
Hybrid Human-Machine
Ontology Verification

Identifying Common Errors in Ontologies
by Integrating Human Computation

with Ontology Reasoners

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Alexander Prock, BSc
Matrikelnummer 01529065

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Projektass.(FWF) Reka Marta Sabou, MSc PhD
Mitwirkung: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl

Wien, 2. September 2021
Alexander Prock Reka Marta Sabou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Hybrid Human-Machine
Ontology Verification

Identifying Common Errors in Ontologies
by Integrating Human Computation

with Ontology Reasoners

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Alexander Prock, BSc
Registration Number 01529065

to the Faculty of Informatics

at the TU Wien

Advisor: Projektass.(FWF) Reka Marta Sabou, MSc PhD
Assistance: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl

Vienna, 2nd September, 2021
Alexander Prock Reka Marta Sabou

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Prock, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. September 2021
Alexander Prock

v

Acknowledgements

First, I would like to thank my supervisor Marta Sabou, for supporting me with her
expertise, continuous guidance and valuable feedback during all stages of this thesis. I
also want to express my gratitude to Stefan Biffl, for his scientific advice and constructive
feedback, as well as his role in the initiation of this thesis.

I want to thank everybody involved in the MDRE research project, out of which the
ideas for this thesis developed. Besides Stefan, I therefore want to thank Kristof Meixner
and Dietmar Winkler, as well as my peers from the development team, Christian En-
gelbrecht, Christoph Burger, Dominik Kretz and Mustafa Isikoglu - those also for their
companionship in the latter stages of my studies for this master’s degree.

Furthermore, I want to thank the students that participated in the empirical study, and
the researchers of the SemSys research group that provided feedback following the study’s
pilot.

Finally, I want to express my gratitude to my parents and friends, and especially my
partner Lisi, for their ongoing support during my work on this thesis.

vii

Kurzfassung

Ontologien sind eine Art semantische Ressource, die in Systemen basierend auf künstlicher
Intelligenz bzw. wissensbasierten Systemen zum Einsatz kommen. Ontologien können
auch als die Schemata von Knowledge Graphs betrachtet werden, die beispielsweise
im Semantic Web genutzt werden, um Daten und Wissen zu integrieren. Fehler in
Ontologien können Systeme, die entweder auf ihnen oder auf Knowledge Graphs basieren,
zum Scheitern bringen oder dazu führen, dass diese inkorrekte Ergebnisse produzieren.
Nachdem Fehler in Ontologien daher sehr kostspielige Konsequenzen haben können, ist
es notwendig Ontologien zu verifizieren. Während einige Arten von Fehlern in Ontologien
mittels (Reasoning-basierter) Algorithmen automatisch identifiziert werden können, ist
häufig zusätzlich eine Verifizierung durch Menschen notwendig. Dafür kommt zumeist
manuelle Batchverarbeitung zum Einsatz, wobei Techniken der Human Computation
und Crowdsourcing verwendet werden. Diese Ansätze sind allerdings nicht effizient und
skalieren nicht gut.

Diese Arbeit stellt eine kostensparende und besser skalierbare Methode für die Identi-
fizierung von häufigen Modellierungsfehlern in Ontologien vor, die einen zweistufigen,
hybriden Mensch-Maschine-Verifizierungsprozess verwendet. Im ersten Schritt wird ein
Ontology Reasoner in Kombination mit speziell entwickelten Heuristiken verwendet, um
automatisch Fehlerkandidaten zu entdecken. Diese Fehlerkandidaten werden dann im
zweiten Schritt von Menschen unter der Verwendung von Techniken der Human Computa-
tion bzw. Crowdsourcing verifiziert. Der automatische erste Schritt stellt eine Vorauswahl
von Klassen bzw. Kombinationen von Klassen dar, sogenannten “Bad Smells”, von denen
es wahrscheinlich ist, dass sie Fehler enthalten, um den manuellen menschlichen Aufwand
zu reduzieren.

Diese Arbeit leistet die folgenden Beiträge: (i) das Konzept von hybriden Mensch-
Maschine-Verifizierungsprozessen für die Identifizierung bestimmter Arten von Modellie-
rungsfehlern in Ontologien, (ii) ein Design für Human Computation Tasks, das geeignet
ist, um in solchen Prozessen menschliches Urteilsvermögen einfließen zu lassen, (iii)
Heuristiken für die Entdeckung von Fehlerkandidaten für vier ausgewählte Fehlertypen,
(iv) den Entwurf einer Studie für die Evaluierung der präsentierten Methode und (v)
Erkenntnisse über Einflussfaktoren auf die Effektivität der Methode. Um diese Beiträge
zu leisten werden die Methoden der Literaturrecherche, der Algorithmusenticklung, des
Designs von Human Computation Tasks, der Entwicklung von Prototypen und des Studi-

ix

endesigns angewandt, die entworfene empirische Studie ausgeführt und eine anschließende
Datenanalyse basierend auf deskriptiven Statistiken durchgeführt.

Die Evaluierung dieses neuen Ansatzes anhand des Prototypen ist auf den Human
Computation-Teil fokussiert, wobei die empirische Studie zeigt, dass 80,9 Prozent der ge-
streuten Modellierungsfehler und falsch-positiven Fehlerkandidaten korrekt von Menschen
erkannt werden. In den Studienergebnissen werden Einflüsse der Art des vorhandenen
Fehlers und des Vorwissens bzw. der Qualifikation der menschlichen Prüfenden auf
die Verifizierungsgenauigkeit beobachtet. Weiters wird gezeigt, dass durch die Aggrega-
tion mehrerer Antworten mittels Mehrheitsentscheid eine signifikante Verbesserung der
Verifizierungsgenauigkeit erreicht werden kann.

Abstract

Ontologies are a type of semantic resource, which are utilized in knowledge-based artificial
intelligence systems, and can be seen as schemata for knowledge graphs, which are used
to integrate data and knowledge, e.g. in the Semantic Web. Defects in ontologies can
therefore cause systems based on either them, or knowledge graphs, to fail or to produce
incorrect output, thus defects in ontologies may have very expensive consequences,
implying the necessity of ontology verification. While several types of ontology defects
can be identified through automatic (reasoning) algorithms, often additional human-based
ontology verification is required. This is mostly achieved through batch processes using
Human Computation (HC) and Crowdsourcing techniques, which however are not efficient
and do not scale well.

This thesis proposes a cost-effective and more scalable method for identifying common
modeling errors in ontologies, using a two-step hybrid human-machine verification process.
In the first step, this process facilitates an ontology reasoner together with specifically
designed heuristics to automatically detect defect candidates. These defect candidates are
then verified by human workers in the second step using HC and Crowdsourcing techniques.
The automatic first step performs a preselection of classes or class combinations that
are likely to contain errors, so-called “bad smells”, reducing the amount of human labor
needed.

This thesis makes the following contributions: (i) the concept of hybrid human-machine
workflows for identifying specific types of ontology modeling errors, called Defect Identifi-
cation Workflows, (ii) an HC task design suitable for collecting human judgement in these
workflows, (iii) heuristics for detecting defect candidates for four selected error types,
(iv) a study design for evaluating the proposed approach, and (v) insights on factors that
influence the effectiveness of the approach. To make these contributions, a literature
review is conducted, the methods of algorithm and HC task design, prototyping and
study design are applied, the designed empirical study is executed, and subsequent data
analysis is performed based on descriptive statistics.

The evaluation of this novel approach, using the prototype, focuses on the HC part,
where the empirical study shows that 80.9 percent of the seeded modeling errors and false
positives are correctly identified by human workers. Analyzing the evaluation results,
influences of the error type present in a task and the qualification of the human verifiers

xi

on the verification performance are observed. Furthermore, it is shown that aggregating
multiple answers via majority voting significantly improves the verification performance.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 3
1.3 Approach, Methods and Contributions 3
1.4 Thesis Structure . 6

2 Background and Related Work 9
2.1 Ontology Evaluation and Verification 9
2.2 Common Errors, Bad Smells and Anti-Patterns in Ontologies 13
2.3 Human Computation & Crowdsourcing 15
2.4 Hybrid Human-Machine Processes . 20
2.5 Ontology Debugging . 22

3 Hybrid Human-Machine Ontology Verification Method 25
3.1 Selected Error Types . 25
3.2 Defect Identification Workflows . 30
3.3 Defect Candidate Detection Heuristics 31
3.4 Human Defect Candidate Verification 39
3.5 Hybrid Human-Machine Workflows beyond Defect Identification . . . 43
3.6 Prototype Implementation . 45

4 Evaluation Setup 49
4.1 Evaluation Approach Overview . 49
4.2 Participants . 50
4.3 Data Set . 50
4.4 Seeded Defects . 52
4.5 Execution Overview . 52
4.6 Measured Variables and Metrics . 53

xiii

5 Evaluation Results 59
5.1 Result Data . 59
5.2 Influence of Prior Knowledge . 60
5.3 Influence of Error Type . 62
5.4 Problematic HITs . 64
5.5 Time Spent per Task . 66
5.6 Influence of Number of Aggregated Judgements 68
5.7 Cost Estimation . 69
5.8 Feedback . 71

6 Conclusion & Future Work 73
6.1 Summary . 73
6.2 Conclusion . 75
6.3 Limitations & Future Work . 76

List of Figures 81

List of Tables 83

List of Algorithms 85

Acronyms 87

Bibliography 89

Appendices 95
Appendix A: Quiz Guidelines Page . 95
Appendix B: Self-Assessment Form . 96
Appendix C: Qualification Test . 98
Appendix D: Instructions for Tutorial and Quiz 100
Appendix E: Feedback Questionnaire . 103
Appendix F: Results of the Self-Assessment Form 104
Appendix G: Results of the Feedback Questionnaire 107

CHAPTER 1
Introduction

1.1 Motivation
Ontologies play a fundamental role in the semantic web technology stack and as such they
are the basis of many modern intelligent systems. Studer et al. [57] define an ontology
to be a “formal, explicit specification of a shared conceptualization”. Brank et al. [7]
describe ontologies as explicit formal conceptualizations of domains of interest.

Artificial intelligence systems are often classified into the two categories of (i) systems that
learn from data and (ii) systems based on encoded domain knowledge. Knowledge-based
systems, and therefore ontology-based systems, fall under the second category. The
correctness of the output, e.g. decisions and suggestions, of such systems depends on the
correctness of the underlying knowledge base [43].

More recently, as an extension of ontologies, there has been increased interest in knowledge
graphs. Paulheim [36] defines a minimum set of characteristics for a collection of knowledge
to be considered a knowledge graph: “A knowledge graph (i) mainly describes real world
entities and their interrelations, organized in a graph, (ii) defines possible classes and
relations of entities in a schema, (iii) allows for potentially interrelating arbitrary entities
with each other, and (iv) covers various topical domains.” According to this definition,
ontologies without instances are not to be considered knowledge graphs, but can be seen
as their schemata, consisting of the classes and relations of entities.

Ontologies are either created by ontology engineers or by automatic ontology learners,
which create ontologies from source material, such as natural language text corpora [10].
Ontology engineers can make mistakes, in particular, novice ontology engineers typically
introduce modeling errors of certain classes, e.g. omitting disjointness axioms or incor-
rectly using existential and universal quantification [42, 61]. Furthermore, the correctness
of automatically learned ontologies depends on the quality of the source material and
learning tool.

1

1. Introduction

Ontologies may therefore contain errors. Errors in ontologies have a negative impact on
the intelligent systems based on them, increasing the risk of faulty behaviour of such
systems, or causing them to fail at reflecting diversity and therefore being perceived as
biased. Ontologies thus need to be verified [7].

While the errors belonging to some error classes can be identified automatically, e.g.
using structural pattern matching to detect specific erroneous patterns, or facilitating
ontology reasoners to detect unsatisfiable classes, some errors require inspection by
humans [40]. Rector et al. [42] give such an example with an ontology about pizzas
and their toppings. As the classes Meat and Vegetable are not disjoint without
the presence of an explicit disjointness axiom, a reasoner would not detect an error if
another class MeatyVegetable was introduced, that is both a subclass of Meat and
Vegetable. The reasoner would not detect an error, while a human could intuitively
detect the missing disjointness axiom between Meat and Vegetable.

Humans are therefore needed to verify certain aspects of ontologies. As letting experts
perform verification tasks can be expensive [40], in recent years HC techniques and
Crowdsourcing have been used for ontology verification, as well as other data intensive
tasks in the field of the semantic web [47].

Human Computation generally refers to having humans solve tasks that computers
cannot (yet) solve reliably. Crowdsourcing is the concept of outsourcing tasks otherwise
performed by designated workers, e.g. employees, to a large unknown population, often
through the means of Crowdsourcing platforms [25].

While the application of Crowdsourcing to ontology verification may be less expensive
than to employ experts, there still is a cost associated to it by the compensation payed
to the human workers. This cost scales linearly with the size of the ontology under
verification, as all ontology elements of relevant types need to be considered [31, 64]. As
there exist ontologies with over 100.000 elements [31], verification of these large ontologies
remains infeasible even when Crowdsourcing is applied.

In fields related to ontology verification, hybrid human-machine, resp. semi-automatic,
approaches have emerged to improve scalability by combining automatic pre-processing
steps with Crowdsourcing. The pre-processing steps thereby reduce the number of tasks to
be crowdsourced, while the approach still benefits from human judgement. For example,
such approaches exist for entity linking [13], ontology alignment [49] and linked data
quality assessment [66].

This thesis therefore aims to integrate automatic machine computation, based on ontology
reasoning, with HC and Crowdsourcing into hybrid human-machine workflows, in order
to reduce the amount of human labor needed while still profiting from the strengths of
HC, and thus to increase the scalability of ontology verification.

2

1.2. Research Questions

1.2 Research Questions
The first research question thus is concerned with finding an approach enabling the usage
of automatic tasks combined with HC tasks for identifying specific types of errors that
cannot (yet) be identified automatically.

RQ-1 How can specific modeling errors in ontologies be identified using hybrid human-
machine workflows?

To answer this question, first a specific set of common ontology modeling error types is
selected based on literature study of common errors in ontologies. Secondly, a method for
the semi-automatic identification of selected error types is proposed as one of the novel
contributions of this thesis, and thirdly, example workflows, each for the the identification
of one of the selected error types, are designed and implemented as part of a prototype
system.

The second research question concentrates on the HC part of the hybrid human-machine
workflows, specifically on finding suitable HC interfaces that enable human verifiers to
give their judgment in the workflows.

RQ-2 What are suitable Human Computation interfaces to enable the verification of
specific error types in hybrid human-machine workflows?

Therefore, considerations regarding the task design inferred from literature are taken
into account, an HC interface is designed, and the designed HC interface is used in an
empirical study to assess its suitability.

The third and final research question aims to gain an understanding of the influence of
different factors on the error detection rate of the hybrid human-machine workflows at
detecting modeling errors of specific error types, as well as the time spent by human
verifiers.

RQ-3 Is there an influence of certain factors, such as (a) prior knowledge and qualifica-
tion of the human workers, (b) the type of modeling error under verification, or (c) the
number of human votes aggregated for crowdsourced judgements, on the error detection
rate of the hybrid human-machine workflows for identifying specific types of modeling
errors in ontologies, or the time spent by human verifiers thereby?

To gain insights regarding possible influences of various factors on the error detection rate
and time spent, data about these factors is collected during an empirical study using the
implemented prototype and the combination of this data with the measured performance
metrics is analyzed based on descriptive statistics.

1.3 Approach, Methods and Contributions
This thesis follows a design science approach [15, 22, 63] to answer its research questions
and make its contributions, in particular the Design Science Research Methodology by

3

1. Introduction

Peffers et al. [37] is applied. Hevner et al. [22] defines design science as follows: “Design
science [...] creates and evaluates IT artifacts intended to solve identified organizational
problems”.

The Design Science Research Methodology process [37] consists of six activities, which are
not necessarily sequential, but rather can be iterated upon. These six activities and their
realization in the scope of this thesis is described below and visualized in Figure 1.1.

1. The first activity is to identify the problem and to motivate the research. For
this thesis, the identified problem is the lacking scalability of ontology verification
approaches for types of errors that cannot (yet) be automated.

2. The second process step is to define the objectives of the new solution to be designed,
in this thesis the objective is to reduce the amount of human labor needed for
the verification of specific error types in ontologies to improve the scalability and
cost-efficiency of ontology verification.

3. Thirdly, a new solution is designed and an artifact created. This thesis contributes
the conceptual design of DIWs, which are semi-automatic workflows consisting
of a heuristics-based detection of defect candidates and an HC-based verification
of these detected defect candidates. Furthermore, such heuristics are designed to
detect candidates for four selected types of ontology modeling errors, suitable HC
interfaces are designed and these newly designed concepts are implemented in a
prototype.

4. The fourth component is the demonstration of the newly designed solution by
solving one or more problem instances. In this thesis, defects are seeded into the
well-known pizza ontology, which is then used as the example problem instance.

5. The fifth process activity is the evaluation of the new solution, which is realized by
means of an empirical study in this thesis.

6. The sixth step is the Communication of the new research contributions. This thesis
communicates its findings and contributions in the following chapters and, as a
master’s thesis, will be publicly available.

Out of the four possible research entry points discussed by Peffers et al. [37], this research
falls into the category of seeking an objective-centered solution, as it focuses on finding a
solution that is more scalable than existing approaches for identifying errors of specific
modeling error types in ontologies.

The contributions made by this thesis, the methods applied to accomplish them and the
relation to the research questions, stated in Section 1.2, are summarized in Figure 1.2.

RQ-1 is concerned with finding an approach to support an HC-based verification process
for identifying specific error types with automatic tasks to reduce the amount of human

4

1.3. Approach, Methods and Contributions

Figure 1.1: Design science research process of this thesis, based on [37, Fig.1]

labor required. Therefore a literature review was conducted, firstly to identify types of
common ontology modeling errors, which should be targeted in the new hybrid processes
and secondly to assess the state-of-the-art in ontology verification and to get inspiration
from hybrid human-machine processes from other fields. After selecting the error types
to target, heuristics were designed for the automatic detection of error candidates of
the selected error types. To integrate these heuristics with HC techniques in hybrid
human-machine workflows, the concept of DIWs was designed. The contributions made
thereby are on the one hand the heuristics designed for the detection of defect candidates
for four selected error types, described in Section 3.3, and on the other hand the concept of
DIWs for the integration of these heuristics with an HC-based verification, see Section 3.2.

RQ-2 is concerned with suitable HC interfaces to be used in these hybrid workflows.
Such interfaces were designed based on considerations derived from both the problem and
literature. The arising contribution thus is a concrete task design for human computation
tasks that allows the integration of human judgement into the hybrid human-machine
workflows, described in detail in Section 3.4.1.

RQ-3 aims to assess the influence of certain factors on the error detection rate and time
spent by humans in the designed workflows. Therefore, the proposed DIWs, including the
heuristics for the selected error types and the designed HC interfaces, were implemented
in a prototype, which was in turn used in an empirical study, which was designed for
measuring the impact of the considered factors. Following the execution of the empirical
study, descriptive statistics were calculated and the resulting data was analyzed to gain
insights on the influences of the considered factors. The resulting contributions are the
study design for the evaluation of the proposed approach, described in Chapter 4, and
the insights on influencing factors gained thereby, discussed in detail in Chapter 5.

5

1. Introduction

Figure 1.2: Methods and contributions of this thesis

1.4 Thesis Structure
This thesis is structured as follows:

• Chapter 2 Background and Related Work details the state-of-the-art and related work
regarding ontology verification, common error types in ontologies, the application of
HC and Crowdsourcing in ontology verification and existing hybrid human-machine
approaches.

• Chapter 3 Hybrid Human-Machine Ontology Verification Method introduces the
concept of DIWs, i.e. the hybrid human-machine workflows for detecting selected
types of ontology modeling errors, consisting of heuristics for the detection of
defect candidates and a Crowdsourcing-based verification of these candidates using
specifically designed HC interfaces. Four common error types were selected and
such heuristics, resp. workflows, were designed for their identification.

• Chapter 4 Evaluation Setup describes the approach to evaluate the proposed method,
i.e. the details of the study design.

• Chapter 5 Evaluation Results provides the results of the executed study and a
discussion thereof.

6

1.4. Thesis Structure

• Chapter 6 Conclusion & Future Work summarizes and concludes the findings of this
thesis, sets them in the context of the research questions and discusses limitations
and possible future research opportunities.

7

CHAPTER 2
Background and Related Work

Ontologies are predominantly specified using description logics, a subset of first-order
logic, using the Web Ontology Language (OWL) [35, 61]. Another notable semantic web
technology mentioned in the following chapter is the Resource Description Framework
(RDF) for representing linked data.

In order to design, implement and assess a novel hybrid human-machine ontology verifi-
cation process, the existing work on ontology verification is analyzed, see Section 2.1.

Literature on common errors and other quality issues found in ontologies is elaborated
upon in Section 2.2, with the goal of selecting relevant common error types for a pilot
implementation of the concepts proposed in this thesis, i.e. to be able to design a
semi-automatic detection approach for selected common error types.

To gain an understanding of the techniques and proven approaches to HC and Crowd-
sourcing in ontology verification and related fields, relevant literature is presented in
Section 2.3.

Finally, existing hybrid human-machine processes are considered in Section 2.4 and the
field of ontology debugging is analyzed regarding existing semi-automatic, resp. hybrid
human-machine, approaches in Section 2.5.

2.1 Ontology Evaluation and Verification
Ontology evaluation is defined by Gómez-Pérez et al. [19] as “a technical judgment of the
content of the ontology with respect to a frame of reference”. Ontology verification is a part
of ontology evaluation, defined as “building the ontology correctly, that is, ensuring that
its definitions implement correctly the ontology requirements and competency questions,
or function correctly in the real world.” [19].

9

2. Background and Related Work

A survey of ontology evaluation techniques [7] identifies four main categories in which
most evaluation approaches can be classified. The four identified categories are - each
with example approaches from literature that can be classified in the respective category,
to be discussed in detail below:

• comparing an ontology to a gold standard, which may also be an ontology, prepared
by experts or taken from a corpus of documents [9, 30]

• using an ontology in an application and evaluating the application’s results, therefore
indirectly evaluating the ontology [16, 39, 56]

• comparing an ontology to source data from the covered domain [2, 8]

• evaluation by humans who verify whether, resp. how well, an ontology fulfills
specified criteria: [18, 20, 62]

Gómez-Pérez, in another work [18], state that ontology verification includes the verification
of: (i) each individual definition and axiom, (ii) the collection of explicitly stated
definitions, resp. axioms, (iii) definitions imported from other ontologies, and (iv)
axioms that can be inferred from the ontology. To guarantee the correctness of an
ontology, they list that the following criteria, resp. properties, need to be checked: (i)
soundness of ontology architecture, (ii) lexical and syntactical correctness, (iii) consistency,
completeness, conciseness, expandability and sensitiveness of the content.

Soundness of architecture thereby means that the structure conforms to given design
principles, consistency refers to the impossibility to infer contradictions, completeness
means that all definitions are complete and all desired content is defined or can be
inferred, conciseness is defined as “whether all the information gathered in the ontology is
useful and precise”, expandability is concerned with the effort required for the addition or
alteration of definitions without altering the properties guaranteed by previous verification
and sensitiveness is given if small changes do not have a large effect on the other described
properties.

Welty and Guarino [20, 62] proposed the OntoClean methodology for the ontological
analysis of taxonomies based on notions of the philosophical discipline of ontology. Their
work uses the term property in the sense of first-order logic predicates describing instances,
an example for a such a property is being an apple. A class is the set of instances that
have a certain property, e.g. the set of all things that are apples.

An example for such a philosophical notion is rigidity. A property is rigid if it is essential
to all its instances, e.g. being a human is essential to all instances with that property, as
they can never cease to be human. In contrast, a property is anti-rigid if it is essential
to none of its instances, e.g. being a student is not essential to all its instances, as the
instances will stop being students at some point.

The philosophical notions are expressed using meta-properties and assigned to a tax-
onomy’s properties either by using a question/answer mode or by manually writing

10

2.1. Ontology Evaluation and Verification

assertions. In the question/answer mode the user is asked questions regarding the
meta-properties of a property, to be answered with yes or no, e.g. whether a specific
property is rigid. Inconsistencies regarding the assigned notions can be detected based on
logical constraints, e.g. an anti-rigid property cannot subsume a rigid one. The proposed
methodology helps to make the intended meaning of properties explicit, and to detect
inconsistencies thereof, but requires human effort to assign the meta-properties to a
taxonomy’s properties.

Strasunskas and Tomassen [56] introduce the Evaluation of Ontology Quality for Searching
framework to assess the fitness of ontologies for web search tasks, consisting of three
steps: (i) generic quality evaluation, to filter out irrelevant ontologies and those of bad
quality, including checking the syntactical correctness using a parser and the domain
fitness using the AKTiveRank algorithm [2], (ii) search task fitness for three different
types of search task (fact-finding, exploratory and comprehensive search), by calculating
metrics based on the ratios of different relevant ontology elements present, and (iii) search
enhancement capability to assess improvements using an ontology could have on search
precision and recall, by calculating metrics based on the number of relevant synonyms
and related terms present.

AKTiveRank, proposed by Alani et al. [2], is a metric calculated for an ontology stating
how well it represents a set of given search terms to enable ranking ontologies by relevance.
The total AKTiveRank score is based on four metrics: (i) Class Match Measure, based
on the number of search terms (partially) present in an ontology, (ii) Density Measure,
based on the number of direct subclasses, superclasses, relations and siblings of classes
corresponding to search terms, (iii) Semantic Similarity Measure, based on the lengths of
the shortest paths between the classes corresponding to search terms, and (iv) Betweenness
Measure, based on the number of shortest paths between classes in the ontology passing
through the classes corresponding to search terms, thus how central these are in an
ontology. AKTiveRank does thus not evaluate the correctness of an ontology, but rather
how well it represents a set of terms or concepts.

A similar data-driven approach is proposed by Brewster et al. [8], to evaluate the
congruence of ontologies with text corpora and thus how well ontologies represent the
domain of the given text corpora. This automatic domain-fitness evaluation consists of
three steps: (i) identification of keywords from the given text corpus - in clusters, to
preserve their closeness with each other, (ii) expansion of the clusters of keywords with
hypernyms, and (iii) mapping of the keywords to the ontology to determine the coverage.

While both data-driven approaches [2, 8] described above represent automatic ways of
ontology quality assessment, they do not perform ontology verification in the sense of
detecting and correcting errors.

Burton-Jones et al. [9] propose a metrics suite for ontology auditing, including metrics
for the syntactic, semantic, pragmatic and social quality. For syntactic quality, the
syntactical correctness and the ratio of used to available syntactical features is taken
into account. Regarding semantic quality, the interpretability, given by the ratio of

11

2. Background and Related Work

terms from the ontology’s classes and properties that are also present in WordNet1,
and consistency, given by the ratio of inconsistent classes and properties, are taken into
account. Pragmatic quality is measured by the comprehensiveness, derived from the
ontology’s size, accuracy, given by the number of true statements in the ontology by
comparison to a gold standard, and relevance, given by the ratio of statements in the
syntax of interest. Social quality is given by authority, measured as the number of links
to an ontology, and history, as the number of accesses to the ontology. A sum of the
metrics from the different quality levels, resp. their attributes, gives the overall quality
score. Similar to the data-driven approaches above, the aim of this work is not to detect
and repair errors, but to assess the quality of ontologies to make decisions about their
usage in applications and to support the development of ontologies of high quality.

Maedche and Staab [30] present ontology similarity measures that can be used to quantify
the lexical and conceptual similarity of two ontologies. Their approach can be used to
measure the similarity to a gold standard ontology to verify that the contained concepts
are modeled correctly, or to evaluate the relevance of other ontologies to a core ontology
of interest. This approach, however, is not feasible for general ontology verification, since
such a gold standard ontology will not be available in most cases.

Porzel and Malaka [39] propose an approach for evaluating ontologies based on their
usage in applications to perform specific tasks, allowing the output of these applications
after performing the tasks to be compared to a gold standard, resulting in a quantitative
performance measure. By comparing the output to the gold standard, three types
of errors can be detected: (i) insertion errors, i.e. superfluous concepts, or relations,
(ii) deletion errors, i.e. missing concepts or relations, and (iii) substitution errors, i.e.
replaced or ambiguous concepts or relations. The proposed approach is applied with
the example task of tagging ontological relations in given text, whereas the entities are
already marked-up. A gold standard consisting of texts and the correct tags is provided
and an application that uses an example ontology to generate the relation tags is executed.
Using this example task, superfluous, substituted and missing relation tags were detected
with regard to the gold standard, whereas these errors have to be manually checked if
they correspond to problems in the ontology.

Fernández et al. [16] measure the quality of an ontology by the quality of its individual
relations, compared to a gold standard of triples. This can be categorized as a task-based,
resp. application-based, approach, considering the task of assessing relation types. For
each triple of the form subject - relation - object from the gold standard, the ontology
under evaluation is checked if it has the correct type of relation between subject and
object, whereas the possible types of relation are equivalence, subsumption, disjointness,
sibling relationship and named relation.

In this section, ontology evaluation and verification were defined and the dimensions
of ontology verification discussed. Existing approaches to ontology evaluation and
verification were considered to give an overview on the state-of-the-art in traditional

1https://wordnet.princeton.edu/

12

https://wordnet.princeton.edu/

2.2. Common Errors, Bad Smells and Anti-Patterns in Ontologies

ontology evaluation and, more specifically, verification. Most of the presented literature
is not concerned with identifying and repairing errors in ontologies, but rather presents
general frameworks, assesses the fitness of ontologies for specific tasks and calculates
metrics for quality assessment.

Those approaches that directly verify ontologies either rely on a gold standard for
comparison [9, 30], which in most cases will have to be manually created, or let ontology
engineers perform the verification [18, 20, 62]. Both of these options do not scale well
as with the growing size of the ontologies to be verified, the manual verification, or the
creation of a gold standard, become infeasible relying on a (likely small) group of ontology
engineers. To give an example, ontologies with more than 100,000 elements are available
in the biomedical domain [31], reaching a magnitude in which manual verification is
impossible.

Therefore, more recent work utilizes HC and Crowdsourcing in more cost-effective
approaches to ontology verification. Literature following this paradigm is discussed in
Section 2.3. Before discussing said literature, the next section presents existing work on
common errors, bad smells and anti-patterns in ontologies, to select worthwhile targets
for identification.

2.2 Common Errors, Bad Smells and Anti-Patterns in
Ontologies

Since the approach of this thesis is to improve the scalability of ontology verification
by finding automatic processing steps that reduce the amount of human labor needed
for identifying common types of ontology modeling errors, literature regarding ontology
modeling errors needs to be considered. Related work on ontology modeling errors is
considered to be able to select a set of relevant error types to design automatic processing
steps for.

Rector et al. [42] describe a set of common errors made by novice users of OWL when con-
structing an ontology in the domain of pizzas. They list and discuss a number of common
mistakes, classified by their cause of either confusion about the open world assumption,
confusion about domain, range and other axioms, or logical issues. Furthermore, they
developed guidelines for avoiding the described common errors during ontology modeling,
including the recommendation to paraphrase class definitions using proposed sentence
components, s.t. the precise meaning of OWL constructs can be understood more easily,
and therefore errors spotted.

Warren et al. [61] present three studies that analyzed users’ difficulties with understanding
description logics, in particular with the popular Manchester OWL Syntax (MOS) [24, 32],
a successor of the Manchester House Style used in [42]. MOS is also used in the popular
Protégé ontology editor. The authors applied insights from cognitive psychology and
language theory to understand the discovered difficulties with description logics, resp.

13

2. Background and Related Work

MOS, and proposed changes to keywords that were shown to be ambiguous in their
studies.

Poveda-Villalón et al. [40] provide a categorized list of common pitfalls in ontology
engineering based on an empirical analysis, ranked by their importance, as well as an
online tool, called OOPS! - OntOlogy Pitfall Scanner! that scans uploaded ontologies for
these pitfalls. A pitfall is defined to be a pattern of characteristics, which often represent
a problem and include or lead to an error, which however must not always be the case in
every ontology. The pitfall catalogue contains 40 pitfalls, out of which those 32 that do
not require outside knowledge or information external to the ontology are implemented
in the tool. OOPS! relies on structural pattern matching, lexical content analysis and
search for specific characteristics to detect the selected pitfalls, but does not facilitate
inference by the means of an ontology reasoner.

In a subsequent work [26], Keet and Poveda-Villalón evaluated ontologies using the
OOPS! pitfall scanner to check the prevalence of different pitfalls and the correlation
between the occurrence of pitfalls and other factors. They evaluated ontologies from three
sets, (i) ontologies created by novice ontology engineers, (ii) well-known, resp. mature,
ontologies, and (iii) random ontologies which were uploaded to and scanned with the
pitfall scanner by users. The study showed that the ontologies created by novices tended
to contain more pitfalls than those of the well-known set and that the size and complexity
generally do not correlate with the number of pitfalls in them in a statistically significant
manner, with the exception of those created by novice engineers, for which this is the
case. In addition to this analysis, they provide guidelines for the prevention of the pitfalls
from the catalogue. The pitfall catalogue is designed as a live and online collection2, and
since the publication of [40], one pitfall has been appended.

Roussey et al. [46] provide a catalogue of ontology anti-patterns found in inconsistent
ontologies. The anti-patterns are classified in three groups:

• Logical anti-patterns, which can be detected by reasoners, e.g. adding an existential
restriction to a class conflicting with an existing universal restriction on it

• Non-logical anti-patterns, which do not cause inconsistencies but are modeling
errors, e.g. expressing synonyms as equivalent classes

• Guidelines, for complex expressions that can be simplified, e.g. grouping all
restrictions on a class that use the same property into a single restriction

For this thesis, only the anti-patterns from the category of non-logical anti-patterns are
of relevance, since logical anti-patterns can be detected automatically and guidelines for
the simplification of ontology constructs do not imply errors in these constructs.

Sales and Guizzardi [23] define an “ontological anti-pattern” as a “modeling pattern that,
despite producing syntactically valid conceptual models, [...] is prone to be the source of

2http://oops.linkeddata.es/catalogue.jsp

14

http://oops.linkeddata.es/catalogue.jsp

2.3. Human Computation & Crowdsourcing

domain-related ontological misrepresentations”. An anti-pattern thus is a model structure
that requires further attention, but not necessarily always represents, resp. leads to, an
error. Furthermore, they define that, in addition to a defined structure, an anti-pattern
also needs to have refactoring options or rectification plans associated with it. They
note that this definition is based on both the definition of an anti-pattern in software
engineering, as well as the concept of code smells, resp. bad smells.

This definition of anti-pattern differs from the usage in [46] and the concept of pitfalls
in [40], as the intention behind the anti-patterns in [23] is not to support the correct
building of models, but to support correctly modeling a domain. The authors of [23]
furthermore extend an existing catalogue of anti-patterns for the OntoUML ontology
modeling language.

Bad smells, resp. code smells, were introduced by Beck and Fowler [3], as certain
structures of program code that suggest the need for their refactoring. Smells are used as
an analogy, as in case of something smelling bad, there might be something wrong with
it, which however must not always be the case, much like the code structures described
by the authors, which are likely to require changes to improve understandability and
maintainability, as well as to reduce the risk for bugs.

The concepts of bad smells and pitfalls are therefore roughly equivalent in ontology
engineering.

This section discussed literature on ontology modeling errors, including a discussion of
the used terminology. For this thesis four error types were selected based on the work
by Rector et al. [42] and Warren et al. [61], the pitfall catalogue by Poveda-Villalón et
al. [40], and the anti-pattern catalogue by Roussey et al. [46], see Section 3.1. The hybrid
human-machine ontology verification process proposed in this thesis will be illustrated
using these four selected error types, for which example verification processes were
designed.

2.3 Human Computation & Crowdsourcing
HC and Crowdsourcing are often applied to ontology verification as a more scalable
approach compared to human-centric batch processes executed by ontology engineering
experts. This section gives definitions of the relevant terminology and proceeds to discuss
related work that facilitates HC and Crowdsourcing in ontology verification.

The introduction in Section 1.1 already established the need for human reviewers in
ontology verification.

The usage of HC techniques, as well as the benefits thereof for ontology verification, is
addressed in multiple papers. Before discussing these papers, the established definitions
for HC and Crowdsourcing are given.

Quinn and Bederson [41] list several definitions of HC, which can be condensed to it being
the concept of letting humans solve tasks using their abilities that computers cannot

15

2. Background and Related Work

perform. Crowdsourcing is defined as “the act of taking a job traditionally performed by
a designated agent (usually an employee) and outsourcing it to an undefined, generally
large group of people in the form of an open call” [25].

The two most popular approaches of HC are mechanised labor and Games with a Purpose
(GWAP). With mechanised labor, human contributors are payed money to perform
their tasks, making mechanised labor a similar concept to Crowdsourcing. The GWAP
approach works by humans playing games and contributing through their actions, resp.
their side-effects, within these games [48].

Given these definitions, relevant work that makes use of HC and Crowdsourcing techniques
to increase the scalability of ontology engineering is elaborated upon.

Mortensen et al. [31] use Crowdsourcing as a scalable method to verify the hierarchical
relationships in biomedical ontologies. They report good results for their approach,
whereas the verification results of the Crowdsourcing approach are compared to a gold
standard created by manual verification of the used ontology. They also compare
the performance of workers that passed different qualification tests, or none at all.
Furthermore, they estimate that between 5 and 10 non-spam responses are needed to
verify a relation.

Wohlgenannt et al. [64] created a plugin for the popular ontology editor Protégé, integrat-
ing verification by means of Crowdsourcing into the ontology engineering process. The
plugin allows the ontology engineer to send various verification tasks to a Crowdsourcing
platform directly from the editor and presents the verification results to the ontology
engineer as soon as they are available, also directly in the editor. Using this plugin, tasks
for the verification of (i) domain relevance, (ii) subsumption relations, (iii) instanceOf
relations, and (iv) domain and range of axioms, can be generated, as well as (v) tasks to
collect suggested relation types for unlabeled relations. The evaluation’s results show
that the overall costs of the ontology engineering project can be reduced using the plugin.

Nuzzolese et al. [33] automatically extracted Encyclopedic Knowledge Patterns (EKPs),
which are a restricted form of ontologies, from Wikipedia and used them in an application
for exploratory search. The EKPs themselves were evaluated by comparison to human-
crafted EKPs as a gold standard and the application was evaluated regarding its ability
to provide relevant information, whereas that aspect was compared to two other existing
tools.

Roengsamut et al. propose using a gamification approach to construct and improve
knowledge bases, creating a GWAP in the form of a quiz to construct and augment
a multi-lingual knowledge base about rental apartments [45]. They also propose a
Crowdsourcing-based protocol for ontology refinement in the same domain in another
paper [44].

While the described approaches based on HC and Crowdsourcing are more cost-effective
than traditional manual verification by ontology engineers, they still lack scalability
regarding very large ontologies, as all ontology elements and axioms of relevant types

16

2.3. Human Computation & Crowdsourcing

need to be considered. This thesis in contrast aims to reduce the amount of ontology
elements and axioms that need to be verified by humans by performing an automatic
preselection of error candidates.

2.3.1 Crowdsourcing Linked Data Quality Assessment
This section discusses existing approaches to the application of Crowdsourcing to linked
data quality assessment, especially patterns used, which can to some extent be translated
to the related field of ontology quality assessment, i.e. verification.

BetterRelations [21] is a GWAP for rating RDF triples by their importance to a topic.
These relevance ratings are necessary to enable querying ranked result sets from linked
data. Players are matched in pairs and are presented a topic, e.g. “Facebook”. The two
players matched together are then shown two facts from the linked data source that have
the presented topic as its subject, e.g. “Facebook has subject Online social networking”
and “Facebook has key person Chris Hughes”, and have to select those of the two facts
that the other player will likely think of first. In case of agreement, i.e. both players
choosing the same fact, the relevance ratings of the two facts are updated. The evaluation
showed that the ranked result lists produced from queries using the calculated relevance
ratings are of similar or better quality than manual rankings by single humans.

Zaveri et al. [66] present a methodology for assessing the data quality of linked data
resources using four steps, comprised of manual, semi-automatic and automatic workflows.
In the first step, the resource to be evaluated is chosen, in the second step the evaluation
mode is selected to either be manual, semi-automatic or automatic. The third step is the
actual resource evaluation using the evaluation mode selected in the second step, followed
by the fourth and final step of data quality improvement, either by directly editing linked
data triples that contain problems, or indirectly by gathering user feedback in a Patch
Request Ontology3, proposed in [27].

The process is partly implemented in a tool, allowing the evaluation of the manual and
semi-automatic evaluation modes using Crowdsourcing. For the evaluation, resources
from DBpedia [5], are assessed, and quality issues mapped to a defined quality problem
taxonomy. The quality problem taxonomy contains types of linked data issues, for example
issues caused by incorrect extraction from source data, incorrect links to websites or
other data sets, redundant attribute values and irrelevant attribute values like layout
information. In the manual evaluation mode, researchers experienced with RDF are
presented a resource as a table with all of the triples belonging to the resource, as well as
the link to the Wikipedia page of the presented resource. For each triple, the user has to
check if it contains a problem, and in case of a problem, select the present problem from
the defect taxonomy, with the possibility of adding problems to the taxonomy in case
they are not present yet.

The semi-automatic evaluation mode consists of two steps, firstly schema axioms are
learned from the data set using machine learning, and secondly, the generated axioms

3http://141.89.225.43/patchr/ontologies/patchr.ttl#

17

http://141.89.225.43/patchr/ontologies/patchr.ttl#

2. Background and Related Work

are verified by human experts. Once these axioms are verified, an ontology reasoner or
SPARQL queries can be facilitated to find violations of these axioms. In the evaluation,
the semi-automatic approach is executed and certain characteristics of properties are
learned with a 95 percent confidence value.

From a sample of evaluation results, 81 percent of the evaluated triples were correctly
evaluated using the manual evaluation mode. For each resource, and therefore triple,
up to two humans gave their judgement. The measured inter-rater agreement (Cohen’s
kappa [11]) was quite low and the authors therefore conclude that more than two
judgements should be collected in future evaluations.

The semi-automatic process yielded useful schema axioms, with all 24 resulting axioms
for irreflexive properties being correct. While 81 axioms for property asymmetry were
correct, these were also in some instances suggested for properties, which asymmetry is
not correct for in all cases. Regarding the functionality of properties, many invalid facts
could be detected using the 76 generated axioms for that characteristic. Furthermore, 13
properties were proposed to have inverse functionality.

Building on the work by Zaveri et al. [66], Acosta et al. [1] study the assessment of three
specific linked data quality issues using Crowdsourcing. Aiming towards enabling future
work to apply the Find-Fix-Verify pattern, in which a complex human task is broken
up into three successive stages of simpler tasks, the paper focuses on applying two-step
Find-Verify processes.

The Find-Fix-Verify pattern was originally introduced by Bernstein et al. [4]. The
pattern “splits complex crowd intelligence tasks into a series of generation and review
stages that utilize independent agreement and voting to produce reliable results”. In [4],
the application area is text editing. The stages of the pattern are as follows:

1. Find: Workers identify parts that need further attention

2. Fix : Workers create a patch to fix a part that was identified in the previous stage

3. Verify: Workers assess the quality of the patches created in the Fix stage

Applying the pattern leads to two desirable properties:

• Small tasks: The tasks can be very small or even atomic, which reduces the risk
of both lazy workers putting in minimal effort and skipping parts of larger tasks,
and over-zealous workers providing too much detail or options, leading to increased
effort by the task’s requesters.

• Aggregation per stage: The answers for each stage can be aggregated, e.g. after
the Find section only those parts identified by multiple workers could be fed into
the next stage. From related work and the experimental evaluation, around 30
percent of the answer to Crowdsourcing tasks are found to be of poor quality. An

18

2.3. Human Computation & Crowdsourcing

aggregation after each stage also decreases the impact of poor answers, e.g. if
multiple answers are aggregated using majority voting.

The two-step Find-Verify process in [1] is designed in order to identify the three linked
data quality issues (i) incorrect object, (ii) incorrect datatype or language tag, and (iii)
incorrect link in RDF triples. Two such Crowdsourcing processes are compared, both of
which use microtask Crowdsourcing with a layman crowd for the Verify stage, but one
using a contest-based approach with experts and the other one again using microtask
Crowdsourcing with a layman crowd for the Find stage. Following an experiment, which
evaluated quality issues in DBpedia [5], a large data set of structured data extracted
from Wikipedia, the authors concluded that Crowdsourcing is a feasible, cost-effective
way to detect the studied quality issues.

Furthermore, the results suggest that experts should be assigned tasks that require specific-
domain knowledge beyond common knowledge or technical knowledge, e.g. knowledge on
the semantics of specific data types. However, the layman crowd workers showed to be
skilled regarding the verification of the given language tags and comparisons between data
values and given contextual information. For the quality issue of determining whether an
external link is relevant to a resource, both Crowdsourcing using experts and laymen was
infeasible, with the layman crowd even outperforming the experts. Thus both approaches,
i.e. using either laymen or experts in the Find stage has its advantages, with them having
complementary strengths.

In addition to the proposed Crowdsourcing-based processes a semi-automatic process is
introduced, in which the Find stage is automated. The automated step used a Test-Driven
Quality Assessment approach, originally introduced in [28] allowing the creation of test
cases (i) automatically from schema constraints, (ii) semi-automatically derived from
manually entered ontology constraints, and (iii) manually as SPARQL queries.

In the conclusion the authors of [1] summarize that while their Crowdsourcing approach
is feasible, it may lack scalability for detecting linked data quality issues in large data
sets, as triples are assessed individually. They suggest that the full potential of their
approach could be reached when it is combined with automatic approaches, in order to
reduce the amount of Crowdsourcing tasks necessary.

This section presented approaches to linked data quality assessment using Crowdsourcing
and semi-automatic processes, which inspire the design of the semi-automatic, resp.
hybrid human-machine, approach to ontology verification in this thesis. Especially the
work of Zaveri et al. [66] and Acosta et al. [1] is highly relevant to this thesis, as they
substantiate the approach of supporting Crowdsourcing-based processes with automatic
preselection steps, e.g. by applying the Find-Verify pattern proposed by Bernstein et
al. [4].

The next section therefore considers hybrid human-machine processes from other fields
to gain further insight on the successful design of such processes.

19

2. Background and Related Work

2.4 Hybrid Human-Machine Processes
The previous section included literature concerned with semi-automatic approaches to
linked data quality assessment, which provides valuable inspiration for the design of
the hybrid ontology verification process. This section discusses related work on hybrid
human-machine processes from other fields, to gain insights on design considerations,
challenges and limitations.
Demartini [12] summarize the challenges, e.g. quality assurance, a cost/quality trade-off
and the design of incentives for the involved humans and other limitations of Crowdsourc-
ing, and opportunities, e.g. improving efficiency, effectiveness and scalability, of hybrid
human-machine processes after providing an overview of existing hybrid human-machine
systems.
Furthermore, they note that all existing hybrid human-machine systems that were
considered used a human component for either pre-processing data or post-processing
the output of automatic components.
In case a Crowdsourcing-based, resp. hybrid human-machine, application cannot rely
on a general public crowd, e.g. because of sensitive content or the necessity of expert
knowledge - the latter of which might be a concern with ontology verification - the work
notes two possibilities. Firstly, Crowdsourcing can be carried out with internal crowds,
e.g. the members of an organisation or the employees of a company [60] and secondly,
combating the problem of required expert knowledge, crowds can be built by checking
social media profiles to select suitable workers [6, 14].
In another work [13], Demartini et al. propose ZenCrowd, a system that combines
automatic algorithmic and manual matching techniques for entity linking. Entity linking
is the task of finding a linked open data Uniform Resource Identifier (URI) for an entity.
While both techniques for automatic and manual matching are available from related
work, both have their strengths and weaknesses - automatic approaches being scalable
and therefore suited for large-scale tasks, while manual approaches are more reliable but
also less scalable, as human labor is required. The specific task in question is to annotate
entities in HTML documents with a corresponding linked data URI.
Therefore, the system takes HTML pages as an input, automatically extracts entities
using state-of-the-art tools and then uses algorithmic matching to find the most relevant
URIs for the extracted entities, from a given set of linked data sources. Alongside the
most relevant URIs, confidence values are yielded by the algorithmic matching. These
confidence values are used by a decision making component, which may decide on one of
three outcomes for each entity and its list of relevant URIs. For entities with URIs of
very high confidence values, these links are stored in the database, i.e. treated as valid
links. Possible links with low confidence values are discarded, thus in case all candidates
for an entity are of low confidence, no entity links are produced.
If on the other hand, the confidence values of possible links are promising but uncertain,
a microtask is created to decide on the validity of the links by means of Crowdsourcing.

20

2.4. Hybrid Human-Machine Processes

These microtasks are carried out by humans, which are presented the entity, accompanied
by context information (given a text snippets from the HTML pages), and are asked to
check all candidate URIs if they match, with the possibility to select none. The results of
the Crowdsourcing tasks are then handed back to the decision making component, which
facilitates a probabilistic model to decide if links are deemed valid and saved, or not and
thus discarded. The probabilistic model can also be adapted given preliminary results,
e.g. to take the reliability of individual workers into account. Experimental results show
that ZenCrowd achieved higher precision than both manual and automatic matching on
their own. Furthermore, the proposed system constitutes a trade-off between large-scale
automatic matching and high quality manual matching.
CrowdMap [49] is a hybrid human-machine approach to ontology alignment. Given two
ontologies, CrowdMap uses an automatic mapping algorithm to produce a set of candidate
mappings between the ontologies. These candidate mappings each represent a possible
correspondence between two concepts, one from each ontology, and a proposed relation
between them, e.g. equivalence, subsumption, or a domain-specific relation. Concepts
can thereby be classes, properties or axioms. These candidate mappings are then verified
by humans using Crowdsourcing, whereas a task is generated for each candidate mapping.
Depending on the candidate generation algorithm, the tasks are either validation tasks,
whereas human workers are asked to verify a proposed type of relation between two
concepts, or identification tasks, whereas the type of relation between two concepts needs
to be chosen. For validation tasks, CrowdMap requests three workers to verify the same
mapping, for identification tasks up to seven votes are collected, until two workers agree
on the type of relation.
One such HC task thereby consists of (i) title, explanation and instructions of the task,
(ii) information about the concepts to be compared, including contextual information, and
(iii) the form to be filled out by the workers, consisting of one or more input elements. As
contextual information all available labels, definitions, super-, sub- and sibling concepts
and instances of the two presented concepts are given.
For the experimental evaluation, seven such alignment tasks were combined into one
Human Intelligence Task (HIT) on Amazon Mechanical Turk (MTurk). These combined
HITs include quality assurance measures, i.e. each contains a question for which a gold
standard is available to assess individual worker performance, as well as verification
questions that force the workers to type out or select the name of a presented concept to
reduce spam answers. The experiments showed that this hybrid human-machine approach
to ontology alignment is feasible and a scalable, cost-effective alternative that can also
improve accuracy compared to state-of-the-art approaches.
Shabani and Sokhn [51] present a hybrid human-machine approach to fake news detection.
For the specific task of telling fake news and satirical stories from each other, the proposed
hybrid approach achieves higher accuracy than both a Crowdsourcing-based and a purely
machine learning-based one. The hybrid process consists of a machine learning step, a
decision making model and an optional Crowdsourcing step. Firstly, the data is classified
using several machine learning algorithms and the probability confidence is measured. If

21

2. Background and Related Work

the confidence values are below a certain threshold, crowdworkers are asked to classify
the sample.

All hybrid human-machine approaches described in this section use an automatic pre-
processing step that yields candidates of some sort, followed by a Crowdsourcing-based
human verification of these candidates. The described approaches, however, extend
beyond the Find-Verify pattern described in the previous section, as they facilitate
confidence values to decide if a candidate needs to be verified by humans [13, 51], or
perform quality assurance measures in their Crowdsourcing part [49]. Furthermore, the
considerations regarding the HC task design presented in [49] are highly relevant to RQ-2.

2.5 Ontology Debugging
This section is concerned with ontology debugging and existing interactive, i.e. hybrid
human-machine, approaches to it to get inspiration from applied techniques.

Ontology debugging is concerned with finding, understanding and therefore enabling the
repair of undesired entailments in ontologies, e.g. unsatisfiable classes, resp. inconsisten-
cies, and is therefore a related field to ontology verification [29].

According to Rodler et al. [43], the two main knowledge base debugging techniques are
(i) model-based and (ii) heuristic approaches. Heuristic approaches use handcrafted
pattern matching procedures or search techniques and while they are more efficient
than model-based approaches, they may be incomplete and/or unsound. Model-based
approaches yield a set of axioms for a given inconsistency, called a diagnosis. This
diagnosis is the explanation, resp. justification, for the inconsistency, calculated by a
reasoner. The reasoning task of calculating justifications is called axiom pinpointing [38].

ORE [29] is a tool for ontology enrichment and repair, using ontology debugging techniques
to allow the repair. It facilitates automated learning of subsumption and equivalent class
axioms from the knowledge base’s individuals to enrich ontologies with. For the repair
functionality, ORE relies on the Pellet reasoner [52] and its incremental reasoning feature,
as well as an algorithm that can be configured to stop loading the knowledge base after
the schema part with sample individuals are loaded, in order to enable reasoning on very
large web ontologies, such as DBpedia [5], which similar tools cannot do.

Rodler et al. [43] evaluate query-based and test case based ontology debugging techniques
in a series of user studies. Test case based debugging allows ontology engineers to specify
test cases, i.e. certain entailments, that a repaired ontology should satisfy, s.t. the
debugging process can focus on solutions that fulfill this requirement. Query-based
ontology debugging on the other hand poses queries for the user to answer, from which
test cases are then automatically formulated. Both query-based and test case based
ontology debugging are types of model-based debugging. The studies concluded that both
types of model-based debugging are effective, as users were able to find large fractions
of faults in a given ontologies using either variant. Query-based ontology debugging
was however found to be more efficient than the test based approach. In addition the

22

2.5. Ontology Debugging

user studies reveal that users sometimes provide wrong information during interactive
debugging, which should be taken into account in future work.

While ontology debugging has a different goal than the ontology verification approach
central to this thesis, as it does not try to identify errors, but to find the reasons for
specific errors at hand, its model-based approaches rely on ontology reasoners and axiom
pinpointing, which can also be used in automatic error candidate detection.

To conclude this chapter, the main findings from the literature study are recapitulated.
Section 2.1 defined ontology evaluation and verification and discussed traditional human-
centric approaches to them, which all lack scalability, especially regarding the verification
of very large ontologies. Section 2.2 discusses common errors found in ontologies, considers
multiple collections of errors and anti-patterns to select the error types targeted in this
thesis from, and clears up the terminology in this regard. Section 2.3 discussed the
application of HC and Crowdsourcing in ontology verification and linked data quality
assessment, concluding that these are still not scalable enough for the verification of very
large ontologies, as the whole ontologies need to be considered. In the field of linked
data quality assessment, there however exist semi-automatic approaches, from which the
Find-Verify pattern is taken for the design of the processes in this thesis. Section 2.4
considered hybrid human-machine processes from other fields, providing considerations
on the challenges and design of such processes and further substantiating the suitability
of the Find-Verify pattern. Finally, Section 2.5 briefly discussed ontology debugging and
applied techniques, from which the inspiration to rely on ontology reasoners and axiom
pinpointing for the automatic part of the hybrid human-machine processes is taken, as
well as delimiting the scope of this thesis from ontology debugging.

23

CHAPTER 3
Hybrid Human-Machine Ontology

Verification Method

This chapter describes the novel Hybrid Human-Machine Ontology Verification (HOV)
Method, central to this thesis, for detecting common errors in ontologies in order to answer
RQ-1, which seeks a concept to enable the identification of specific types of ontology
modeling error using hybrid human-machine workflows.

As shown in Figure 1.2, input for the design of such a method comes from literature as
discussed in Chapter 2.

The proposed HOV method aims to improve the scalability of ontology verification by
reducing the amount of human labor necessary for the detection of common types of
ontology modeling errors.

Therefore, four common error types were selected to be targeted, see Section 3.1. Sec-
tion 3.2 describes the concept of Defect Identification Workflows (DIWs), which are
the workflows that integrate the automatic pre-processing with HC and Crowdsourcing
elements for the verification of the automatically detected defect candidates. Section 3.3
then describes the heuristics that were designed to automatically detect defect candidates
of the four chosen types. Section 3.4 describes the designed HC interfaces for this
verification. Finally, Section 3.5 discusses how the proposed workflows could be extended
to go beyond defect identification and Section 3.6 describes the implemented prototype.

3.1 Selected Error Types
Based on the related work regarding common errors in ontology modeling, presented in
Section 2.2, four error types were selected to be targeted for identification using the new
hybrid verification method. In the following the four chosen error types are described
and the rationale for their selection explained.

25

3. Hybrid Human-Machine Ontology Verification Method

The error types were selected based on them occurring in multiple considered sources [40,
42, 46, 61] and their importance ratings from that sources where available. While the
fourth selected error type “Missing Closure Axioms” is only present in one source [42], it
was selected because the other sources contain multiple error types regarding quantified
restrictions and this error type is an example of these.

In order to illustrate examples for the four selected error types below, a base example
is introduced. The example is inspired by the well-known pizza ontology [42], which is
also used in the empirical study, see Section 4.3. Consider the class CardinalePizza,
representing a specific type of pizza called Cardinale which has tomatoes, mozzarella and
ham as its toppings. A properly modelled example is given in Visual Notation for OWL
Ontologies (VOWL) [59] in Figure 3.1. This proper model is simplified, as within a pizza
ontology, this class would have other axioms defining it in addition to the presented ones,
e.g. it would be declared as a subclass of the class Pizza. There are three existential,
resp. someValuesFrom, restrictions on the CardinalePizza, each on the property
hasTopping, for each one of the required toppings. These existential restrictions ensure
that an individual is topped with the three required toppings to be considered a Cardinale.
Furthermore, there is one universal, resp. allValuesFrom, restriction, with the union of
the three toppings as its filler, i.e. a Cardinale can only have toppings from the union of
ham, mozzarella and tomatoes, thus no other kind of topping like pineapples or onions.

Figure 3.1: Correctly modelled class CardinalePizza

3.1.1 Missing Disjointness Axioms

This type of error is described by Rector et al. [42] and part of the pitfall catalogue by
Poveda-Villalón et al. [40]. In the pitfall catalogue, this type of error is labeled “P10” and
categorized as “Important”, which is the medium importance level used. Furthermore it
is the fifth-most detected pitfall in the OOPS! ontology pitfall scanner [40].

26

3.1. Selected Error Types

In OWL Open World Reasoning is applied, meaning that as long as something is not
unsatisfiable given the explicitly stated facts and inferences, it is assumed to be true. This
also holds for disjointness, which can be used to declare that no individual can be part
of given two or more classes simultaneously, i.e. that the sets of instances of the given
classes are disjoint from each other. Two classes are therefore overlapping by default, i.e.
without any explicit disjointness axiom between them. Rector et al. [42] state that the
omission of disjointness axioms is one of the most common errors in building ontologies.

An example for this is given by Rector et al. [42], again from the domain of pizzas.
If the two classes Meat and Vegetable are not explicitly declared as disjoint by a
disjointness axiom, they are assumed to be overlapping based on open world reasoning.
Therefore an individual could be both meat and vegetable at the same time, or a
class MeatyVegetable could be introduced as a subclass of both classes Meat and
Vegetable. As nothing is both a meat and a vegetable at the same time, this disjointness
should be declared to avoid unwanted classifications and inferences when using the
ontology. This example is visualized in Figure 3.2, on the left side the disjointness axiom
is correctly included, on the right side it is missing.

Figure 3.2: Example for missing disjointness axioms

3.1.2 Confusion between logical and linguistic “and”

The confusion between the logical and linguistic meaning of “and”, and also “or”, is
discussed by Rector et al. [42], Warren et al. [61] - where it is part of the broader problem
labeled “the ambiguity of natural language” - and the anti-pattern catalogue by Roussey
et al. [46], where it is called “AndIsOr”.

This error is caused by the fact that “In common linguistic usage, “and” and “or” do
not correspond consistently to logical conjunction and disjunction respectively” [42].

Furthermore, Rector et al. [42] give the sentence “Find all of the Pizzas containing Fish
and Meat” as an example. It is ambiguous whether the answer should contain all pizzas
that contain either Meat or Fish, or both - corresponding to disjunction - or all pizzas
containing both Meat and Fish - corresponding to conjunction.

27

3. Hybrid Human-Machine Ontology Verification Method

Errors of this type may occur in case a concept is translated too literally from natural
language into OWL definitions. In this thesis, the focus is on confusions between the
logical and linguistic meaning of “and”.

As another example, if the CardinalePizza introduced above was described as a pizza
“that has only ham, mozzarella and tomatoes on it” and this “and” was directly translated
into a conjunction, i.e. an intersection, and assuming that the classes for ham, mozzarella
and tomatoes are properly declared as disjoint, the class CardinalePizza would
become unsatisfiable. This incorrect approach to modeling the Cardinale is depicted
in Figure 3.3. The unsatisfiability is caused by the universal restriction requiring each
topping to be ham, mozzarella and tomato at the same time, which is impossible due to
these classes being disjoint and nonsensical from a domain point-of-view.

Figure 3.3: Class CardinalePizza with a confusion between the logical and linguistic
meaning of “and”

3.1.3 Trivially satisfiable allValuesFrom Restrictions

This type of error is discussed by both Rector et al. [42] and Warren et al. [61], and is part
of the pitfall catalogue by Poveda-Villalón et al. [40] as one of the possibilities causing
pitfall “P14” (in addition to incorrect closure axioms). Said pitfall “P14” is classified as
“Critical”, the highest of the used importance levels. This is one of the pitfalls from the
catalogue which the ontology pitfall scanner does not detect automatically.

If a class is defined using a universal, i.e. allValuesFrom, restriction on a property with
a certain filler, this means that instances of this class can only be linked with classes
from the filler using the given property. Such an allValuesFrom restriction is satisfied
by either all occurrences of the property on an instance having a filler conforming to
the restriction’s filler, or the absence of instances of this property. The latter case is
called the trivial satisfiability of the allValuesFrom restrictions. In most cases this trivial
satisfiability is undesired and indicates an error.

28

3.1. Selected Error Types

A possible explanation for the frequent occurrence of this error type is given in [42],
suggesting that the implication of an existential restriction by a universal restriction may
be assumed by novice ontology engineers.

Revisiting the CardinalePizza as an example, if it was modelled without the existential
restrictions, a pizza without any toppings would be considered a valid Cardinale, as the
universal restriction only defines which classes are allowed as toppings, but there is no
restriction that actually requires the existence of any topping at all. See Figure 3.4 for a
graphical representation of this example.

Figure 3.4: Class CardinalePizza without existential restrictions allowing the trivial
satisfiability of its universal restriction

3.1.4 Missing Closure Axioms

Revisiting the CardinalePizza once again, modeling it without the universal restric-
tion, which is a so-called closure axiom, would allow any pizza with ham, mozzarella
and tomatoes on it to be a valid Cardinale, regardless of possible other toppings. Thus
a Hawaiian pizza, which is topped with pineapples in addition to ham, mozzarella and
tomatoes is a valid Cardinale in the absence of the closure axiom. This incorrect approach
to modeling the CardinalePizza is depicted in Figure 3.5.

This error can again be caused by disregarding the Open World Assumption. The
often incorrectly assumed opposite Closed World Assumption would imply that no other
toppings were possible, as this possibility is not explicitly stated.

This explanation and example are inspired by Rector et al. [42] who deem problems with
open world reasoning to be one of the largest sources of difficulties for new users of OWL.

This section described the four error types selected as the targets for the hybrid human-
machine error detection. The next section describes the method for their identification

29

3. Hybrid Human-Machine Ontology Verification Method

Figure 3.5: Class CardinalePizza without a closure axiom

and Section 3.3 explains the heuristics that were designed to detect possible errors of the
described types.

3.2 Defect Identification Workflows
The previous section discussed the selection of the error types targeted for verification.
This section describes the approach of Defect Identification Workflow (DIWs) for their
identification by integrating automatic defect candidate detection with HC and Crowd-
sourcing tasks for the verification of the defect candidates to utilize human judgement
for the classification of the defect candidates as either true defects or false positives. The
automatic defect candidate detection is thereby based on heuristics and described in
detail in Section 3.3. Section 3.4 describes the HC step in more detail.

As described in Section 2.3.1, Acosta et al. [1] designed a two-step Find-Verify process to
identify three specific types of linked data quality issues in semantic web resources. The
authors implemented this process in two manners: (i) Crowdsourcing in both the Find
phase and the Verify phase, and (ii) an automated Find phase with a Crowdsourcing-based
Verify phase.

In their conclusion they suggested that an automated approach in the Find stage of
a quality assessment process should be used to improve the scalability of the process,
reducing the amount of human labor, resp. HC tasks, needed.

The process designed in this thesis for defect identification by means of HOV follows a
similar concept to the Find-Verify process used in [1] for detecting linked data quality
issues, facilitating an automated approach in the Find stage.

It is also conceptually similar to the CrowdMap [49] approach to ontology alignment,
which also consists of an automated candidate generation, followed by a Crowdsourcing-
based verification of these candidates.

30

3.3. Defect Candidate Detection Heuristics

The designed process thus consists of the following two conceptual steps:

1. Automatic Defect Candidate Detection - analogous to the Find stage

2. HC Defect Candidate Verification - analogous to the Verify stage

The process therefore starts with an ontology as the input and in the first step utilizes the
defect candidate detection heuristics described in the previous section to automatically
detect ontology classes, resp. class combinations, that are likely to contain errors. These
defect candidates are then verified by human judgement using HC and Crowdsourcing
techniques, classifying each defect candidate either as a true defect or a false positive.

A realization of this process for the detection of one specific error type is called a Defect
Identification Workflow. Such a workflow has the purpose of identifying errors of one
selected error type using the heuristic that was designed for the chosen error type, see
the next section.

See Figure 3.6 for a visualization of the proposed process. The first step receives the
ontology as its input and uses the defect candidate detection heuristics to detect defect
candidates, i.e. possible errors, and yields them as its result. The second step creates HC
tasks, possibly on a Crowdsourcing platform, following a specific task design to present
the defect candidates - one by one - to human verifiers, in order to let them give their
judgement to distinguish the defect candidates into verified defects and false positives.

Figure 3.6: Conceptual overview of Defect Identification Workflows as an IDEF-0 diagram

3.3 Defect Candidate Detection Heuristics
In order to detect possible ontology modeling errors, so-called defect candidates, of the
four chosen error types, a heuristic approach is chosen, as these error types cannot be

31

3. Hybrid Human-Machine Ontology Verification Method

detected automatically.

A defect candidate thereby is either a single ontology class or a combination of ontology
classes that likely contain an error. As noted in Section 2.2, the term “defect candidate”
may therefore be regarded as synonymous to the terms “bad smell” and “pitfall”.

As described in Section 3.2, these defect candidates will be verified by humans in a
subsequent step. To enable human verification of the detected defect candidates, they
should include details about the classes that are suspected to cause a defect, such as the
class axioms and labels, as well as human-readable context information to allow humans
to understand the intended domain information encoded, and therefore enable a more
informed verification.

The inclusion of context information is recommended by a research manifesto concerned
with Crowdsourcing for the semantic web [50]. The context information may either be
sourced from the ontology itself, e.g. using annotation property values, or from external
sources, e.g. glossaries or encyclopedias.

A heuristic for the detection of a specific error type may for example be based on structural
pattern matching, search for specific characteristics on ontology elements, facilitate an
ontology reasoner, perform any other kind of computation, or any combination of these
to select defect candidates.

In the following, for each one of the four selected error types from Section 3.1, a heuristic
detecting defect candidates for that type is presented.

As all four heuristics described below rely on the capabilities of an ontology reasoner to
some extent, the consistency of the ontology is a precondition to proper defect candidate
detection, because reasoning cannot be performed in a useful manner on inconsistent
ontologies.

3.3.1 Missing Disjointness Axioms
The basic idea behind the heuristic for detecting candidates for missing disjointness
axioms is to check all possible pairs of satisfiable primitive classes that are not disjoint
from each other. This by itself would already be a useful heuristic, which however would
yield a large amount of defect candidates in case a disjointness axiom is missing between
classes at the top of subclass hierarchies. Therefore, the proposed heuristic reduces the
resulting set of defect candidates by aggregating multiple candidates that share common
superclasses. Furthermore, a defect candidate is only emitted if the introduction of the
disjointness axiom that it describes as missing would not make the ontology inconsistent
or increase the number of unsatisfiable classes in the ontology.

The conceptual components of the heuristic are visualized in Figure 3.7 to provide an
overview and the heuristic is formalized in Algorithm 3.1.

Using this heuristic for the example of the classes Meat and Vegetable from the
pizza ontology if they were not declared disjoint, but the rest of the pizza ontology

32

3.3. Defect Candidate Detection Heuristics

Algorithm 3.1: Heuristic for detecting candidates of missing disjointness axioms
Input: A consistent ontology O, an ontology reasoner R and a function

superclasses(c) that returns the set of superclasses of the given class c
from the ontology O inferred by R

Output: Defect candidates for missing disjointness axioms as a set of pairs of
classes

1 C = set of satisfiable primitive class from R with input O;
2 P = ∅;
3 for i ← 1 to |C| do
4 for j ← i + 1 to |C| do
5 ci = get(C, i), cj = get(C, j);
6 Dci = set of classes disjoint from class ci inferred by R;
7 if cj /∈ Dci ∧ ci /∈ superclasses(cj) ∧ cj /∈ superclasses(ci) then
8 add pair (ci, cj) to P ;
9 end

10 end
11 end
12 D = ∅;
13 for i ← 1 to |C| do
14 ci = get(C, i);
15 Cci = {cj |(ci, cj) ∈ P ∨ (cj , ci) ∈ P};
16 for j ← 1 to |Cci | do
17 for k ← j + 1 to |Cci | do
18 cj = get(Cci , j), ck = get(Cci , k);
19 add superclasses(cj) ∩ superclasses(ck) to Cci ;
20 end
21 end
22 Cci = {c|c ∈ Cci ∧ ¬∃s.s ∈ Cci ∧ s ∈ superclasses(c)};
23 add {(ci, x)|x ∈ Cci} to D;
24 end
25 D = {(ci, cj)|(ci, cj) ∈ D ∧ ((ci, cj) /∈ D ∨ i < j) ∧ (¬∃ck.ck ∈

superclasses(cj) ∧ ((ci, ck) ∈ D ∨ (ck, ci) ∈ D))};
26 foreach (ci, cj) ∈ D do
27 add disjointness axiom between ci and cj to O;
28 cons = check if O is consistent using R;
29 C � = set of satisfiable primitive class from R with input O;
30 if ¬cons ∨ |C �| < |C| then
31 remove (ci, cj) from D;
32 end
33 remove disjointness axiom between ci and cj from O;
34 end
35 return D

33

3. Hybrid Human-Machine Ontology Verification Method

Figure 3.7: Overview on the components of the heuristic for detecting candidates for
missing disjointness axioms as an IDEF-0 diagram

properly modelled, a defect candidate for the class combination of these two classes would
be emitted. As they are not disjoint from each other and not related via an inferred
superclass property, pairs for the two classes and all combinations of their subclasses
would be generated. Pairs of one of the two classes and a subclass of the other would be
filtered out, and either the pair (Meat, V egetable) or (V egetable, Meat) would remain,
depending on the comparison of an arbitrary identifying property (indicated by i < j
in line 25 of Algorithm 3.1). Under the assumption that the rest of the pizza ontology
is correctly modelled, the introduction of the disjointness axiom between Meat and
Vegetable would not cause an inconsistency or lead to more unsatisfiable classes, and

34

3.3. Defect Candidate Detection Heuristics

therefore a defect candidate consisting of these two classes would be returned.

3.3.2 Confusion between logical and linguistic “and”
While the keyword “and” in the Manchester OWL Syntax and many query languages
represents a conjunction, this is not always the case in natural language, i.e. the linguistic
meaning can differ from the logical semantics in some situations.

In case the definition of a concept uses “and” in its linguistic meaning but a direct
translation to a conjunction in the definition of an OWL class leads to the intended class
definition differing from the actual one, this will likely lead to an unsatisfiable intersection.
The idea of this heuristic for detecting such confusions is therefore to detect classes that
contain unsatisfiable intersections.

The heuristic is formalized in Algorithm 3.2.

Algorithm 3.2: Heuristic for detecting candidates of confusions between the
logical and linguistic meaning of “and”

Input: A consistent ontology O, an ontology reasoner R, which is capable of
calculating explanations, and a function satisfiable(expr) that returns �
or ⊥ if the given expression expr is satisfiable in the ontology O using R

Output: List of classes that are defect candidates for a confusion between the
logical and linguistic meaning of “and”

1 U = set of unsatisfiable classes from R with input O;
2 D = ∅;
3 foreach u ∈ U do
4 A = set of axioms comprising a minimal explanation of the unsatisfiability of

u using R;
5 foreach a ∈ A do
6 I = set of intersections contained in a;
7 if ∃i.i ∈ I ∧ ¬satisfiable(i) then
8 add u to D;
9 end

10 end
11 end
12 return D

The example of the CardinalePizza with an intersection in its closure axiom instead
of a union depicted in Figure 3.3 would be reported as a defect candidate by this
heuristic. Assuming that the classes for ham, tomato and mozzarella are correctly
declared as disjoint from each other, the universal restriction with the intersection and
therefore the CardinalePizza would be unsatisfiable. The heuristic would detect the
unsatisfiable CardinalePizza, retrieve a minimal explanation for its unsatisfiability,
which will always contain the universal restriction with the intersection and one of

35

3. Hybrid Human-Machine Ontology Verification Method

the disjointness axioms between the toppings and as the intersection contained in the
universal restriction is itself unsatisfiable, the heuristic will return a defect candidate for
the class CardinalePizza.

3.3.3 Trivially satisfiable allValuesFrom Restrictions
The idea behind the heuristic for detecting trivially satisfiable allValuesFrom, i.e. universal,
restrictions is to find all satisfiable primitive classes that have an allValuesFrom restriction,
but no “corresponding” someValuesFrom, i.e. existential, restriction. To be deemed
“corresponding”, such a someValuesFrom restriction must be on the same property as
the allValuesFrom restriction, or a subproperty of it, and have a filler containing a class
that is either equal, a subclass or a superclass of a class occurring in the filler of the
allValuesFrom restriction.

It should be noted that the definition of “corresponding” someValuesFrom restrictions
does not take semantics into account, e.g. a defect candidate would be emitted even if
the negated form of the someValuesFrom restriction’s filler occurs in the allValuesFrom
restriction’s filler.

The described heuristic is formalized in Algorithm 3.3.

The example error for trivially satisfiable allValuesFrom restrictions from Section 3.1
depicted in Figure 3.4, i.e. the CardinalePizza without the existential restrictions, is
detected by the described heuristic, as the class has an allValuesFrom restriction, but no
corresponding someValuesFrom restriction (as it has none at all).

3.3.4 Missing Closure Axioms
The heuristic for detecting candidates for missing closure axioms is similar to the
one for trivially satisfiable universal restrictions, as it also obtains classes with one
type of quantified object property restriction and looks for corresponding ones of the
other type. For this heuristic, all primitive satisfiable classes with someValuesFrom
restrictions are checked for corresponding allValuesFrom restrictions, i.e. so-called closure
axioms. someValuesFrom restrictions on functional properties are excluded from the
defect candidate detection of missing closures as for them the range of the property
defines the possible values, and there cannot be any instances of the property apart
from the one required by the someValuesFrom restriction on the inspected class. An
allValuesFrom restriction thereby is deemed corresponding if it is on the same property
as the someValuesFrom restriction, or a superproperty of it. If no corresponding universal
restriction is found, the class is emitted as a defect candidate for missing closure.

The filler of the someValuesFrom and allValuesFrom restrictions do not need to be
compared in this heuristic because an incompatible filler would lead to the class being
unsatisfiable and thus not considered by this heuristic.

A formalization of the described heuristic is given in Algorithm 3.4.

36

3.3. Defect Candidate Detection Heuristics

Algorithm 3.3: Heuristic for detecting candidates of trivially satisfiable uni-
versal restrictions

Input: A consistent ontology O, an ontology reasoner R, a function
subproperties(p) that returns the set of subproperties of the given
property p from the ontology O inferred by R and functions
subclasses(c) and superclasses(c) that return the set of subclasses, resp.
superclasses, of the given class c from the ontology O inferred by R

Output: List of classes that are defect candidates for trivially satisfiable
allValuesFrom restrictions

1 C = set of satisfiable primitive classes from R with input O;
2 D = ∅;
3 foreach c ∈ C do
4 U = set of allValuesFrom restrictions on c, inferred by R;
5 E = set of someValuesFrom restrictions on c, inferred by R;
6 foreach u ∈ U do
7 propu = property of restriction u;
8 Fu = classes in signature of filler of u;
9 F �

u = Fu ∪ {csub|∃cf .cf ∈ Fu ∧ csub ∈ subclasses(cf)} ∪ {csup|∃cf .cf ∈
Fu ∧ csup ∈ superclasses(cf)};

10 corr = ⊥;
11 foreach e ∈ E do
12 prope = property of restriction e;
13 Fe = classes in signature of filler of e;
14 if (prope = propu ∨ prope ∈ subproperties(propu)) ∧ F �

u ∩ Fe �= ∅
then

15 corr = �;
16 break
17 end
18 end
19 if ¬corr then
20 add c to D;
21 break
22 end
23 end
24 end
25 return D

37

3. Hybrid Human-Machine Ontology Verification Method

Algorithm 3.4: Heuristic for detecting candidates of missing closure axioms
Input: A consistent ontology O, an ontology reasoner R, a function

superproperties(p) that returns the set of superproperties of the given
property p from the ontology O inferred by R and a function
functional(p) that returns � or ⊥ if the given property p is functional

Output: List of classes that are defect candidates for missing closure axioms
1 C = set of satisfiable primitive classes from R with input O;
2 D = ∅;
3 foreach c ∈ C do
4 E = set of someValuesFrom restrictions on c, inferred by R;
5 U = set of allValuesFrom restrictions on c, inferred by R;
6 foreach e ∈ E do
7 prope = property of restriction e;
8 if ¬functional(prope) then
9 corr = ⊥;

10 foreach u ∈ U do
11 propu = property of restriction u;
12 if propu = prope ∨ propu ∈ superproperties(prope) then
13 corr = �;
14 break
15 end
16 end
17 if ¬corr then
18 add c to D;
19 break
20 end
21 end
22 end
23 end
24 return D

38

3.4. Human Defect Candidate Verification

The example class CardinalePizza visualized without a closure axiom in Figure 3.5
would be detected by this heuristic and a defect candidate for the class would be returned.
The class would be detected because it has a someValuesFrom restriction on the property
hasTopping, but no allValuesFrom restriction at all, thus none corresponding to the
someValuesFrom restriction.

This section has introduced heuristics for the automatic detection of defect candidates
for each one of the four selected error types.

3.4 Human Defect Candidate Verification
The defect candidates detected in the automatic heuristic-based first step are then verified
by humans by the means of Crowdsourcing. For each of the defect candidates, human
judgement decides whether the candidate is a true defect, or a false positive.

Each defect candidate is therefore presented in an HC task to be verified by humans.

This section describes the task design used and the considerations thereof in Section 3.4.1.
Furthermore, the number of judgments to collect for each task and the strategy for their
aggregation is discussed in Section 3.4.2.

3.4.1 Human Computation Task Design
There are multiple options for the design of an HC task that verifies defect candidates.
In any case, the defect candidate must be presented to the human verifiers, whereas the
affected classes, their definitions and context information should be included.

There are three main decisions to be made for the task design, based on the task design
used in CrowdMap [49], discussed in Section 2.4:

• Question phrasing and answer options
The answer options need to be discrete, or at least from a defined range, in any
case, to enable for them to be easily processed in later steps, as well as the result
aggregation in case of multiple votes collected per task, see below. Collecting answers
using free-text fields would make such automated processing and aggregation more
complex or even impossible.
The answer options could be a binary choice, to create a validation task by the
terms of [49], i.e. if the defect candidate represents a true defect of a specific error
type or not. Alternatively, there could be one answer option per error type (and
one to mark false positives), to form a identification task by the terms of [49],
allowing human verifiers to select an error type different from the one for which
the heuristic produced the defect candidate, e.g. in case a combination of classes
contain multiple errors, a human verifier could select the most important one, or
the one that is the root cause of possible other problems. Furthermore, letting
the human verifiers select the type of error present (or mark the task as a false

39

3. Hybrid Human-Machine Ontology Verification Method

positive) can be useful to test if the human verifiers are able to distinguish between
certain errors types, in order to assess the general ability of the proposed method
and actual implementation to detect true defects on a specific data set.

• Presentation of ontology elements
A task needs to include a presentation of the ontology elements which are part of
the defect candidate. There are multiple options:

– Axioms in an OWL syntax: A simple approach to presenting OWL axioms
in a human-readable form is to render them in an OWL syntax. There are
multiple OWL syntaxes available [34], most notably the functional-style syntax,
which is used in the OWL specification [35], and MOS [24, 32] which has the
explicit purpose of making it easy for humans to read/write description logic
ontologies [34].

– Natural language paraphrases: Both Rector et al. [42] and Warren et al. [61]
suggest paraphrasing OWL constructs, as they are easier to comprehend than
“raw” axioms rendered in an OWL syntax.

– Graphical visualizations: Ontologies can be represented graphically, e.g. using
concept diagrams and property diagrams, introduced by Stapleton et al. [55],
or using VOWL [59].

• Context information
As described previously, [50] recommends presenting context information in Crowd-
sourcing tasks. This context may either come from the ontology itself, e.g. from
various annotation properties, or from external sources such as online glossaries,
encyclopedias, or semantic resources like DBpedia [5]. The presented context
information can either be embedded into the task itself, e.g. by displaying text
values of annotation properties or loading referenced resources like linked images.
Alternatively, links can also be given as context, e.g. to images or Wikipedia
articles.

After the consideration of these design options, a design for HC interfaces used for the
tasks in the verification part of the DIWs was created.

Figure 3.8 shows an example task for an HC task for the verification of a defect candidate
consisting of a single class and Figure 3.9 shows one for a defect candidate consisting of
two classes. Both examples are taken from the study described in Chapter 4 using the
well-known pizza ontology.

In the presented task design, each class definition - there may be one or more per defect
candidate, resp. task - is rendered in three parts:

• Class name
The value of the metadata annotation property skos:prefLabel is used as the
class name here. For a description of the used property see Section 4.3.2.

40

3.4. Human Defect Candidate Verification

Figure 3.8: Example HIT from the quiz with one class definition, in this case the fourth
option is the correct answer.

• Description and synonyms
Following the name, the other metadata annotation values are listed, i.e. the
alternative labels, synonyms and definitions.

• Class axioms
The axioms of the class are listed, rendered in MOS [32, 24]. MOS was chosen for a
combination of reasons, (i) it is one of the syntaxes defined in the OWL specification
overview [34] as being easy to read and write for humans, (ii) a renderer is readily
available from OWL API, and (iii) rendering classes as paraphrases or graphical
visualizations, as discussed above, is out of scope of this thesis and would have
posed significant additional effort. As some classes have many disjointness axioms
and therefore the list of axioms would be very long, all disjointness axioms of a class
are merged together, using the term DisjointWith (each of). For example,

41

3. Hybrid Human-Machine Ontology Verification Method

Figure 3.9: Example HIT from the quiz with two class definitions, in this case the first
option is the correct answer.

the two axioms ClassA DisjointWith ClassX and ClassA DisjointWith
ClassY would be merged into ClassA DisjointWith (each of) ClassX,
ClassY.

Below the class rendering(s) the task’s question is asked, “Which of the following
statements holds for the given class(es): <CLASS NAMES>?”, whereas the class names
of the given one or more classes are mentioned again.

42

3.5. Hybrid Human-Machine Workflows beyond Defect Identification

As the answer one of five radio buttons must be selected, one for each of the four selected
error types and another one for either no error or none of the above error types. In case
the task was unclear to the worker, or they have any remarks, all tasks include the option
to leave a comment.

Above all described elements, a button allows to show the task’s instructions, including a
description of all answer options, a summary of the Manchester OWL syntax and examples
for the four error types. The instructions can be seen in Appendix D: Instructions for
Tutorial and Quiz.

3.4.2 Collection of Judgements
Related work, see Section 2.3, has shown that for certain tasks there may be disagreement
among human verifiers, and therefore collecting multiple votes per task may be advisable.
In case multiple judgements are collected, the individual votes need to be aggregated.

This aggregation may be performed using simple majority voting, i.e. the most common
judgement among all collected judgements is selected as the aggregated result. In case
of majority voting as the aggregation strategy, an odd number of judgements should be
collected to reduce the risk for tied most common answers, resp. completely avoid the
risk thereof in case of binary choice of judgement.

An alternative approach would be a weighted aggregation strategy, meaning that not
all judgements are equal, rather some are of higher weight than others. The weight of a
judgement can be determined by the qualifications or skill levels of the human verifier
(which have to be assessed before), or any other characteristics of the verifier or the task,
e.g. the prior performance of the verifier or the task difficulty, or any combination of
factors.

The ideal number of votes to collect, as well as the aggregation strategy to use, likely
depend on the definite task design. The number of votes to collect is subject of RQ-3c,
aiming to assess the influence of the number of votes aggregated using majority voting,
see Section 5.6 for a discussion of the results.

While collecting multiple votes may improve the quality of the results, increasing the
number of votes collected per task increases the overall cost of this process step. Therefore
a trade-off between cost and quality of results needs to be made. A discussion thereof
based on the results of the empirical study can be found in Section 5.7.

3.5 Hybrid Human-Machine Workflows beyond Defect
Identification

The DIWs described in Section 3.2 each aim to identify ontology modeling errors of one
specific error type. The proposed concept of DIWs can be generalized to the broader
concept of verification workflows to enable more complex ontology verification workflows,

43

3. Hybrid Human-Machine Ontology Verification Method

e.g. of the pattern Find-Fix-Verify to include a step for repair, as discussed in Section 2.3.1
for linked data quality assessment.

A verification workflow thus would consist of an arbitrary number of steps, executed in
succession analogously to the two-step DIWs. Each step passes its results and all data
available to it to the next workflow step, until the workflow comes to an end.

Using this approach of passing all data available to a step to the next step enables more
complex topologies, including splitting and joining the workflow. This approach comes at
the cost of possibly passing unnecessary data, which is a trade-off between flexibility and
memory usage that will have to be adapted in future applications depending on their use
cases.

A Find-Fix-Verify verification process for a specific error type would thus consist of three
steps. The first Find step would employ the same defect candidate detection heuristics as
the Find stage of the two-step DIWs. In the second step HC tasks for collecting possible
repair options would be generated, followed by an HC-based verification of the repaired
defect candidate, similar to the verification tasks generated by the DIWs.

This Find-Fix-Verify process could for example be used to repair classes with trivially
satisfiable allValuesFrom restrictions, whereas in the first step the heuristic from Sec-
tion 3.3 would be used, in the second step the resulting defect candidates would be
presented in HC tasks allowing humans to enter possible repairs, e.g. the introduction of
someValuesFrom restrictions or modifications to the allValuesFrom restriction, and in the
third step, the defect candidate, together with the suggested repairs, would be verified
by humans using a similar HC interface as is used in the DIWs, for which an example is
depicted in Figure 3.8.

An alternative, more complex workflow for a more detailed diagnosis of trivially satisfiable
allValuesFrom restrictions, beyond their identification as described in the previous sections,
that is enabled by the multi-step verification workflow concept, is shown as an example
in Figure 3.10.

Analogously to the two-step DIWs and the three-step Find-Fix-Verify workflows, the
more complex workflow also requires the ontology to be consistent, as it relies on the
inferences of an ontology reasoner (STEP-1). If the ontology is inconsistent, this fact
is reported and the workflow is finished. In the next step STEP-2, trivially satisfiable
classes are detected by the heuristic described in Section 3.3.

Where the DIWs would now present the detected candidate classes to human verifiers
to let them judge if the classes contain trivially satisfiable allValuesFrom restrictions,
the more complex diagnosis workflow creates HC tasks to verify the correctness of the
allValuesFrom restrictions (STEP-3).

If an allValuesFrom restriction is judged to be incorrect, another HC task is created in
step STEP-4a to let human judgement decide if the allValuesFrom restriction should be
converted to a someValuesFrom restriction, reporting the result of this task as the final
result of the workflow, i.e. either that the allValuesFrom restriction should be changed

44

3.6. Prototype Implementation

to a someValuesFrom restriction - possibly because the ontology engineer confused the
types of quantification - or just that the allValuesFrom restriction is incorrect.

If on the other hand the result from step STEP-3 is that the allValuesFrom restriction is
correct, an HC task is created in step STEP-4b to inquire if the class from the defect
candidate should really be satisfiable without any existential restrictions. In case the
resulting judgement is affirmative, the workflow concludes that either the class was
reported as a false positive or that the trivial satisfiability is desired. Otherwise, the
workflow reports that at least one existential restriction is missing on the class.

Figure 3.10: Complex verification workflow for the diagnosis of trivially satisfiable
allValuesFrom restrictions

3.6 Prototype Implementation
The DIWs described in this chapter were implemented for the four selected error types
using the proposed heuristics and HC task design.

Figure 3.11 presents an overview of the prototype’s architecture. An ontology engineer
feeds an ontology document to the prototype, which is deserialized using Apache Jena1.
The deserialized ontology is then given to the workflow engine, which is the component
responsible for executing the defined workflows, by executing their steps in succession.
The workflow engine first invokes the defect candidate detection heuristics and then
passes the yielded candidates to the HC task component. The HC task component is

1https://jena.apache.org/

45

https://jena.apache.org/

3. Hybrid Human-Machine Ontology Verification Method

responsible for creating HC tasks for the verification of the candidates, as well as the
retrieval and aggregation of the results of these tasks.

The defect candidate detection heuristics use the library OWL API2, which is used
because it provides support for OWL2 semantics, which is limited in Apache Jena.
ONT-API3 is used to bridge between Apache Jena and OWL API. For the reasoning
functionality required by the heuristics, the HermiT ontology reasoner4 [17] is used, as it
provides all required functionality and there exists an integration with OWL API.

MTurk5 was chosen as the platform for the HC tasks. It is a well-known Crowdsourcing
platform, allowing requesters to create tasks, so called Human Intelligence Tasks, that
are performed by workers for monetary rewards. As the empirical study used an internal
crowd and did not rely on workers from the public marketplace offered by MTurk, using
the MTurk developer sandbox environment6 sufficed.

In order to integrate MTurk HITs into the prototype for DIWs, new HITs are created by
the HC task component via the MTurk REST API, which is then polled frequently for
the current status of the open HITs, waiting for their finalization to return the collected
judgements.

Once the judgements are retrieved from MTurk, they are aggregated and handed back to
the workflow engine, which returns them as the output as the workflow is finished.

Figure 3.11: Prototype Architecture

In this chapter, four common types of ontology modeling error were chosen to be
targeted for identification using hybrid human-machine workflows. The concept of DIWs
was therefore introduced, combining an automatic heuristics-based detection of defect
candidates relying on an ontology reasoner with an HC verification of the detected

2https://owlcs.github.io/owlapi/
3https://github.com/owlcs/ont-api
4http://www.hermit-reasoner.com/
5https://www.mturk.com/
6https://requester.mturk.com/developer/sandbox

46

https://owlcs.github.io/owlapi/
https://github.com/owlcs/ont-api
http://www.hermit-reasoner.com/
https://www.mturk.com/
https://requester.mturk.com/developer/sandbox

3.6. Prototype Implementation

defect candidates. For each of the four selected error types, a heuristic was designed
for the detection of such defect candidates and an HC interface was presented with
considerations thereby discussed. The combination of an automatic preselection of errors
with Crowdsourcing to verify them aims to improve the scalability of Crowdsourcing-
based ontology verification by reducing the amount of human labor needed. The last
two sections discussed how the concept of hybrid human-machine workflows could be
extended to complete tasks beyond error identification and the details of the implemented
prototype, respectively. The following chapter describes the setup for evaluating the
proposed solution, detailing the design of an empirical study with descriptive statistics.

47

CHAPTER 4
Evaluation Setup

In order to evaluate the impact of the proposed HOV method, resp. the designed DIWs,
which are described in Chapter 3, a study was designed using the prototype described in
Section 3.6.

This chapter describes the designed study, starting with an overview on the evaluation
approach in Section 4.1, followed by a description of the study’s details, i.e. the par-
ticipants in Section 4.2, the chosen data set and preparation steps performed on it in
Section 4.3, the seeded defects and false positives in Section 4.4, an overview over the
phases of the study’s execution in Section 4.5, and finally the measured variables and
metrics used in Section 4.6.

The evaluation results can be found in Chapter 5.

4.1 Evaluation Approach Overview
As described in Chapter 3, the workflows to be evaluated for the detection of the four
selected error types each consist of two consecutive parts, starting with an automated
detection of defect candidates using an ontology reasoner and the designed heuristics,
followed by an HC step to either confirm or reject each of the defect candidates.

The evaluation approach consists of two parts, analogous to the phases of the process
under evaluation:

1. Effectiveness of the Automatic Defect Candidate Detection
The process steps that detect the defect candidates for each of the error types
have to be checked for their effectiveness using sample ontologies, with the yielded
defect candidates being checked against a gold standard of defects within the used
ontologies. This part of the evaluation is out of this thesis’ scope, see Section 6.3.

49

4. Evaluation Setup

2. Effectiveness of the HC Candidate Verification
The HC part of the hybrid-human machine verification processes is evaluated
regarding its effectiveness, i.e. whether workers are able to correctly judge defect
candidates as either true defects or false positives, to answer RQ-1.

This ability of the workers to correctly judge candidates is evaluated both on an
individual level for each worker and with different numbers of judgements aggregated
using majority voting.

Furthermore, the influence on the effectiveness of the HC verification of both the
prior knowledge of the workers regarding ontology modeling, as well as other skills,
and the type of defect under verification is examined to gain insights regarding
RQ-3.

In the following section the evaluation of the HC part of the novel ontology verification
process is described.

According to Wohlin et al. [65], the designed evaluation is an empirical study with
descriptive statistics.

In the following, in addition to empirical study, the term quiz is used as an alternative
term, which was the term used in the communication with the participants.

4.2 Participants
The crowd of the study consisted of 16 master students and research staff of the Semantic
Systems research group1 at TU Wien. The students were taking the course 188.387
Semi-Automatic Information and Knowledge Systems at the time the study took place.
At that time the students had obtained ontology modeling skills from the course and
could therefore be deemed (junior) ontology engineers.

The participants were awarded five bonus points in the course for participating in the
study, and were further incentivized to give good answers by receiving five additional
bonus points if they judged at least 75 percent of the tasks correctly.

4.3 Data Set
The ontology to be verified in the experiment is the pizza ontology.2 This ontology is
proven to be of successful use in teaching ontology engineering to western audiences [42].
The authors of [42] also note that pizzas are familiar and concrete subjects, while being
both compositional and rich enough to illustrate key issues in ontology modeling.

1http://semsys.ifs.tuwien.ac.at/
2https://protege.stanford.edu/ontologies/pizza/pizza.owl

50

http://semsys.ifs.tuwien.ac.at/
https://protege.stanford.edu/ontologies/pizza/pizza.owl

4.3. Data Set

4.3.1 Cleaning
The pizza ontology includes some errors for demonstration purposes, these were removed
beforehand as they either were not correctly representing domain concepts or their
construction and name made it obvious that they were not “natural” parts of the pizza
ontology. Five classes were removed from the ontology because of this, see Table 4.1. Any
disjointness axioms with a set of more than two classes, including one of the removed
classes, were adapted to not include the removed class anymore in order to preserve the
asserted disjointness between the classes remaining in the sets.

Removed Class Demonstration Purpose
IceCream Mistakes with property domains
UnclosedPizza Mistakes with missing closures
VegetarianPizzaEquivalent1 Alternative definition of VegetarianPizza
VegetarianPizzaEquivalent2 Alternative definition of VegetarianPizza
CheeseyVegetableTopping Mistakes with disjoint parent classes

Table 4.1: Classes removed from the pizza ontology and the reason for their presence in
the ontology according to accompanying comments

4.3.2 Metadata Annotations
The original pizza ontology already contains some metadata annotations using OWL
annotation properties from the Simple Knowledge Organization System (SKOS) which are
defined in a W3C recommendation [54]. The reference is accompanied by a primer [53],
describing the recommended usage of the defined properties.

Specifically, the lexical labels skos:prefLabel and skos:altLabel, and the docu-
mentation property skos:definition are present in the original pizza ontology.

skos:prefLabel and skos:altLabel can be used to assign human-readable labels to
ontology classes, with skos:prefLabel representing the preferred human-readable label
and skos:altLabel declaring alternative labels, synonyms, abbreviations, acronyms
or near-synonyms. The SKOS primer states that skos:definition should supply “a
complete explanation of the intended meaning of a concept” [53].

For all classes preferred labels are available in the pizza ontology, with most also having
alternative labels defined. The usage of skos:definition was sparse, with the
property being available only for a few of the classes.

As these metadata annotations are used to give context about the presented classes to the
human workers, the classes used in the quiz were checked for their labels and definitions,
with a definition being added it not present and alternative labels supplemented where
applicable. The definitions were added as short sentences, based on the first sentence of
the Wikipedia articles of the concepts represented by the classes, or in case of the various
named pizzas, the list of their toppings.

51

4. Evaluation Setup

This was done for the empirical study under the assumption that ontologies will contain
annotation properties for their classes that are not self-explanatory, written by ontology
engineers in a similar manner as a software engineer leaves comments in their code to
describe non-trivial code sections. This assumption is substantiated by the ontology
pitfall catalogue [40], as it includes the pitfall “P08. Missing Annotations”, thus quality-
cautious ontology engineers are recommended to include annotations on all their classes.
The ontology pitfall scanner automatically checks for missing annotation properties [40].

In case an ontology does not contain any metadata annotations, they could be retrieved
from Wikipedia, glossaries or dictionaries, based on the given labels, or the class names,
if no labels are given.

The given definition of the class VegetarianPizza was shortened, as it included a hint to
its trivial satisfiability.

4.4 Seeded Defects
In total each participant was presented 20 tasks, with three tasks containing an error per
each error type and eight tasks containing no error, or at least none of the four defined
error types.

To achieve this, the classes listed in Table 4.2 were added to, resp. altered in, the pizza
ontology after cleaning and preparing it as described in the previous section. Table 4.2
gives a list of the added and altered classes with a description of their definition and the
corresponding error type.

4.5 Execution Overview
To prepare for the quiz, participants were advised to create an account on the MTurk
worker sandbox, where the main quiz took place, before their quiz session.

Participants were asked to register to a quiz session, which took place at a specific
time and was supported by a Zoom3 call, to allow the interactive answering of possible
questions.

The quiz sessions were started by briefly reiterating the phases and steps of the quiz
(which the participants were already presented before signing up to the quiz). The overall
structure of the quiz was inspired by the master’s thesis of Stefani Stoynova Tsaneva [58]
and large parts of the skill assessment part were reused from her thesis.

The quiz sessions were structured as follows, with a graphical overview presented in
Figure 4.1:

1. Skill Assessment & Preparation Phase
3https://zoom.us/

52

https://zoom.us/

4.6. Measured Variables and Metrics

a) Self-Assessment Test
Participants were asked to give subjective assessment of their skill level, resp.
prior knowledge, in different fields, using a Google Forms questionnaire4,
see Appendix B: Self-Assessment Form.

b) Qualification Test
The qualification test was designed as an extensive single task on MTurk,
consisting of eleven questions in three sections. The questions checked the
skill level of the participants, with the questions becoming harder in the later
sections. Appendix C: Qualification Test shows all the questions asked.

c) Tutorial
The tutorial used the same task design as the quiz, to prepare participants for
the actual quiz tasks and give them the opportunity to familiarize themselves
with the mode and read the instructions and examples without any sort of
pressure. There were four tasks, one for each error type, corresponding to the
examples given. Before submitting each tutorial task, participants had the
option to display the correct answer to the task. See Appendix D: Instructions
for Tutorial and Quiz for the given instructions and examples. Figure 4.2
shows an example HIT from the tutorial.

2. Quiz Phase
The actual quiz consisted of the 20 tasks described above, presented and completed
on MTurk. The same instructions and examples, see Appendix D: Instructions for
Tutorial and Quiz, were available as in the tutorial.

3. Feedback Phase
After the actual quiz, participants were asked to give feedback on the quiz, including
their subjective experience of the quiz and a rating of the easiest and hardest error
types to classify. See Appendix E: Feedback Questionnaire for a screenshot of the
used Google Forms questionnaire.

To aid the participants through the various phases and tasks, they were sent a link to a
guidelines page, giving an overview on the phases and tasks, as well as the links to the
forms and MTurk tasks. See Appendix A: Quiz Guidelines Page for a screenshot of said
page.

4.6 Measured Variables and Metrics
This section describes the variables that are measured to gain insights regarding the
research questions in Section 4.6.1 and the metrics that are used to assess them in
Section 4.6.2.

4https://www.google.com/forms/about/

53

https://www.google.com/forms/about/

4. Evaluation Setup

Figure 4.1: Quiz phases overview as an IDEF-0 diagram

4.6.1 Measured Variables

In order to gain insight to answer the research questions stated in Section 1.2, multiple
variables are measured. The judgement accuracy is of interest to RQ-1 and RQ-2, as the
performance of the human verifiers is an indicator that the proposed HOV method, DIWs
and the used HC task design are suitable. Measuring the judgement accuracy naturally
is also required to answer RQ-3, as it is concerned with the influence of various factors
on the judgement accuracy.

For RQ-3a, concerned with the influence of prior knowledge, various subjective skill levels
are enquired and an objective skill level regarding ontology modeling is measured. RQ-3b
and RQ-3c, concerned with the influence of the error type and judgement aggregation,
respectively, do not require further variables for their assessment, as the error type is
already given by the gold standard and the effect of judgement aggregation is calculated
using random samples, see Section 5.6.

54

4.6. Measured Variables and Metrics

Figure 4.2: Example HIT from the tutorial, displaying the correct answer after choosing
an option and clicking the respective button

Judgement Accuracy and Time Spent

For the quiz, the measured variables are on the one hand the answers from the participants
to the HITs, as the combination of their judgements and optional comments, and on
the other hand the time spent for each answer. By comparison to the correct answers
per task, the correctness of each judgement can be determined, and the ratio of correct
answers can be calculated on an individual basis, as well as for all judgements grouped
by various parameters. The time measurement is carried out by MTurk, which reports
the time spent by a participant on a task alongside the answers.

Subjective Skill Levels

The self-assessment task yields data points from its skill assessment questions, each asking
for an assessment on a four-point Likert scale with 1=“no knowledge” to 4=“expert
knowledge”. This subjective assessment is collected for (Q1) the understanding of English

55

4. Evaluation Setup

documents, the knowledge regarding (Q2) formal logics, (Q3) model-driven engineering,
(Q4) ontology engineering, and (Q5) ontology engineering specifically using web-based
knowledge representation languages, such as OWL and RDF Schema (RDFS). The final
question inquires about the prior experience with Crowdsourcing platforms.

Objective Ontology Modeling Skill Level

While the data points from the self-assessment task naturally are subjective assessments,
the qualification test and its evaluation reports an objective skill level regarding the
usage of OWL. Therefore, for each participant the answers to the eleven questions from
the qualification test are compared to the answer key, followed by a classification onto a
four-point scale as described below.

Sections 1 and 3 of the qualification test have four questions each, while section 2 has
three questions. The submission of a participant is classified as follows:

• Skill level 4=EXPERT KNOWLEDGE:
Achieved by having at least 10/11 correct answers overall (and therefore also the
majority in section 3).

• Skill level 3=INTERMEDIATE KNOWLEDGE:
Achieved by having at least 7/11 correct answers overall and the majority in
section 2.

• Skill level 2=LITTLE KNOWLEDGE:
Achieved by having at least 4/11 correct answers overall and the majority in
section 1.

• Skill level 1=NO KNOWLEDGE:
Achieved by having less than 4 correct answers overall.

The rationale behind the thresholds is that one achieves expert knowledge with a maximum
of one mistake, and the number of overall correct answers required to achieve levels 2
and 3 being equally distributed among the remaining possible scores, threshold(level) =
�((level − 1) ∗ 10/3)�, i.e. at least 7 points for level 3 and at least 4 points for level 2.

4.6.2 Used Metrics
This section describes the metrics used for assessing the measured judgement accuracy.

The collection of judgements via HC tasks can be considered a form of classification and
therefore metrics from the fields of information retrieval and machine learning can be
used. A HIT is thus considered as a classification problem, during which a human assigns
a label to an ontology class or a set of ontology classes, i.e. one of {Missing Disjointness,
Logical vs. linguistic “and”, Trivial Satisfiability, Missing Closure, No (known) Error}.

56

4.6. Measured Variables and Metrics

One such assignment of a label to a task can be considered either as a true positive (TP),
false positive (FP), true negative (TN) or false negative (FN) regarding its equality to
the correct answer according to the gold standard.

The following metrics are used in the report of the evaluation’s results:

• Precision = T P
T P +F P

• Recall = T P
T P +F N

• F1 measure, F1 = 2 · precision·recall
precision+recall (harmonic mean of precision and recall)

• Cohen’s kappa [11], a metric for measuring inter-rater agreement while taking the
probability of agreement by change into account (in this case agreement between
judgements and the gold standard is measured)

For precision, recall and the F1 measure there exist different approaches for calculating
the respective metric for multi-label values. Micro-averaging calculates the metrics
using the global numbers of true/false positives/negatives among all classes and for
macro-averaging in contrast the numbers of true/false positives/negatives are calculated
per label and the unweighted means of those are taken to calculate the metrics.

A third approach, the weighted approach, is similar to macro-averaging, but instead of
using an unweighted mean, the mean is weighted by the number of true instances for
each label. This weighted approach is used in this thesis, as it considers the different
frequencies of the labels (in contrast to macro-averaging) and is sensitive to low metrics
for small labels (in contrast to micro-averaging).

This chapter has introduced a study design for the evaluation of the proposed HOV
method, which uses the implemented prototype to evaluate the DIWs with a focus on
the HC part. Therefore, an overview of the study was given, the crowd, data set and
execution phases were described, and the measured variables and used metrics were
defined.

The results of the empirical study are presented and discussed in the following chapter.

57

4. Evaluation Setup

Class(es) Description Error Type

Pizza, Hamburger no disjointness between them Missing Disjoint-
ness

CamembertTopping,
ParmezanTopping no disjointness between them Missing Disjoint-

ness
WhiteOnionTopping,
RedOnionTopping no disjointness between them Missing Disjoint-

ness
RedOnionTopping,
ChoppedOnionTop-
ping

not disjoint, but also should not be No (known) Error

GlutenFreeBase, Thi-
nAndCrispyBase not disjoint, but also should not be No (known) Error

SeafoodTopping, Tu-
naTopping not disjoint, TunaTopping should be a

subclass of SeafoodTopping
No (known) Error

VegetarianTopping using a conjunction of all non-Meat and
-Seafood toppings in the closure axiom

Logical vs. Lin-
guistic AND

NonVegetarianPizza using existential restriction with the con-
junction of Meat and Seafood

Logical vs. Lin-
guistic AND

FourCheesesTopping subclass of the conjunction of four differ-
ent cheeses

Logical vs. Lin-
guistic AND

QuattroFormaggi existential restriction with the unsatisfi-
able FourCheesesTopping

No (known) Error

SpicyMargherita subclass of MargheritaPizza and the exis-
tential restriction of having TobascoSauce

No (known) Error

Margherita removed all existential restrictions, s.t.
only closure axiom remains

Trivial Satisfiabil-
ity

Siciliana removed all existential restrictions, s.t.
only closure axiom remains

Trivial Satisfiabil-
ity

Fiorentina removed all existential restrictions, s.t.
only closure axiom remains

Trivial Satisfiabil-
ity

VegetarianaPizza given only existential restrictions, no clo-
sure axiom

Missing Closure

MushroomPizza given only existential restrictions, no clo-
sure axiom

Missing Closure

FourSeasonsPizza given only existential restrictions, no clo-
sure axiom

Missing Closure

GiardineraPizza defined correctly with existential restric-
tions and closure axiom

No (known) Error

PolloAdAstraPizza defined correctly with existential restric-
tions and closure axiom

No (known) Error

RosaPizza defined correctly with existential restric-
tions and closure axiom

No (known) Error

Table 4.2: Classes presented in the quiz tasks

58

CHAPTER 5
Evaluation Results

This chapter presents and discusses the results of the empirical study, described in
Chapter 4.
Following a brief summary of the overall results in Section 5.1, Sections 5.2, 5.3 and 5.6
discuss the influence of prior knowledge (RQ-3a), the error type of the task (RQ-3b) and
the number of aggregated votes for a final judgement (RQ-3c) on the ratio of correct
answers, respectively. Section 5.4 goes into detail on three problematic tasks and discusses
possible reasons. Section 5.5 discusses the time spent on each task, Section 5.7 provides a
cost estimation for different numbers of votes aggregated and finally Section 5.8 presents
the feedback given by the study’s participants.

5.1 Result Data
As mentioned already in Section 4.2, there were 16 participants in this empirical study.
319 HITs were submitted by the participants, with 80.9 percent of the judgements being
correct. On average 78.8 seconds were spent on each task, with a standard deviation of
73.4 and with a median of 53 seconds.
The metrics discussed above are as follows: (i) precision: 0.8492, (ii) recall: 0.8088, (iii)
F1 score: 0.8113, and (iv) Cohen’s kappa: 0.7538.
These metrics indicate that the proposed concept is feasible and the used HC task design
is suitable, as human verifiers are able to correctly verify a large portion of the presented
defect candidates.
Considering that each of the 16 participants had 20 HITs to complete, it can be concluded
that the submission of a single task for one of the participants failed. There may be
multiple reasons for this, either the participant simply did not submit the HIT, or used
the “Return” button in the MTurk user interface for exiting tasks which the user does
not want to complete anymore (possibly by accident).

59

5. Evaluation Results

5.1.1 Free-Text Comments
As described in Section 3.4.1, participants had the option to leave a comment for each
task. In total 23 comments were left on the 319 tasks, they were classified as follows:

• Stated reasoning behind correct answer: 10

• Recognized ambiguous task but made wrong decision: 2 (see Section 5.4 for a
discussion of the ambiguous tasks)

• Documented incorrect assumption, leading to incorrect judgement: 4

• Documented uncertainty if only the two presented classes are relevant regarding
missing disjointness axioms, or if other classes from the definition should be
considered as well: 2

• Other (no information about decision making): 5

This may hint at two possible problems, (i) ambiguous tasks, as discussed in Section 5.4
and (ii) uncertainty on which classes to consider regarding missing disjointness axioms.
Both should be taken into account in future work, whereas the instructions given to the
participants should clear up the uncertainty about which classes to consider.

5.2 Influence of Prior Knowledge
In order to draw conclusions on the influence of prior knowledge on judgement accuracy,
to address RQ-3a, subjective skill assessments of various skills and an objective skill
assessment of ontology modeling using OWL were collected.

5.2.1 Various Subjective Skill Levels
As described in Chapter 4, the self-assessment form, see Appendix B: Self-Assessment
Form, collected the participants’ own assessment of their various skill levels on a four-point
Likert scale with 1=“no knowledge” to 4=“expert knowledge”. A visualization of the
self-assessment results is presented in Appendix F: Results of the Self-Assessment Form.

On this scale from one to four, the average assessments per skill are as follows: (i)
understanding of English documents: 3.88, (ii) formal logics: 2.81, (iii) modeling in
general: 3.00, (iv) ontology modeling: 3.13, (v) ontology modeling using OWL or related
web-based languages: 3.00. Nine out of 16 participants, i.e. 56.25 percent, state to have
prior experience with Crowdsourcing platforms.

The average participant thus states to have a very good understanding of English
documents, intermediate skills regarding formal logics and an at least intermediate skill
level in ontology modeling.

60

5.2. Influence of Prior Knowledge

No strong correlations of these subjective skill levels were found with the ratio of correct
answers, with the correlation coefficients being: (i) English language understanding:
0.15, (ii) formal logics: 0.20, (iii) general modeling: -0.25, (iv) ontology modeling: 0.32,
(v) ontology modeling using a web-base language: 0.06, and (vi) prior experience with
Crowdsourcing platforms: -0.10. There were however strong correlations of subjective
skill assessments with the amount of time spent, discussed in Section 5.5.

5.2.2 Objective Ontology Modeling Skills
The participant’s objective skill level was measured using a qualification test, see Ap-
pendix C: Qualification Test, assigning a skill level from 1=“no knowledge” to 4=“expert
knowledge” to each participant. The results are shown in Figure 5.1.

Figure 5.1: Calculated qualification levels

Not a single participant was assigned the lowest skill level, with a large majority of 81.25
percent being assigned one of the top two skill levels, with an average level of 3.25. The
crowd thus can be considered to be skilled in ontology modeling using OWL.

Compared to the subjective skill assessment regarding ontology modeling and more
specifically using web-based ontology modeling languages, the correlation coefficients
are 0.38 and 0.50, respectively. While the average self assessments are 3.13 and 3.00,
respectively, the average objective ontology modeling skill level is 3.25. The crowd overall
therefore slightly underestimated its ontology modeling skill level.

Figure 5.2 sets the qualification levels in relation to the ratio and amount of correct
judgements. It can be observed that there is a positive correlation between qualifica-
tion levels and the ability to judge correctly, with notable improvements with higher
qualification level. The correlation coefficient for the qualification level and the ratio of

61

5. Evaluation Results

correct answers is 0.45. The difference between the ratio of correctness between levels
Little Knowledge and Intermediate Knowledge is 9.2 percent points, and 4.1 between
Intermediate Knowledge and Expert Knowledge.

Qualification
Level

Percentage
Correct

Little
Knowledge

71.6%

Intermediate
Knowledge

80.8%

Expert
Knowledge

84.9%

Figure 5.2: Correct judgements by qualification level

One thing to mention here is that eleven of the 16 participants previously took a similar
quiz [58]. As this quiz also relied on MTurk for its HC tasks, it is notable that in the
self-assessment only nine participants stated to have prior experience with Crowdsourcing
platforms. A possible explanation of this fact would be that two of the participants that
took both quizzes did not have experience apart from the previous quiz and did not
consider their one-time usage in the previous quiz almost half a year prior to the later
quiz as significant experience. Another reason might be that at least two participants
did not associate MTurk as being a Crowdsourcing platform.

The results of this empirical study, when set in the context of the participants’ qualification
levels, therefore indicate that there is a significant influence of prior knowledge on
performance, as a positive correlation between ontology modeling skills and judgement
accuracy is observed, thus answering RQ-3a.

5.3 Influence of Error Type
In the quiz’ results, there is notable difference between the results for tasks of different
error types, thus answering RQ-3b which sought for the existence of such an influence of

62

5.3. Influence of Error Type

the type of error on performance. Figure 5.3 shows both the ratio of correct answers and
the counts of correct and incorrect judgements per error type.

Error type Percentage
Correct

Missing
Disjointness

85.4%

Logical vs.
Linguistic "and"

75.0%

Trivial
Satisfiability

97.9%

Missing Closure 100.0%

No (known)
Error

67.7%

Figure 5.3: Correct judgements by error type

The error types Trivial Satisfiability and Missing Closure were judged almost perfectly,
with a single task of the type Trivial Satisfiability being judged as Missing Closure. This
may have multiple reasons, on the one hand these two error types may simply be easier for
the participants to judge, or on the other hand prior knowledge may play a part, as eleven
out of the 16 participants also took the quiz from Stefani Stoynova Tsaneva’s master’s
thesis [58] which focused on the verification of existential and universal restrictions. From
this previous quiz there may have been some learning effect, as the two error types Trivial
Satisfiability and Missing Closure are about universal restrictions without corresponding
existential restrictions and vice versa, respectively.

Even if the strong performance on these two error types was to be fully attributed to a
learning effect from the previous quiz, this should be viewed as a hint for the importance
of training. If a previous quiz taking approximately two hours, or a similar form of
training or preparation, leads to near perfect performance on some error types, this
suggests that humans can acquire knowledge, resp. skills, in little time to greatly improve
their performance in HOV of the discussed format.

The two error types Missing Disjointness and Logical vs. linguistic “and” also show
reasonable performance, with 85.4 percent and 75.0 percent of correct judgements,
respectively.

63

5. Evaluation Results

The remaining tasks, of the type No (known) Error, only show a performance of two out
of three correct judgements. It should be noted that in future work, this type should be
split up into two distinct types, one for unknown errors and one for the absence of any
errors. This way a resulting classification of a defect candidate with one of these types
would imply if the defect candidate should be further investigated, or was a false positive.

The next section discusses three problematic HITs with poor rates of correct answers,
possible reasons and ways to avoid the problems. All three of these HITs belong to the
No (known) Error type, in total amounting to 30 judgements for incorrect types, 20 of
them being judged as Missing Disjointness and ten of them being judged as Missing
Closure. The impact of this can be observed in the confusion matrix shown in Figure 5.4.

Figure 5.4: Confusion matrix of judged error types

5.4 Problematic HITs
Although the results overall were positive, three tasks had exceptionally bad results. In
the following these problematic tasks and possible explanations are discussed.

5.4.1 Incorrect Disjointness Axioms Given

The first problematic HIT was concerned with the two classes ChoppedOnionTopping
and RedOnionTopping, its rendering as presented to the study’s participants is shown
in Figure 5.5. This task was intended as a false positive, as from a domain point of view,
these two classes should not be disjoint, as red onions can in fact be chopped, thus there
may be individuals with both classes assigned, i.e. chopped red onions. The correct
answer which the judgements were compared against was therefore No (known) Error.

64

5.4. Problematic HITs

Figure 5.5: Problematic HIT #1, with two incorrect disjointness axioms given in the
class definitions

A majority of 68.75 percent of the participant however judged this HIT as Missing
Disjointness, while only 18.75 percent voted for the correct answer.

A possible explanation for this could be that participants drew conclusions, resp. made
assumptions, based on the class definitions given. Two of the given disjointness axioms,
however are incorrect: (i) red onions are declared disjoint from onion rings and (ii) white
onions are declared disjoint from chopped onions. The participants may have assumed
that red onions should be disjoint from chopped onions analogous to the given disjoint
axiom between white onions and chopped onions.

The second problematic HIT was quite similar, concerned with the disjointness of the
classes GlutenFreeBase and ThinAndCrispyBase, see Figure 5.6. These classes should
not be disjoint, as thin and crispy pizza bases can be baked from gluten-free dough, thus
a pizza base can be gluten-free, thin and crispy at the same time. Again, an incorrect
disjointness axiom (GlutenFreeBase with DeepPanBase) was given, that may have
led 56.25 percent of the participants to analogously answer with Missing Disjointness.
The correct answer No (known) Error was given by 43.75 percent of the participants.

The impact of this problem of incorrect axioms given could possibly be weakened by
explicitly noting that other modeling errors can be given in the definitions and instructing
participants to primarily judge the classes based on the domain semantics, not relying
on unverified information too much. This was not done for the study and should be
considered in future work.

65

5. Evaluation Results

Figure 5.6: Problematic HIT #2, with an incorrect disjointness axiom given in the class
definitions

5.4.2 Ambiguous Errors
The third problematic HIT is depicted in Figure 5.7, showing the definition of the class
SpicyMargherita as the subclass of Margherita and the existential restriction of
TobascoPepperSauce as a topping.

The correct answer for this task was No (known) Error, as the class SpicyMargherita
by itself does not contain any errors. If, however, it is (reasonably) assumed that
Margherita is defined using proper existential and universal restrictions, i.e. two
someValuesFrom restrictions on hasTopping for tomatoes and mozzarella, and an
allValuesFrom closure axiom limiting the toppings of the pizza to just these two
toppings, then the class SpicyMargherita would be unsatisfiable. The additional
existential restriction of the Tobasco sauce and the closure axiom of the Margherita
contradict each other.

62.5 percent of the participants voted for Missing Closure on this task and only 31.25
percent chose the correct answer No (known) Error.

To mitigate problems like these, the instructions given to the participants should include
guidelines on how to vote in cases like this, where presented class definitions by themselves
are not incorrect, only becoming problematic by making reasonable assumptions about
the definitions of other classes.

5.5 Time Spent per Task
As mentioned in Section 5.1, on average 78.8 seconds were spent per task, with a standard
deviation of 73.4 and a median of 53 seconds spent. The minimum time spent per task

66

5.5. Time Spent per Task

Figure 5.7: Problematic HIT #3, depending on the definition of Margherita, this class is
unsatisfiable

was measured at 8 seconds and the maximum at 408 seconds (6 minutes 48 seconds).

Figure 5.8 shows two box plots of the time spent, one grouped by qualification level and
one per error type. There are some outliers among all qualification levels and error types,
which may be partly caused by distractions and breaks taken by the participants, which
is reflected in the minimum and maximum values, as well as the standard deviation.

Figure 5.8: Time spent on tasks per qualification level and error type

It can be observed that the time spent differs by qualification level, with those participants
classified as having little knowledge spending the most time. While the lower quartile
and median do not differ very much compared to the higher qualification levels, the
upper quartile is significantly larger. There also is a small difference between the higher
two qualification levels, with those of the highest qualification level spending slightly
less time per task than those with intermediate knowledge. This observation is further
substantiated by the correlation coefficient of the qualification level and the time spent
showing a notable negative correlation. The correlation coefficient of the qualification
level with different time metrics: (i) total time spent: -0.54, (ii) mean time spent: -0.54,

67

5. Evaluation Results

(iii) median time spent: -0.64.

Strong negative correlations with the median time spent are also observed for the two
subjective skill levels: (i) ontology modeling using OWL: -0.68, (ii) prior experience with
Crowdsourcing platforms: -0.57.

While the time spent per error type was comparable among the error types Missing
Disjointness, Logical vs. linguistic “and” and No (known) Error, there was less time
spent for tasks with the error types Trivial Satisfiability and Missing Closure axioms.
Analogous to the high ratio of correct answers for these two error types, as discussed
in Section 5.3, this may be attributed to either these two error types being easier to
judge, a learning effect from the previous quiz concerned with universal and existential
restrictions [58], or a combination of both.

5.6 Influence of Number of Aggregated Judgements
This section discusses the impact of aggregating multiple votes using majority voting, to
explore possible answers to RQ-3c.

In order to obtain metrics of the results if multiple judgements had been collected,
these aggregated judgements are simulated, inspired by the evaluation approach in [67].
Aggregated result metrics are calculated for different numbers of votes to aggregate. The
maximum number of votes to aggregate is 15 because this is minimum number of votes
available for any task - ideally there would have been 16 judgements for each task, one
from each participant, but as described in Section 5.1, for one task only 15 votes are
available.

For a number of votes n = {3, 5, 7, 9, 11, 13, 15}, the aggregated metrics are calculated by
first randomly picking n judgements for each HIT and aggregating them using majority
voting. The metrics precision, recall, F1 score and Cohen’s kappa described in Section 4.6.2
are then calculated based on the aggregated results for all HITs. This process is repeated
1,000 times for each number of votes n and the mean value for each metric is used as the
final result.

The calculated metrics can be seen in Table 5.1 and are visualized in Figure 5.9.

All four metrics show very similar differences between single judgements and the different
numbers of votes aggregated. Comparing the result metrics of using single judgements
and three votes aggregated, there is a notable improvement by the aggregation. Another
small improvement is made by aggregating five instead of three votes. Beyond five votes
the improvements gained when more votes are aggregated become increasingly minor,
with the best results achieved by aggregating eleven votes. The results beyond eleven
aggregated votes show very minor deterioration.

In case of a limited budget or workforce availability, a trade-off needs to be made if the
limited resources should be committed to perform more tasks with fewer votes aggregated,
or fewer tasks with more votes aggregated, thus if larger parts of an ontology, resp. more

68

5.7. Cost Estimation

No. of
votes

Precision Recall F1 score Cohen’s
kappa

1 0.8492 0.8088 0.8113 0.7538
3 0.8922 0.8406 0.8407 0.7967
5 0.9021 0.8494 0.8485 0.8087
7 0.9046 0.8561 0.8549 0.8169
9 0.9064 0.8597 0.8586 0.8214

11 0.9071 0.8599 0.8589 0.8217
13 0.9063 0.8585 0.8575 0.8200
15 0.9025 0.8500 0.8488 0.8095

Table 5.1: Performance metrics for different numbers of votes aggregated by majority
voting

Figure 5.9: Visualization of the metrics after aggregation from Table 5.1

ontologies, should be evaluated with less accuracy, or smaller parts, resp. fewer ontologies,
with higher accuracy. The next section provides a cost estimation based on the number
of votes aggregated and discusses economical factors of the choice of the number of votes
to aggregate.

The data from the empirical study therefore suggest that RQ-3c should be answered
affirmatively, as a significant performance improvement is observed if votes are aggregated
instead of using single votes.

5.7 Cost Estimation
This section gives an estimation of the cost of the evaluated DIWs, assuming that the
participants would be employees. This assumption is made as human verifiers need prior
knowledge in ontology engineering, which is a skill unlikely to be very prevalent on public

69

5. Evaluation Results

Crowdsourcing platforms such as Amazon Mechanical Turk. The cost estimation is
therefore based on hourly rates of employees, assuming that if ontologies shall be verified
using the proposed approach, staff trained in ontology engineering will be available or
made available, e.g. via recruiting.

A majority of the study’s participants are master’s students, with only two participants
being pre-doc researchers. As a base for the cost estimation, the standard personnel costs
of the Austrian Science Fund (FWF)1 are taken. Of the various employment categories,
the category of doctoral candidates is used, as this would be the category the master’s
students would fall into once they finish their current studies.

The FWF’s standard personnel costs put a doctoral candidate at € 2,237.60 gross salary
per month with 30 hours per week. Approximating four weeks per month, this puts the
gross hourly rate to € 18.65. It should be noted that this hourly rate serves as a basis for
cost estimations, assuming that the human verifiers are employed and paid similarly to
doctoral candidates. In the case of contractual work, hourly rates are more likely to fall
into the range of € 50 to € 100, based on rates paid for contractual software engineering
work by similarly qualified personnel in Austria.

Section 5.8 discusses the time spent per task, with a mean of 78.8 seconds and a median
of 53 seconds per task. The substantial difference between the mean and median time is
caused by a number of outliers, probably due to breaks taken by and distractions to the
human verifiers. For the calculations below the mean of 78.8 seconds is taken, because
breaks will be taken and distractions will occur too if the human verifiers are employed.

Assuming 78.8 seconds per task and an hourly rate of € 18.65, one candidate verification
task approximately costs € 0.4082. Based on these assumptions, a human verifier could
approximately judge 45.685 tasks per hour, or 1,371 tasks per week.

It should be noted that these calculations are based on the mean time spent per task from
the empirical study, in which the participants performed 20 tasks. These calculations
therefore do not consider a possible learning effect that would likely lead to a decrease of
time spent per task by human verifiers that already performed considerable amounts of
such tasks.

As Section 5.6 shows that aggregating multiple judgements per task leads to a significant
increase of correct resulting votes, the costs are calculated for the numbers of votes to
be aggregated, for which Table 5.1 shows the result metrics. The resulting costs for
the various numbers of aggregated votes are shown in Table 5.2, in addition to the F1
measure from Table 5.1, as a representative for the performance metrics (which all show
comparable differences between different numbers of votes aggregated). Additionally, the
delta between the F1 scores between n and n − 2 votes is given, i.e. the improvement or
decline of that metric in comparison to the next smaller number of votes aggregated.

It should be noted that the cost naturally increases linearly with the number of votes, as
the cost per judgement is multiplied by the number of judgements to aggregate, while

1https://www.fwf.ac.at/en/research-funding/personnel-costs

70

https://www.fwf.ac.at/en/research-funding/personnel-costs

5.8. Feedback

No. of votes Estimated
cost per task

F1 score ΔF1

1 € 0.4082 0.8113 -
3 € 1.2247 0.8407 0.0294
5 € 2.0411 0.8485 0.0078
7 € 2.8576 0.8549 0.0064
9 € 3.6741 0.8586 0.0037

11 € 4.4905 0.8589 0.0003
13 € 5.3070 0.8575 -0.0014
15 € 6.1234 0.8488 -0.0087

Table 5.2: Estimated costs per task

the performance metric only shows significant improvements comparing the results of
single votes with those of three aggregated votes with an improvement of almost three
percent of accuracy, with little difference in the performance among three and 15 votes
being aggregated. The optimal results are reached when aggregating eleven votes, which
however amounts to eleven times the cost of taking the results of single votes and 3.7
times the cost of aggregating three votes.

As the performance differences between the different numbers of votes are rather small,
from the point of view regarding cost-efficiency, the suggestion is to aggregate three votes
for the final result, based on the data of this empirical study. Not performing any vote
aggregation at all would also be a reasonable and more economical approach, accepting a
loss of accuracy by approximately three percent.

5.8 Feedback
Following the quiz, participants were asked to provide feedback in a questionnaire,
see Appendix E: Feedback Questionnaire. The questionnaire asks three questions about
the participants’ general enjoyment of the quiz (Q1), their willingness to take a similar quiz
again (Q2) and how much the quiz improved their understanding of ontology verification
(Q3), each on a four-point Likert scale. Questions number four and five inquired about
the easiest (Q4) and hardest modeling errors (Q5) to identify, respectively. Multiple error
types could be chosen for these two questions each. Finally, participants could optionally
leave a comment. The results of the feedback questionnaire are visualized in Appendix G:
Results of the Feedback Questionnaire.

81.25 percent of the participants at least slightly enjoyed the quiz, with 31.25 percent
very much so. 81.25 percent would also like to take a similar quiz again, e.g. in a
distance learning course, with 43.75 percent stating that they would like that very much.
All participants stated that they thought that the quiz helped them better understand
ontology verification, with 62.5 percent voting in strong agreement.

71

5. Evaluation Results

Trivial Satisfiability and Missing Closure were voted to be the easiest error types to
identify, receiving 13 and 12 votes, respectively. As discussed in the previous sections,
this could be partly attributed to prior experience with the verification of existential and
universal restrictions from the quiz in [58].

Missing Disjointness was voted to be the hardest to identify by far, receiving 13 votes,
while the other error types all received three or less votes.

Comparing these rankings with the actual performances per error type, as discussed in
Section 5.3, for the two classes Trivial Satisfiability and Missing Closure the subjective
assessment of the participants aligns with the ratio of correct answers, as the two error
types have 97.9 and 100 percent correct answers, respectively.

While the performance for tasks of the error type Missing Disjointness is lower than for
these two types, the performance was the worst at 75 percent of correct answers for the
error type Logical vs. Linguistic “and”, which was neither voted as particularly easy, nor
hard to identify, receiving five votes to be the easiest and 3 votes to be the hardest error
type to identify.

As already discussed in Sections 5.3 and 5.4, two of the problematic tasks caused a
confusion with the decision between judging the tasks as either the absence of an error
or Missing Disjointness, attributing 20 incorrect judgements for Missing Disjointness,
whereas No (known) Error would have been correct. These problematic HITs likely
also are the explanation for Missing Disjointness being perceived as the hardest type to
identify by far.

Regarding the easiest and hardest types to identify, there is a small inconsistency in the
responses, as the error type Missing Disjointness has received four votes as the easiest
modeling error to identify and 13 votes for it to be the hardest to identify, it follows from
the pigeonhole principle that at least one participant has voted for Missing Disjointness
to be both the easiest and the hardest type to identify.

Ten participants left a comment, with multiple comments mentioning that it was unclear
if the classes Cat and Dog should have been considered to be disjoint in the last question
in the qualification test. In each of the quiz sessions too, one participant asked if they
should make this assumption - which they were answered that the disjointness was a
reasonable assumption to make.

The other comments did not yield further insights, with one comment each (i) criticizing
the too long and irrelevant domain descriptions, (ii) pointing out the ambiguity of the
task with the class SpicyMargherita, (iii) stating that they felt to be forced to make
too many assumptions, and (iv) noting that tasks with two class definitions are confusing.
Two comments expressed a perceived need for more detailed domain descriptions.

72

CHAPTER 6
Conclusion & Future Work

This chapter summarizes the main contributions of this thesis in Section 6.1, revisits the
research questions and puts the findings in their context in Section 6.2 and discusses the
limitations of the findings, as well as future research opportunities in Section 6.3.

6.1 Summary
In this thesis, the integration of automatic machine computations with HC processes into
hybrid-human machine workflows for the detection of common ontology modeling errors
was investigated as a solution paradigm for addressing ontology verification, in order to
improve the scalability of Crowdsourcing-based ontology verification by an automatic
pre-selection of possible errors.

Therefore, as a first step, four common error types in ontology modeling were selected
based on literature review. The selected error types are Missing Disjointness Axioms,
Confusion between logical and linguistic “and”, Trivially satisfiable allValuesFrom Re-
strictions and Missing Closure Axioms.

For each of these error types, a heuristic was designed to automatically detect possible
errors of the type, i.e. defect candidates, relying on an ontology reasoner.

These detected defect candidates then need to be verified by humans, therefore, a specific
type of hybrid human-machine workflow is proposed, called Defect Identification Workflow
(DIW). Each DIW aims to detect errors of a specific ontology modeling error type and
consists of two steps.

The first step performs the automatic defect candidate detection using the designed
heuristic for the targeted error type. The second step then presents the resulting defect
candidates to human verifiers, to let human judgement distinguish between true defects
and false positives.

73

6. Conclusion & Future Work

Therefore, a suitable HC interface was designed, presenting the class or class combination
of a defect candidate, whereas the defining axioms and context information are given.
The axioms defining a class are rendered in MOS and for context information the values
of the SKOS metadata annotation properties are used. The designed HC interface is
used to show the defect candidates one at a time for the human verifier to classify, by
either selecting the type of error present, or marking the task as a false positive.

The four DIWs were implemented in a prototype, whereas the designed heuristics were
implemented and Amazon Mechanical Turk was integrated for the execution of the HC
tasks.

This prototypical implementation of the DIWs, including the designed HC interfaces,
was evaluated in an empirical study with descriptive statistics, for which 20 defects and
false positives were seeded into the well-known pizza ontology to be used as the data set.
Participants of the study completed five steps in succession: (i) self-assessment form, (ii)
qualification test, (iii) tutorial, (iv) quiz and (v) feedback questionnaire.

The self-assessment form and qualification test gathered data on subjective assessments
of prior knowledge and an objective qualification level regarding ontology modeling,
respectively. The quiz was the main part of the study, in which the participants were
asked to complete the 20 tasks presenting the defect candidates on MTurk.

16 students and research staff participated in the study, with 13 of them being assigned
one of the higher two out of four qualification levels and no participant classified as
having no prior knowledge regarding ontology modeling.

Overall, 80.9 percent of the tasks were judged correctly, with the performance depending
on the qualification level, showing a positive correlation. It was observed that the
performance on different tasks also varied by the present error type, with perfect, resp.
almost perfect, scores for the error types Trivially satisfiable allValuesFrom Restrictions
and Missing Closure Axioms. For the error types Missing Disjointness Axioms and
Confusion between logical and linguistic “and” 85.4 percent and 75.0 percent of the
answers were correct, respectively.

The fifth category of tasks, that of no or unknown errors, showed only two out of three
correct answers. This must at least partially be attributed to three distinct tasks with
poor results, for which either incorrect axioms were given in the class definitions, or the
error type was ambiguous.

Furthermore, the data from the empirical study suggest that the aggregation of multiple
votes for a conclusive human judgement on a task brings a significant improvement
compared to only collecting single votes. Substantial differences between a single vote and
three votes aggregated were observed. The differences among three and 15 aggregated
votes were marginal, thus from the perspective of cost-efficiency either one or three
judgements should be collected per task, depending on the budget and the size of the
ontology to verify.

74

6.2. Conclusion

6.2 Conclusion
This section discusses the thesis’ findings in relation to the research questions formulated
in Section 1.2.

RQ-1 How can specific modeling errors in ontologies be identified using hybrid human-
machine workflows?

This thesis introduced Defect Identification Workflows, which are hybrid human-machine
workflows consisting of two steps. Each such workflow aims to identify errors of one
specific type of modeling error. The first step is an automatic defect candidate detection,
based on specifically designed heuristics for each error type relying on the capabilities of
an ontology reasoner. In the second step, these automatically detected possible errors
are verified by humans using Crowdsourcing to classify them as either true defects or
false positives.

The empirical study’s results suggest that the hybrid human-machine workflows are an
effective approach to identifying specific types of errors, with a precision value of up
to 0.9071 and a recall value of up to 0.8599 in case multiple human judgements are
aggregated. This means that more than 90 percent of the reported true defects really are
true defects, and that almost 86 percent of the true defects are reported as such.

RQ-2 What are suitable Human Computation interfaces to enable verification of specific
error types in hybrid human-machine workflows?

To allow a verification of the automatically generated defect candidates by humans using
Crowdsourcing, an HC interface was designed. The resulting HC task design presents the
class definition and context information of the ontology class or class combination that
comprises a defect candidate to a human verifier. The human verifier has the option to
either select the type of error present in the shown ontology class or class combination,
or to mark the task as a false positive.

The proposed HC task design was also used in the empirical study, and given the positive
results thereof, can thus be deemed suitable.

RQ-3 Is there an influence of certain factors, such as (a) prior knowledge and qualifica-
tion of the human workers, (b) the type of modeling error under verification, or (c) the
number of human votes aggregated for crowdsourced judgements, on the error detection
rate of the hybrid human-machine workflows for identifying specific types of modeling
errors in ontologies, or the time spent by human verifiers thereby?

To gain insights on the influence of these factors, the empirical study was designed and
executed. The results of the study indicate that all three of these factors have an influence
on the effectiveness of the approach.

Regarding the effect of prior knowledge, a correlation between the ratio of correctly
reported true defects and the objectively assessed qualification level of the human verifiers
in ontology modeling is observed. In the study, participants were assigned one of four

75

6. Conclusion & Future Work

qualification levels based on their answers to a qualification test. Those assigned the
lower-middle out of four qualification levels achieved 71.6 percent of correct answers,
those with the upper-middle level reached 80.8 percent and those with the highest level
correctly judged 84.9 percent of the defect candidates.

Substantial differences in performances are also noted among different error types, with
instances of two error types getting correctly reported every time, respectively almost
every time (97.9 percent). The two other error types were also reported correctly at
reasonable rates at 75 and 85.4 percent. Those instances where defect candidates did not
contain one of the four selected error types showed a worse rate of correct judgements at
67.7 percent, whereas this must at least partially be attributed to weaknesses in the task
design, which are discussed for future work to improve.

The third factor, the number of human votes to aggregate for a final judgement, also shows
a strong influence on the error detection rate of the hybrid human-machine workflows,
with substantial improvements of accuracy when aggregating three or five votes compared
to reporting a single vote as the final result. Very minor improvements can be achieved
by aggregating more than five votes, up to eleven, with the performance metrics slightly
deteriorating if more than eleven votes are aggregated. As the difference in performance
between aggregating three and five votes is also small, the study’s results suggest to
aggregate three votes per task for the best cost-efficiency.

All three of the considered factors are also observed to have an influence on the time spent
by human verifiers, with those human verifiers of higher qualification levels spending
less time to perform the verification tasks and time spent varying by error type. In case
multiple votes are aggregated, the time spent by human verifiers naturally is multiplied
by the number of votes collected for aggregation.

6.3 Limitations & Future Work
This section presents limitations of this thesis’ findings and opportunities for future work.

Evaluation of the Defect Candidate Detection Heuristics

As the evaluation approach of this thesis was concerned with the effectiveness of the
hybrid human-machine workflows for defect identification as a whole and the human
verification part in particular, the four designed heuristics for defect candidate detection
were themselves not evaluated beyond their proof-of-concept usage in the described study,
in which they were used to identify the 20 seeded defects and false positives.

Evaluating the effectiveness of the heuristics-based detection of error candidates requires
a gold standard to compare the actually generated defect candidates against. Thus, one
or more ontologies that contain errors of the types detected by the heuristics and a list
of these errors, checked or generated scientifically, or by experts, is required. Such a data
set including a gold standard does not exist yet and creating one would require much

76

6.3. Limitations & Future Work

effort from ontology modeling experts, as for a significant large-scale evaluation following
this design many of these errors would need to be detected or seeded.

The main contribution of this thesis is a novel approach for detecting ontology modeling
errors using hybrid human-machine workflows. The machine part of the hybrid processes
is based on heuristics, each specifically designed for one error type. While four heuristics
for defect candidate detection are presented in this thesis, these pose as examples only
and should they lack feasibility, effectiveness or efficiency, there would be no implication
to the feasibility, effectiveness and efficiency of the proposed method in general.

The fact that ontology modeling pitfalls can be detected automatically has been shown
with the ontology pitfall scanner, in which the automated detection of 32 out of 40
pitfalls from the accompanying pitfall catalogue was implemented [40, 26]. As described
in Section 2.2, pitfalls can be viewed as equal, or at least similar to bad smells, both
of which are concepts that indicate the heightened risk of an error, and therefore could
both be considered as synonymous with the term defect candidate.

In addition to their effectiveness not being evaluated, the feasibility of the four designed
defect candidate detection steps regarding their performance on large ontologies should
be considered in future work.

Large-scale Empirical Evaluation

In the scope of this thesis only a small empirical study with descriptive statistics, a small
number of participants and a small reference ontology was conducted. The proposed
method was thus not evaluated with a large sample of typical subjects. Following the
positive results of the study presented in this thesis, further research resources can be
invested into a large-scale empirical evaluation of the proposed hybrid human-machine
workflows for ontology verification with minimized risk.

To substantiate the positive results of this thesis’ evaluation, a large-scale evaluation
with real-world ontologies of considerable size with a larger number of ontology engineers,
or alternatively domain experts, should be performed.

Extending the Set of Detected Error Types

The set of error types targeted for detection in the verification workflows is relatively
small at the size of four. Given the abundant existence of literature on common ontology
modeling errors, pitfalls and anti-patterns, as discussed in Section 2.2, defect candidate
detection heuristics for further error types are an opportunity for future research.

Focus on Most Relevant Ontology Parts

The proposed workflows are executed on whole ontologies, not considering if any parts,
resp. modules, of the ontology under verification are more relevant than others to
intended applications. In case of limited resources, either by limited budget or workforce,
or very large ontologies, focusing the verification efforts on the most relevant parts will

77

6. Conclusion & Future Work

result in a larger quality improvement compared to partially executing the workflows on
random parts of the ontology until the resources are exhausted. Such a value-, risk-, or
usage-based approach could thus concentrate resources for the verification of the ontology
parts most relevant to the use cases at hand. While focusing on specific parts of an
ontology could be easily accomplished by restricting the defect candidate detection to
only yield defect candidates from the chosen parts, it must be defined what most relevant
means for each intended application.

If, for example, a question-answering system that uses an ontology is considered, usages
of ontology elements by the executed queries, resp. asked questions, could be kept track
of. The most relevant ontology elements, resp. parts, could in this example either be
those that show the heaviest usage among all queries, or those that are used by specific
types of queries, which e.g. are the most mission-critical or provide the most business
value.

Future research could thus explore such focused approaches in conjunction with the
method proposed in this thesis, to provide approaches for verifying the most relevant
parts of an ontology with as little resources as possible.

Hybrid Human-Machine Workflows beyond Defect Identification

The framework for verification workflows, proposed in Section 3.5, supports workflows
beyond the evaluated two-step DIWs. More complex workflows, e.g. as depicted in
Figure 3.10, can be designed in future work, facilitating the full potential of the designed
concept. One such opportunity would for example be the design of a hybrid human-
machine workflow that goes beyond defect detection and tries to semi-automatically
repair detected defects, applying a Find-Fix-Verify approach as discussed in Section 2.3.1
and Section 3.5.

The proposed DIWs only identify defects semi-automatically using heuristics-based
candidate detection and Crowdsourcing-based verification of candidates, which still leaves
the repair of the detected defects to be done manually by ontology engineers. Thus the
scalability of the defect identification is improved by the proposed method, but not the
repair. Designing a Find-Fix-Verify approach to defect identification with subsequent
repair would bring the scalability improvements to the repair stage of ontology verification
as well.

Usefulness of Laymen Crowds

Due to the fact that none of the study’s participants lacked prior knowledge in ontology
modeling, no conclusions can be drawn about the usefulness of laymen crowds in the
proposed hybrid-human machine ontology verification workflows. Laymen crowds, in
contrast to those experienced in ontology modeling, are more broadly available, e.g. on
public Crowdsourcing platforms. As the proposed HC task design presumably requires at
least some level of understanding of ontology modeling, future work could be concerned
with proposing a task design enabling the usage of laymen crowds. This would in turn

78

6.3. Limitations & Future Work

allow for the execution of hybrid human-machine verification workflows regardless of
the availability of ontology engineers and also imply reduced overall cost, assuming that
laymen are compensated lower amounts than those experienced with ontology modeling.
Furthermore, as laymen workforce is abundantly available on Crowdsourcing platforms,
ontology verification could be parallelized by many laymen working at the same time,
speeding up the verification process.

Finding an HC task design that enables laymen to perform the required tasks thus could
eliminate the dependency to ontology engineers which reduces risk due to their limited
availability, make the verification more cost-effective and also possibly faster.

79

List of Figures

1.1 Design science research process of this thesis 5
1.2 Methods and contributions of this thesis 6

3.1 Correctly modelled class CardinalePizza 26
3.2 Example for missing disjointness axioms 27
3.3 Class CardinalePizza with a confusion between the logical and linguistic

meaning of “and” . 28
3.4 Class CardinalePizza without existential restrictions allowing the trivial

satisfiability of its universal restriction . 29
3.5 Class CardinalePizza without a closure axiom 30
3.6 Conceptual overview of Defect Identification Workflows as an IDEF-0 diagram 31
3.7 Overview on the components of the heuristic for detecting candidates for

missing disjointness axioms as an IDEF-0 diagram 34
3.8 Example HIT from the quiz with one class definition 41
3.9 Example HIT from the quiz with two class definitions 42
3.10 Complex verification workflow for the diagnosis of trivially satisfiable allVal-

uesFrom restrictions . 45
3.11 Prototype Architecture . 46

4.1 Quiz phases overview as an IDEF-0 diagram 54
4.2 Example HIT from the tutorial . 55

5.1 Calculated qualification levels . 61
5.2 Correct judgements by qualification level 62
5.3 Correct judgements by error type . 63
5.4 Confusion matrix of judged error types . 64
5.5 Problematic HIT #1 . 65
5.6 Problematic HIT #2 . 66
5.7 Problematic HIT #3 . 67
5.8 Time spent on tasks per qualification level and error type 67
5.9 Visualization of the metrics after aggregation 69

81

List of Tables

4.1 Classes removed from the pizza ontology . 51
4.2 Classes presented in the quiz tasks . 58

5.1 Performance metrics for different numbers of votes aggregated by majority
voting . 69

5.2 Estimated costs per task . 71

83

List of Algorithms

3.1 Heuristic for detecting candidates of missing disjointness axioms 33

3.2 Heuristic for detecting candidates of confusions between the logical and
linguistic meaning of “and” . 35

3.3 Heuristic for detecting candidates of trivially satisfiable universal restrictions 37

3.4 Heuristic for detecting candidates of missing closure axioms 38

85

Acronyms

API Application Programming Interface. 46

DIW Defect Identification Workflow. xi, 4–6, 25, 30, 31, 40, 43–46, 49, 54, 57, 69, 73–75,
78, 81

EKP Encyclopedic Knowledge Pattern. 16

GWAP Games with a Purpose. 16, 17

HC Human Computation. xi, 2–6, 9, 13, 15, 16, 21–23, 25, 30, 31, 39, 40, 44–47, 49, 50,
54, 56, 57, 59, 62, 73–75, 78, 79

HIT Human Intelligence Task. 21, 41, 42, 46, 53, 55, 56, 59, 64–68, 72, 81

HOV Hybrid Human-Machine Ontology Verification. 25, 30, 49, 54, 57, 63

HTML HyperText Markup Language. 20, 21

MOS Manchester OWL Syntax. 13, 14, 40, 41, 74

MTurk Amazon Mechanical Turk. 21, 46, 52, 53, 55, 59, 62, 74

OWL Web Ontology Language. 9, 13, 27–29, 35, 40, 41, 43, 46, 51, 56, 60, 61

RDF Resource Description Framework. 9, 17, 19

RDFS RDF Schema. 56

REST Representational State Transfer. 46

SKOS Simple Knowledge Organization System. 51, 74

SPARQL SPARQL Protocol and RDF Query Language. 18, 19

URI Uniform Resource Identifier. 20, 21

VOWL Visual Notation for OWL Ontologies. 26, 40

87

Bibliography

[1] Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas, Fabian
Flöck, and Jens Lehmann. Detecting linked data quality issues via crowdsourcing:
A dbpedia study. Semantic web, 9(3):303–335, 2018.

[2] Harith Alani, Christopher Brewster, and Nigel Shadbolt. Ranking ontologies with
AKTiveRank. In International Semantic Web Conference, pages 1–15. Springer,
2006.

[3] Kent Beck, Martin Fowler, and Grandma Beck. Bad smells in code. Refactoring:
Improving the design of existing code, 1(1999):75–88, 1999.

[4] Michael S Bernstein, Greg Little, Robert C Miller, Björn Hartmann, Mark S
Ackerman, David R Karger, David Crowell, and Katrina Panovich. Soylent: a word
processor with a crowd inside. In Proceedings of the 23nd annual ACM symposium
on User interface software and technology, pages 313–322, 2010.

[5] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia-A crystallization point for
the Web of Data. Journal of web semantics, 7(3):154–165, 2009.

[6] Alessandro Bozzon, Marco Brambilla, Stefano Ceri, Matteo Silvestri, and Giuliano
Vesci. Choosing the Right Crowd: Expert Finding in Social Networks. In Proceedings
of the 16th International Conference on Extending Database Technology, EDBT ’13,
page 637–648, New York, NY, USA, 2013. Association for Computing Machinery.

[7] Janez Brank, Marko Grobelnik, and Dunja Mladenic. A survey of ontology evaluation
techniques. In Proceedings of the conference on data mining and data warehouses
(SiKDD 2005), pages 166–170. Citeseer Ljubljana, Slovenia, 2005.

[8] C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks. Data driven ontology
evaluation. In LREC, 2004.

[9] Andrew Burton-Jones, Veda C Storey, Vijayan Sugumaran, and Punit Ahluwalia.
A semiotic metrics suite for assessing the quality of ontologies. Data & Knowledge
Engineering, 55(1):84–102, 2005.

89

[10] Philipp Cimiano. Ontology Learning and Population from Text. Springer US, 2006.

[11] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46, 1960.

[12] Gianluca Demartini. Hybrid human–machine information systems: Challenges and
opportunities. Computer Networks, 90:5–13, 2015.

[13] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. Zen-
Crowd: Leveraging Probabilistic Reasoning and Crowdsourcing Techniques for
Large-Scale Entity Linking. In Proceedings of the 21st International Conference on
World Wide Web, WWW ’12, page 469–478, New York, NY, USA, 2012. Association
for Computing Machinery.

[14] Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-Mauroux. Pick-a-
Crowd: Tell Me What You like, and i’ll Tell You What to Do. In Proceedings of the
22nd International Conference on World Wide Web, WWW ’13, page 367–374, New
York, NY, USA, 2013. Association for Computing Machinery.

[15] Emelie Engström, Margaret-Anne Storey, Per Runeson, Martin Höst, and
Maria Teresa Baldassarre. How software engineering research aligns with design
science: a review. Empirical Software Engineering, 25(4):2630–2660, 2020.

[16] Miriam Fernández, Chwhynny Overbeeke, Marta Sabou, and Enrico Motta. What
makes a good ontology? A case-study in fine-grained knowledge reuse. In Asian
semantic web conference, pages 61–75. Springer, 2009.

[17] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. HermiT:
an OWL 2 reasoner. Journal of Automated Reasoning, 53(3):245–269, 2014.

[18] Asunción Gómez-Pérez. Towards a framework to verify knowledge sharing technology.
Expert Systems with applications, 11(4):519–529, 1996.

[19] Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontological
Engineering: with examples from the areas of Knowledge Management, e-Commerce
and the Semantic Web. Springer Science & Business Media, 2006.

[20] Nicola Guarino and Christopher A Welty. An overview of OntoClean. Handbook on
ontologies, pages 151–171, 2004.

[21] Jörn Hees, Thomas Roth-Berghofer, Ralf Biedert, Benjamin Adrian, and Andreas
Dengel. BetterRelations: using a game to rate linked data triples. In Annual
Conference on Artificial Intelligence, pages 134–138. Springer, 2011.

[22] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS quarterly, pages 75–105, 2004.

90

[23] P Hitzler et al. Anti-patterns in ontology-driven conceptual modeling: the case of
role modeling in OntoUML. Ontology Engineering with Ontology Design Patterns:
Foundations and Applications, 25:161, 2016.

[24] Matthew Horridge, Nick Drummond, John Goodwin, Alan L Rector, Robert Stevens,
and Hai Wang. The Manchester OWL syntax. In OWLed, volume 216, 2006.

[25] Jeff Howe. Crowdsourcing: How the power of the crowd is driving the future of
business. Random House, 2008.

[26] C Maria Keet, Mari Carmen Suárez-Figueroa, and María Poveda-Villalón. Pitfalls in
ontologies and tips to prevent them. In International Joint Conference on Knowledge
Discovery, Knowledge Engineering, and Knowledge Management, pages 115–131.
Springer, 2013.

[27] Magnus Knuth, Johannes Hercher, and Harald Sack. Collaboratively patching linked
data. arXiv preprint arXiv:1204.2715, 2012.

[28] Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens
Lehmann, Roland Cornelissen, and Amrapali Zaveri. Test-driven evaluation of linked
data quality. In Proceedings of the 23rd international conference on World Wide
Web, pages 747–758, 2014.

[29] Jens Lehmann and Lorenz Bühmann. ORE-a tool for repairing and enriching
knowledge bases. In International Semantic Web Conference, pages 177–193. Springer,
2010.

[30] Alexander Maedche and Steffen Staab. Measuring similarity between ontologies. In
International Conference on Knowledge Engineering and Knowledge Management,
pages 251–263. Springer, 2002.

[31] Jonathan M Mortensen, Mark A Musen, and Natalya F Noy. Crowdsourcing the
verification of relationships in biomedical ontologies. In AMIA Annual symposium
proceedings, volume 2013, page 1020. American Medical Informatics Association,
2013.

[32] OWL 2 Web Ontology Language Manchester Syntax (Second Edition). https:
//www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/,
2012. Accessed: 2021-08-27.

[33] Andrea Giovanni Nuzzolese, Valentina Presutti, Aldo Gangemi, Silvio Peroni, and
Paolo Ciancarini. Aemoo: Linked data exploration based on knowledge patterns.
Semantic Web, 8(1):87–112, 2017.

[34] OWL 2 Web Ontology Language Document Overview (Second Edition). https:
//www.w3.org/TR/2012/REC-owl2-overview-20121211/, 2012. Accessed:
2021-08-27.

91

https://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/
https://www.w3.org/TR/2012/NOTE-owl2-manchester-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

[35] OWL 2 Web Ontology Language Structural Specification and Functional-
Style Syntax (Second Edition). https://www.w3.org/TR/2012/
REC-owl2-syntax-20121211/, 2012. Accessed: 2021-08-27.

[36] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web, 8(3):489–508, 2017.

[37] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal of
management information systems, 24(3):45–77, 2007.

[38] Rafael Penaloza and Barış Sertkaya. Understanding the complexity of axiom
pinpointing in lightweight description logics. Artificial Intelligence, 250:80–104,
2017.

[39] Robert Porzel and Rainer Malaka. A task-based approach for ontology evaluation.
In ECAI Workshop on Ontology Learning and Population, Valencia, Spain, pages
1–6. Citeseer, 2004.

[40] María Poveda-Villalón, Asunción Gómez-Pérez, and Mari Carmen Suárez-Figueroa.
Oops!(ontology pitfall scanner!): An on-line tool for ontology evaluation. Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS), 10(2):7–34,
2014.

[41] Alexander J Quinn and Benjamin B Bederson. Human computation: a survey and
taxonomy of a growing field. In Proceedings of the SIGCHI conference on human
factors in computing systems, pages 1403–1412, 2011.

[42] Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch,
Robert Stevens, Hai Wang, and Chris Wroe. OWL pizzas: Practical experience of
teaching OWL-DL: Common errors & common patterns. In International Conference
on Knowledge Engineering and Knowledge Management, pages 63–81. Springer, 2004.

[43] Patrick Rodler, Dietmar Jannach, Konstantin Schekotihin, and Philipp Fleiss. Are
query-based ontology debuggers really helping knowledge engineers? Knowledge-
Based Systems, 179:92–107, 2019.

[44] Boonsita Roengsamut and Kazuhiro Kuwabara. Interactive refinement of linked data:
toward a crowdsourcing approach. In Asian Conference on Intelligent Information
and Database Systems, pages 3–12. Springer, 2015.

[45] Boonsita Roengsamut, Kazuhiro Kuwabara, and Hung-Hsuan Huang. Toward
gamification of knowledge base construction. In 2015 International Symposium on
Innovations in Intelligent SysTems and Applications (INISTA), pages 1–7. IEEE,
2015.

92

https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

[46] Catherine Roussey, Oscar Corcho, and Luis Manuel Vilches-Blázquez. A catalogue
of OWL ontology antipatterns. In Proceedings of the fifth international conference
on Knowledge capture, pages 205–206, 2009.

[47] Marta Sabou, Lora Aroyo, Kalina Bontcheva, Alessandro Bozzon, and Rehab K
Qarout. Semantic Web and Human Computation: The status of an emerging field.
Semantic Web, 9(3):291–302, 2018.

[48] Marta Sabou, Kalina Bontcheva, Arno Scharl, and Michael Föls. Games with a
purpose or mechanised labour? A comparative study. In Proceedings of the 13th
International Conference on Knowledge Management and Knowledge Technologies,
pages 1–8, 2013.

[49] Cristina Sarasua, Elena Simperl, and Natalya F. Noy. CrowdMap: Crowdsourcing
Ontology Alignment with Microtasks. In Philippe Cudré-Mauroux, Jeff Heflin,
Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier
Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist,
editors, The Semantic Web – ISWC 2012, pages 525–541, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[50] Cristina Sarasua, Elena Simperl, Natasha F Noy, Abraham Bernstein, and Jan Marco
Leimeister. Crowdsourcing and the semantic web: A research manifesto. Human
Computation, 2(1), 2015.

[51] S. Shabani and M. Sokhn. Hybrid Machine-Crowd Approach for Fake News Detection.
In 2018 IEEE 4th International Conference on Collaboration and Internet Computing
(CIC), pages 299–306, 2018.

[52] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical owl-dl reasoner. Journal of Web Semantics, 5(2):51–53,
2007.

[53] SKOS Simple Knowledge Organization System Primer. https://www.w3.org/
TR/2009/NOTE-skos-primer-20090818, 2009. Accessed: 2021-08-27.

[54] SKOS Simple Knowledge Organization System Reference. https://www.w3.org/
TR/2009/REC-skos-reference-20090818, 2009. Accessed: 2021-08-27.

[55] Gem Stapleton, Michael Compton, and John Howse. Visualizing OWL 2 using
diagrams. In 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 245–253. IEEE, 2017.

[56] Darijus Strasunskas and Stein L Tomassen. The role of ontology in enhancing
semantic searches: the EvOQS framework and its initial validation. International
journal of Knowledge and Learning, 4(4):398–414, 2008.

[57] Rudi Studer, V.Richard Benjamins, and Dieter Fensel. Knowledge engineering:
Principles and methods. Data & Knowledge Engineering, 25(1):161 – 197, 1998.

93

https://www.w3.org/TR/2009/NOTE-skos-primer-20090818
https://www.w3.org/TR/2009/NOTE-skos-primer-20090818
https://www.w3.org/TR/2009/REC-skos-reference-20090818
https://www.w3.org/TR/2009/REC-skos-reference-20090818

[58] Stefani Stoynova Tsaneva. Human-Centric Ontology Evaluation. Master’s thesis,
TU Wien, 2021.

[59] VOWL: Visual Notation for OWL Ontologies, Specification of Version 2.0. http:
//vowl.visualdataweb.org/v2/, 2014. Accessed: 2021-08-27.

[60] Maja Vukovic and Arjun Natarajan. Operational Excellence in IT Services Using
Enterprise Crowdsourcing. In 2013 IEEE International Conference on Services
Computing, pages 494–501, 2013.

[61] Paul Warren, Paul Mulholland, Trevor Collins, and Enrico Motta. Improving
comprehension of knowledge representation languages: A case study with Description
Logics. International Journal of Human-Computer Studies, 122:145–167, 2019.

[62] Christopher Welty and Nicola Guarino. Supporting ontological analysis of taxonomic
relationships. Data & knowledge engineering, 39(1):51–74, 2001.

[63] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.

[64] Gerhard Wohlgenannt, Marta Sabou, and Florian Hanika. Crowd-based ontology
engineering with the uComp Protégé plugin. Semantic Web, 7(4):379–398, 2016.

[65] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in software engineering. Springer Science &
Business Media, 2012.

[66] Amrapali Zaveri, Dimitris Kontokostas, Mohamed A Sherif, Lorenz Bühmann,
Mohamed Morsey, Sören Auer, and Jens Lehmann. User-driven quality evaluation
of dbpedia. In Proceedings of the 9th International Conference on Semantic Systems,
pages 97–104, 2013.

[67] Markus Zlabinger, Marta Sabou, Sebastian Hofstätter, Mete Sertkan, and Allan
Hanbury. DEXA: Supporting Non-Expert Annotators with Dynamic Examples
from Experts. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 2109–2112, 2020.

94

http://vowl.visualdataweb.org/v2/
http://vowl.visualdataweb.org/v2/

Appendices

Appendix A: Quiz Guidelines Page

95

Appendix B: Self-Assessment Form

96

97

Appendix C: Qualification Test

98

99

Appendix D: Instructions for Tutorial and Quiz

100

101

102

Appendix E: Feedback Questionnaire

103

Appendix F: Results of the Self-Assessment Form

104

105

106

Appendix G: Results of the Feedback Questionnaire

107

108

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Research Questions
	Approach, Methods and Contributions
	Thesis Structure

	Background and Related Work
	Ontology Evaluation and Verification
	Common Errors, Bad Smells and Anti-Patterns in Ontologies
	Human Computation & Crowdsourcing
	Hybrid Human-Machine Processes
	Ontology Debugging

	Hybrid Human-Machine Ontology Verification Method
	Selected Error Types
	Defect Identification Workflows
	Defect Candidate Detection Heuristics
	Human Defect Candidate Verification
	Hybrid Human-Machine Workflows beyond Defect Identification
	Prototype Implementation

	Evaluation Setup
	Evaluation Approach Overview
	Participants
	Data Set
	Seeded Defects
	Execution Overview
	Measured Variables and Metrics

	Evaluation Results
	Result Data
	Influence of Prior Knowledge
	Influence of Error Type
	Problematic HITs
	Time Spent per Task
	Influence of Number of Aggregated Judgements
	Cost Estimation
	Feedback

	Conclusion & Future Work
	Summary
	Conclusion
	Limitations & Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography
	Appendices
	Appendix A: Quiz Guidelines Page
	Appendix B: Self-Assessment Form
	Appendix C: Qualification Test
	Appendix D: Instructions for Tutorial and Quiz
	Appendix E: Feedback Questionnaire
	Appendix F: Results of the Self-Assessment Form
	Appendix G: Results of the Feedback Questionnaire

