiles?
◦ 0-5 years ago
◦ 5-10 years ago
◦ more than 10 years ago

Q6. Did you first/also share them in other ways/platforms — if yes, where?
◦ No, I don’t share dotfiles on other platforms
◦ Dropbox
◦ Other cloud file storage
◦ Other cloud version control service (e.g. Gitlab, Bitbucket...)
◦ Private server
◦ Other: _______

Q7. Do you use a tool/technology to manage your dotfiles? If yes, which one?
◦ No tool. (I just manually copy my dotfiles to the right place).
◦ Plain git (e.g. the "bare repo" approach).
◦ dotbot
◦ chezmoi
◦ rcm
◦ yadm
◦ Other: _______

Q8. How many (approx) of your config files are self-written and how many are copy-
pasted from somewhere?
◦ all are self-written
◦ most are self-written
◦ about half are copy-pasted, the other half self-written
◦ most are copy-pasted
◦ all are copy-pasted

Q9. Why did you share your dotfiles on GitHub?

Q10. How concerned are you about software security in general?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 ◦ 6 ◦ 7

Q11. How do you rate your experience with software security?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 ◦ 6 ◦ 7

Q12. Did you think about the security of your dotfile repository?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 ◦ 6 ◦ 7

Q13. How would you rate the security of your dotfile repository?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5 ◦ 6 ◦ 7

46

Q14. We found several security & privacy issues across dotfile repositories on GitHub.
If you are affected, you have received an email from us with further information.
With this knowledge, what are your planned changes to your repository?

Q15. Age *
◦ 10-19 years ◦ 20-29 years ◦ 30-39 years
◦ 40-49 years ◦ 50-59 years ◦ 60-69 years
◦ 70-79 years ◦ over 80 years

Q16. Gender *
◦ Female ◦ Male ◦ Other

Q17. Country of residence
◦ ... list of countries ...

Q18. Highest educational degree
◦ School, no diploma
◦ Secondary education (high school)
◦ Trade/technical/vocational training
◦ Undergraduate education (college or university)
◦ Postgraduate education (masters or doctorate)
◦ Other: _______

Q19. What is your current occupation?

Q20. How many years of experience do you have in software development (if any)?

47

APPENDIX B
Survey/Disclosure Email

Hello [GitHub Username],

we are a research team at TU Wien, Austria. We are writing you, because you are using
GitHub and have a repository with configuration files (dotfiles). We did research on the
usage and security of these repositories.

We found the following issues with your repository (if any):

(No leaks have been found in your repository)

[OR 1 or multiple of the following:]

* Credentials: Your repository may contain API keys or authentication credentials,
which(if valid) could be used to log in to web services in your name.
* RSA Keys: You may have a private key or weak public RSA key, which could be used
to authenticate to some service(e.g. via ssh) in your name.
* Private Data: Your repository may contain private data, which is typically not shared
publicly. This includes, browsing history, cookies, and chat logs.
* Old/Outdated Dependencies: Your repository may contain software dependencies,
which are outdated or misspelled. These could, if installed somewhwere, contain security
vulnerabilities.

In order to better understand how and why you use shared configurations, we designed a
small survey. We would be very happy, if you filled it out. It takes about 10-15 minutes.

https://forms.gle/oJe9SWf1KU4MdbZV6

If you have any additional notes, questions or feedback, you can reply to this email.

Thank you for your time
Best regards
Gerhard Jungwirth (TU Wien)

49

List of Figures

2.1 Structure of a typical dotfiles repository exposing sensitive information that
brought together could form an attack vector 4

2.2 Exemplary section of the MITRE ATT&CK framework classification [24] 5

4.1 Venn Diagram of all available combinations of our findings per repository 22

5.1 Survey results for the age of GitHub users 30
5.2 Survey results for the country of origin of GitHub users 30
5.3 Survey results for the gender of GitHub users 31
5.4 Survey results for the usage purpose of GitHub 31
5.5 Survey results for the frequency of GitHub usage 32
5.6 Survey results for the tool for dotfile management 33
5.7 Security-related self-assessment based on survey 33
5.8 Survey results for the reasons for using dotfile repositories 35

51

List of Tables

4.1 Frequency of MIME Types (Top10) . 13
4.2 Frequency of File Names (Top10) . 13
4.3 Overview of all findings after mining dotfiles repositories on GitHub. We

quantify the prevalence of particular security and privacy relevant information
in these repositories. We also note where some of our findings replicate existing
studies and which possible attacks are represented by these findings. The
number of vulnerabilities is counted once per file. 15

4.4 Number of matched Gitleaks Rules . 16
4.5 Cryptographic algorithm used in SSH public keys 17
4.6 Top five most common email domains . 18
4.7 Frequency of occurrence of certain software profiles 18
4.8 MITRE AT&CK classification of our findings [24] 20

53

Bibliography

[1] Stefan Achleitner et al. “Deceiving Network Reconnaissance Using SDN-Based Vir-
tual Topologies”. In: IEEE Transactions on Network and Service Management 14.4
(Dec. 2017). Conference Name: IEEE Transactions on Network and Service Man-
agement, pp. 1098–1112. issn: 1932-4537. doi: 10.1109/TNSM.2017.2724239.

[2] Abdulmajeed Alqhatani and Heather Richter Lipford. “"There is nothing that
I need to keep secret": Sharing Practices and Concerns of Wearable Fitness
Data”. In: Fifteenth Symposium on Usable Privacy and Security (SOUPS 2019).
SOUPS’19. 2019, pp. 421–434. isbn: 978-1-939133-05-2. url: https://www.
usenix.org/conference/soups2019/presentation/alqhatani (vis-
ited on 05/04/2023).

[3] Daniel V. Bailey, Philipp Markert, and Adam J. Aviv. “"I have no idea what they’re
trying to accomplish" Enthusiastic and Casual Signal Users’ Understanding of Signal
PINs”. In: Seventeenth Symposium on Usable Privacy and Security (SOUPS 2021).
2021, pp. 417–436. isbn: 978-1-939133-25-0. url: https://www.usenix.org/
conference/soups2021/presentation/bailey (visited on 02/16/2022).

[4] Mihai Barbulescu et al. “RSA Weak Public Keys Available on the Internet”. In:
Innovative Security Solutions for Information Technology and Communications.
Ed. by Ion Bica and Reza Reyhanitabar. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2016, pp. 92–102. isbn: 978-3-319-47238-6. doi:
10.1007/978-3-319-47238-6_6.

[5] Elaine Barker. Recommendation for key management:: part 1 - general. NIST SP
800-57pt1r5. Gaithersburg, MD: National Institute of Standards and Technology,
May 2020, NIST SP 800–57pt1r5. doi: 10.6028/NIST.SP.800-57pt1r5. url:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-57pt1r5.pdf (visited on 05/17/2021).

[6] Alex Birsan. Dependency Confusion: How I Hacked Into Apple, Microsoft and
Dozens of Other Companies. Medium. Feb. 9, 2021. url: https://medium.
com/@alex.birsan/dependency-confusion-4a5d60fec610 (visited on
06/05/2021).

55

https://doi.org/10.1109/TNSM.2017.2724239
https://www.usenix.org/conference/soups2019/presentation/alqhatani
https://www.usenix.org/conference/soups2019/presentation/alqhatani
https://www.usenix.org/conference/soups2021/presentation/bailey
https://www.usenix.org/conference/soups2021/presentation/bailey
https://doi.org/10.1007/978-3-319-47238-6_6
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

[7] Hudson Borges, Andre Hora, and Marco Tulio Valente. “Understanding the Factors
That Impact the Popularity of GitHub Repositories”. In: 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 2016 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). Oct. 2016,
pp. 334–344. doi: 10.1109/ICSME.2016.31.

[8] Noah Bühlmann and Mohammad Ghafari. “How do developers deal with security
issue reports on GitHub?” In: Proceedings of the 37th ACM/SIGAPP Symposium
on Applied Computing. SAC ’22. New York, NY, USA: Association for Computing
Machinery, May 6, 2022, pp. 1580–1589. isbn: 978-1-4503-8713-2. doi: 10.1145/
3477314.3507123. url: https://dl.acm.org/doi/10.1145/3477314.
3507123 (visited on 04/30/2023).

[9] Casey Casalnuovo et al. “Developer onboarding in GitHub: the role of prior social
links and language experience”. In: Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, Aug. 30, 2015, pp. 817–828. isbn: 978-1-
4503-3675-8. doi: 10.1145/2786805.2786854. url: http://doi.org/10.
1145/2786805.2786854 (visited on 05/03/2021).

[10] Ben Cox. Auditing GitHub users’ SSH key quality. June 2, 2015. url: https:
//blog.benjojo.co.uk/post/auditing-github-users-keys (visited
on 05/27/2021).

[11] Constanze Dietrich et al. “Investigating System Operators’ Perspective on Security
Misconfigurations”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’18. New York, NY, USA: Association
for Computing Machinery, Oct. 15, 2018, pp. 1272–1289. isbn: 978-1-4503-5693-0.
doi: 10.1145/3243734.3243794. url: https://dl.acm.org/doi/10.
1145/3243734.3243794 (visited on 04/30/2023).

[12] Jie Fang. The Basics of Ricing Linux. Apr. 2016. url: https://jie-fang.
github.io/blog/basics-of-ricing/ (visited on 04/24/2016).

[13] Felix Fischer et al. “Stack Overflow Considered Harmful? The Impact of Copy
Paste on Android Application Security”. In: 2017 IEEE Symposium on Security
and Privacy (SP). 2017 IEEE Symposium on Security and Privacy (SP). ISSN:
2375-1207. May 2017, pp. 121–136. doi: 10.1109/SP.2017.31.

[14] Tanner Fry et al. “A Dataset and an Approach for Identity Resolution of 38
Million Author IDs extracted from 2B Git Commits”. In: Proceedings of the 17th
International Conference on Mining Software Repositories. MSR ’20. New York,
NY, USA: Association for Computing Machinery, June 29, 2020, pp. 518–522. isbn:
978-1-4503-7517-7. doi: 10.1145/3379597.3387500. url: https://doi.
org/10.1145/3379597.3387500 (visited on 05/17/2021).

[15] GitGuardian. State of Secrets Sprawl on GitHub - 2021 report. GitGuardian Blog -
Automated Secrets Detection. Mar. 9, 2021. url: https://blog.gitguardian.
com/state-of-secrets-sprawl-2021/ (visited on 05/27/2021).

56

https://doi.org/10.1109/ICSME.2016.31
https://doi.org/10.1145/3477314.3507123
https://doi.org/10.1145/3477314.3507123
https://dl.acm.org/doi/10.1145/3477314.3507123
https://dl.acm.org/doi/10.1145/3477314.3507123
https://doi.org/10.1145/2786805.2786854
http://doi.org/10.1145/2786805.2786854
http://doi.org/10.1145/2786805.2786854
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://blog.benjojo.co.uk/post/auditing-github-users-keys
https://doi.org/10.1145/3243734.3243794
https://dl.acm.org/doi/10.1145/3243734.3243794
https://dl.acm.org/doi/10.1145/3243734.3243794
https://jie-fang.github.io/blog/basics-of-ricing/
https://jie-fang.github.io/blog/basics-of-ricing/
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1145/3379597.3387500
https://doi.org/10.1145/3379597.3387500
https://doi.org/10.1145/3379597.3387500
https://blog.gitguardian.com/state-of-secrets-sprawl-2021/
https://blog.gitguardian.com/state-of-secrets-sprawl-2021/

[16] GitHub. Searching for repositories. url: https://docs.github.com/en/
search-github/searching-on-github/searching-for-repositories
(visited on 02/17/2022).

[17] Eirini Kalliamvakou et al. “The promises and perils of mining GitHub”. In: Pro-
ceedings of the 11th Working Conference on Mining Software Repositories. MSR
2014. New York, NY, USA: Association for Computing Machinery, May 31, 2014,
pp. 92–101. isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597074. url:
https://doi.org/10.1145/2597073.2597074 (visited on 04/07/2021).

[18] Paul Kari. “What you need to know about the biggest hack of the US government
in years”. In: the Guardian (Dec. 15, 2020). Section: Technology. url: http:
//www.theguardian.com/technology/2020/dec/15/orion-hack-
solar-winds-explained-us-treasury-commerce-department (visited
on 05/03/2021).

[19] Ankit Kariryaa et al. “Understanding Users’ Knowledge about the Privacy and
Security of Browser Extensions”. In: Seventeenth Symposium on Usable Privacy and
Security (SOUPS 2021). 2021, pp. 99–118. isbn: 978-1-939133-25-0. url: https:
//www.usenix.org/conference/soups2021/presentation/kariryaa
(visited on 02/16/2022).

[20] Ben Lazarine et al. “Identifying Vulnerable GitHub Repositories and Users in
Scientific Cyberinfrastructure: An Unsupervised Graph Embedding Approach”. In:
2020 IEEE International Conference on Intelligence and Security Informatics (ISI).
2020 IEEE International Conference on Intelligence and Security Informatics (ISI).
Nov. 2020, pp. 1–6. doi: 10.1109/ISI49825.2020.9280544.

[21] Sofiane Lounici et al. “Optimizing Leak Detection in Open-source Platforms with
Machine Learning Techniques:” in: Proceedings of the 7th International Con-
ference on Information Systems Security and Privacy. 7th International Con-
ference on Information Systems Security and Privacy. SCITEPRESS - Science
and Technology Publications, 2021, pp. 145–159. isbn: 978-989-758-491-6. doi:
10.5220/0010238101450159. url: https://www.scitepress.org/
DigitalLibrary/Link.aspx?doi=10.5220/0010238101450159 (visited
on 04/29/2021).

[22] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. “Impression formation in online
peer production: activity traces and personal profiles in github”. In: Proceedings
of the 2013 conference on Computer supported cooperative work. CSCW ’13. New
York, NY, USA: Association for Computing Machinery, Feb. 23, 2013, pp. 117–
128. isbn: 978-1-4503-1331-5. doi: 10.1145/2441776.2441792. url: http:
//doi.org/10.1145/2441776.2441792 (visited on 05/03/2021).

[23] Michael Meli, Matthew R. McNiece, and Bradley Reaves. “How Bad Can It Git?
Characterizing Secret Leakage in Public GitHub Repositories”. In: Proceedings 2019
Network and Distributed System Security Symposium. Network and Distributed
System Security Symposium. San Diego, CA: Internet Society, 2019. isbn: 978-1-

57

https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
http://www.theguardian.com/technology/2020/dec/15/orion-hack-solar-winds-explained-us-treasury-commerce-department
http://www.theguardian.com/technology/2020/dec/15/orion-hack-solar-winds-explained-us-treasury-commerce-department
http://www.theguardian.com/technology/2020/dec/15/orion-hack-solar-winds-explained-us-treasury-commerce-department
https://www.usenix.org/conference/soups2021/presentation/kariryaa
https://www.usenix.org/conference/soups2021/presentation/kariryaa
https://doi.org/10.1109/ISI49825.2020.9280544
https://doi.org/10.5220/0010238101450159
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0010238101450159
https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0010238101450159
https://doi.org/10.1145/2441776.2441792
http://doi.org/10.1145/2441776.2441792
http://doi.org/10.1145/2441776.2441792

891562-55-6. doi: 10.14722/ndss.2019.23418. url: https://www.ndss-
symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_
Meli_paper.pdf (visited on 04/29/2021).

[24] MITRE. ATT&CK. Apr. 29, 2021. url: https://attack.mitre.org/ (visited
on 05/14/2021).

[25] Daito Nakano et al. “A Quantitative Study of Security Bug Fixes of GitHub
Repositories”. In: arXiv:2012.08053 [cs] (Dec. 14, 2020). arXiv: 2012.08053. url:
http://arxiv.org/abs/2012.08053 (visited on 02/25/2022).

[26] Wynn Netherland and Adam Jahnke. GitHub does dotfiles - dotfiles.github.io. url:
https://dotfiles.github.io/ (visited on 06/05/2021).

[27] Marc Ohm et al. “Backstabber’s Knife Collection: A Review of Open Source Software
Supply Chain Attacks”. In: Detection of Intrusions and Malware, and Vulnerability
Assessment. Ed. by Clémentine Maurice et al. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2020, pp. 23–43. isbn: 978-3-030-52683-2.
doi: 10.1007/978-3-030-52683-2_2.

[28] Linux man pages. file(1): determine file type. url: https://linux.die.net/
man/1/file (visited on 02/17/2022).

[29] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. “More Common
Than You Think: An In-depth Study of Casual Contributors”. In: 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER). 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). Vol. 1. Mar. 2016, pp. 112–123. doi:
10.1109/SANER.2016.68.

[30] Daniel Pletea, Bogdan Vasilescu, and Alexander Serebrenik. “Security and emotion:
sentiment analysis of security discussions on GitHub”. In: Proceedings of the 11th
Working Conference on Mining Software Repositories. MSR 2014. New York, NY,
USA: Association for Computing Machinery, May 31, 2014, pp. 348–351. isbn:
978-1-4503-2863-0. doi: 10.1145/2597073.2597117. url: https://dl.acm.
org/doi/10.1145/2597073.2597117 (visited on 05/02/2023).

[31] Alexander Ponticello, Matthias Fassl, and Katharina Krombholz. “Exploring Au-
thentication for {Security-Sensitive} Tasks on Smart Home Voice Assistants”. In:
Seventeenth Symposium on Usable Privacy and Security (SOUPS 2021). 2021,
pp. 475–492. isbn: 978-1-939133-25-0. url: https://www.usenix.org/
conference/soups2021/presentation/ponticello (visited on 02/16/2022).

[32] Huilian Sophie Qiu et al. “Going Farther Together: The Impact of Social Capital on
Sustained Participation in Open Source”. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). ISSN: 1558-1225. May 2019, pp. 688–
699. doi: 10.1109/ICSE.2019.00078.

58

https://doi.org/10.14722/ndss.2019.23418
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_Meli_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_Meli_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_Meli_paper.pdf
https://attack.mitre.org/
https://arxiv.org/abs/2012.08053
http://arxiv.org/abs/2012.08053
https://dotfiles.github.io/
https://doi.org/10.1007/978-3-030-52683-2_2
https://linux.die.net/man/1/file
https://linux.die.net/man/1/file
https://doi.org/10.1109/SANER.2016.68
https://doi.org/10.1145/2597073.2597117
https://dl.acm.org/doi/10.1145/2597073.2597117
https://dl.acm.org/doi/10.1145/2597073.2597117
https://www.usenix.org/conference/soups2021/presentation/ponticello
https://www.usenix.org/conference/soups2021/presentation/ponticello
https://doi.org/10.1109/ICSE.2019.00078

[33] Baishakhi Ray et al. “A large scale study of programming languages and code
quality in github”. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. FSE 2014. New York, NY,
USA: Association for Computing Machinery, Nov. 11, 2014, pp. 155–165. isbn:
978-1-4503-3056-5. doi: 10.1145/2635868.2635922. url: https://doi.
org/10.1145/2635868.2635922 (visited on 05/04/2021).

[34] Zachary Rice. Gitleaks. url: https://github.com/zricethezav/gitleaks
(visited on 02/17/2022).

[35] Matthew A. Russell. Mining the Social Web: Data Mining Facebook, Twitter,
LinkedIn, Google+, GitHub, and More. Google-Books-ID: _VkrAQAAQBAJ. "O’Reilly
Media, Inc.", Oct. 4, 2013. 448 pp. isbn: 978-1-4493-6822-7.

[36] Aakanksha Saha et al. “Secrets in Source Code: Reducing False Positives using
Machine Learning”. In: 2020 International Conference on COMmunication Systems
NETworkS (COMSNETS). 2020 International Conference on COMmunication
Systems NETworkS (COMSNETS). ISSN: 2155-2509. Jan. 2020, pp. 168–175. doi:
10.1109/COMSNETS48256.2020.9027350.

[37] Johnny Saldana. The Coding Manual for Qualitative Researchers. Google-Books-ID:
RwcVEAAAQBAJ. SAGE, Jan. 27, 2021. 441 pp. isbn: 978-1-5297-5599-2.

[38] Raphael Satter, Christopher Bing, and Joseph Menn. “Hackers used SolarWinds’
dominance against it in sprawling spy campaign”. In: Reuters (Dec. 16, 2020). url:
https://www.reuters.com/article/global-cyber-solarwinds-
idUSKBN28Q07P (visited on 05/03/2021).

[39] Michael Schröder and Jürgen Cito. “An Empirical Investigation of Command-Line
Customization”. In: arXiv:2012.10206 [cs] (Dec. 18, 2020). arXiv: 2012.10206.
url: http://arxiv.org/abs/2012.10206 (visited on 04/29/2021).

[40] Jeffrey Spaulding, DaeHun Nyang, and Aziz Mohaisen. “Understanding the ef-
fectiveness of typosquatting techniques”. In: Proceedings of the fifth ACM/IEEE
Workshop on Hot Topics in Web Systems and Technologies. HotWeb ’17. New
York, NY, USA: Association for Computing Machinery, Oct. 14, 2017, pp. 1–
8. isbn: 978-1-4503-5527-8. doi: 10.1145/3132465.3132467. url: https:
//doi.org/10.1145/3132465.3132467 (visited on 06/05/2021).

[41] Stack Overflow. Stack Overflow Developer Survey 2021. Stack Overflow. 2021.
url: https://insights.stackoverflow.com/survey/2021/ (visited on
01/15/2022).

[42] Anselm Strauss and Juliet M. Corbin. Grounded Theory in Practice. Google-Books-
ID: TtRMolAapBYC. SAGE, Mar. 11, 1997. 296 pp. isbn: 978-0-7619-0748-0.

[43] Blake E. Strom et al. Mitre att&ck: Design and philosophy. Technical Report.
Publisher: The MITRE Corporation. The MITRE Corporation, 2020.

59

https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/2635868.2635922
https://github.com/zricethezav/gitleaks
https://doi.org/10.1109/COMSNETS48256.2020.9027350
https://www.reuters.com/article/global-cyber-solarwinds-idUSKBN28Q07P
https://www.reuters.com/article/global-cyber-solarwinds-idUSKBN28Q07P
https://arxiv.org/abs/2012.10206
http://arxiv.org/abs/2012.10206
https://doi.org/10.1145/3132465.3132467
https://doi.org/10.1145/3132465.3132467
https://doi.org/10.1145/3132465.3132467
https://insights.stackoverflow.com/survey/2021/

[44] Jason Tsay, Laura Dabbish, and James Herbsleb. “Influence of social and tech-
nical factors for evaluating contribution in GitHub”. In: Proceedings of the 36th
International Conference on Software Engineering. ICSE 2014. New York, NY,
USA: Association for Computing Machinery, May 31, 2014, pp. 356–366. isbn:
978-1-4503-2756-5. doi: 10.1145/2568225.2568315. url: https://doi.
org/10.1145/2568225.2568315 (visited on 05/03/2021).

[45] Nikolai Philipp Tschacher. “Typosquatting in Programming Language Package
Managers”. Bachelor Thesis. University of Hamburg, Mar. 17, 2016.

[46] Sam Varghese. “iTWire - SolarWinds FTP credentials were leaking on GitHub
in November 2019”. In: Wired (Dec. 19, 2020). url: https://itwire.com/
security/solarwinds-ftp-credentials-were-leaking-on-github-
in-november-2019.html (visited on 05/03/2021).

[47] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. “Perceptions of Diver-
sity on Git Hub: A User Survey”. In: 2015 IEEE/ACM 8th International Workshop
on Cooperative and Human Aspects of Software Engineering. 2015 IEEE/ACM 8th
International Workshop on Cooperative and Human Aspects of Software Engineer-
ing. May 2015, pp. 50–56. doi: 10.1109/CHASE.2015.14.

[48] Andrei Warkentin. ““Now if we could get a solution to the home directory dotfile
hell!”[11]”. In: Linux Symposium. 2012, p. 55.

[49] Jason Warner. Thank you for 100 million repositories. Apr. 2018. url: https:
//github.blog/2018-11-08-100m-repos/ (visited on 02/25/2022).

[50] Dominik Wermke et al. “Cloudy with a Chance of Misconceptions: Exploring Users’
Perceptions and Expectations of Security and Privacy in Cloud Office Suites”. In:
Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020). 2020, pp. 359–
377. isbn: 978-1-939133-16-8. url: https://www.usenix.org/conference/
soups2020/presentation/wermke (visited on 05/04/2023).

[51] Craig E Wills, Kirstin Cadwell, and William Marrs. “Customization in a UNIX Com-
puting Environment”. In: Seventh System Administration Conference. Monterey,
California, 1993, p. 9.

[52] Hasan Yasar. “Experiment: Sizing Exposed Credentials in GitHub Public Reposito-
ries for CI/CD”. In: 2018 IEEE Cybersecurity Development (SecDev). 2018 IEEE
Cybersecurity Development (SecDev). Sept. 2018, pp. 143–143. doi: 10.1109/
SecDev.2018.00039.

[53] Scott Yilek et al. “When private keys are public: results from the 2008 Debian
OpenSSL vulnerability”. In: Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement. IMC ’09. New York, NY, USA: Association for Computing
Machinery, Nov. 4, 2009, pp. 15–27. isbn: 978-1-60558-771-4. doi: 10.1145/
1644893.1644896. url: https://doi.org/10.1145/1644893.1644896
(visited on 05/27/2021).

60

https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://doi.org/10.1145/2568225.2568315
https://itwire.com/security/solarwinds-ftp-credentials-were-leaking-on-github-in-november-2019.html
https://itwire.com/security/solarwinds-ftp-credentials-were-leaking-on-github-in-november-2019.html
https://itwire.com/security/solarwinds-ftp-credentials-were-leaking-on-github-in-november-2019.html
https://doi.org/10.1109/CHASE.2015.14
https://github.blog/2018-11-08-100m-repos/
https://github.blog/2018-11-08-100m-repos/
https://www.usenix.org/conference/soups2020/presentation/wermke
https://www.usenix.org/conference/soups2020/presentation/wermke
https://doi.org/10.1109/SecDev.2018.00039
https://doi.org/10.1109/SecDev.2018.00039
https://doi.org/10.1145/1644893.1644896
https://doi.org/10.1145/1644893.1644896
https://doi.org/10.1145/1644893.1644896

[54] Yue Yu et al. “Exploring the patterns of social behavior in GitHub”. In: Proceedings
of the 1st International Workshop on Crowd-based Software Development Methods
and Technologies. CrowdSoft 2014. New York, NY, USA: Association for Computing
Machinery, Nov. 17, 2014, pp. 31–36. isbn: 978-1-4503-3224-8. doi: 10.1145/
2666539.2666571. url: http://doi.org/10.1145/2666539.2666571
(visited on 04/27/2021).

[55] Yaqin Zhou and Asankhaya Sharma. “Automated identification of security issues
from commit messages and bug reports”. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ESEC/FSE 2017. New York, NY,
USA: Association for Computing Machinery, Aug. 21, 2017, pp. 914–919. isbn:
978-1-4503-5105-8. doi: 10.1145/3106237.3117771. url: https://doi.
org/10.1145/3106237.3117771 (visited on 06/07/2021).

61

https://doi.org/10.1145/2666539.2666571
https://doi.org/10.1145/2666539.2666571
http://doi.org/10.1145/2666539.2666571
https://doi.org/10.1145/3106237.3117771
https://doi.org/10.1145/3106237.3117771
https://doi.org/10.1145/3106237.3117771

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	UNIX Configuration Files
	Distributed VCS and Trends
	Security Basics

	Related Work
	Mining GitHub
	GitHub Security Research
	User Surveys Related to Security and Privacy

	Quantitative Research
	Research Goals
	Methodology
	Results
	Discussion

	Qualitative Research
	Methodology
	Results
	Discussion

	Conclusion
	Further Work
	Survey Questions
	Survey/Disclosure Email
	List of Figures
	List of Tables
	Bibliography

