
Suchen von IoT Geräten mittels
einer Mobilen Android

Applikation
Erkennen von Geräten in IP-basierten Netzwerken

und über Bluetooth

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Michael Bernd Stöger, BSc
Matrikelnummer 11778261

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Mitwirkung: Dipl.-Ing. Christian Kudera

Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik
Univ.Lektor Dipl.-Ing. Michael Pucher

Wien, 20. Februar 2023
Michael Bernd Stöger Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Scanning for IoT Devices Using a
Mobile Android Application

Detecting Devices in IP-Based Networks and the
Bluetooth Environment

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Michael Bernd Stöger, BSc
Registration Number 11778261

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar Weippl
Assistance: Dipl.-Ing. Christian Kudera

Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik
Univ.Lektor Dipl.-Ing. Michael Pucher

Vienna, 20th February, 2023
Michael Bernd Stöger Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Michael Bernd Stöger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Februar 2023
Michael Bernd Stöger

v

Acknowledgements

Special thanks to Christian Kudera, Georg Merzdovnik and Michael Pucher for their
advice throughout the writing of this thesis and for lending me IoT devices to test my
work on. Also, thank you to my friends and family for supporting me morally for the last
few months. Lastly, I would also like to thank TU Wien, whose resources and services
have been very helpful during research for my work.

vii

Abstract

The number of IoT devices has been growing in the last few years. Many devices that
usually had no connectivity whatsoever, are now internet connected. With this high
number of devices, it is possible to lose track of which devices are connected to a network.
In this work, approaches used to locate and classify devices in the local environment using
an unmodified Android device are evaluated. The developed procedures remove entry
barriers like expensive equipment or complicated setups for scanning, as only an installed
Android application is needed. To increase the number of recognized devices, methods
to create device fingerprints from offline Linux firmware images have been researched
and implemented. This allows devices to be recognized, which have never been in our
hands while developing this application. But not only devices connected to an IP-based
network are of concern for this work, but also Bluetooth devices can be recognized by
the application. Using this feature allows the user to get an overview of surrounding
portable devices, including modern speakers and smartwatches. One major finding of
this work is that most active scanning methods found in the literature can be used on
Android as well. Passive methods are often unsupported or restricted on this mobile
platform. This does not have to negatively affect the results, as detailed information
often has to be probed actively anyway.

ix

Contents

Abstract ix

Contents xi

1 Introduction 1

2 Background 3
2.1 Computer Networks . 3
2.2 Host Detection . 11
2.3 Service Discovery in IP Networks . 13
2.4 Device Scanning . 18
2.5 Bluetooth . 20

3 Related Work 25
3.1 IP-based Detection . 25
3.2 Bluetooth . 28

4 Methodology 31
4.1 Investigating Devices . 31
4.2 Scanning Strategies for IP-Based Networks 46
4.3 Bluetooth Classification . 50
4.4 Android Implementation . 53

5 Results 69
5.1 Found Properties - IP-based Devices 69
5.2 Fingerprints - Bluetooth Devices . 73
5.3 Android Application . 76
5.4 Firmware Image Analysis Tool . 81

6 Discussion 83
6.1 Device Classification and Recognized Devices 83
6.2 Fingerprinting Techniques . 84
6.3 IP-based Scanning Approaches . 86
6.4 Future Work . 87

xi

7 Conclusion 89

List of Figures 91

List of Tables 93

Bibliography 95

CHAPTER 1
Introduction

In the last years, the total number of Internet of Things (IoT) devices increased to
approximately 12.3 billion in 2021 [1]. These devices can be of various types: Cameras,
Wearables, Gaming consoles, and even refrigerators or coffee machines might be internet-
connected today. Considering the enormous amount of devices it can be easy to lose
track of every piece of equipment connected to a network. A system administrator even
might not know all the machines connected, as employees might have brought them from
home for their personal use. Either way, to ensure network security, it is important to
know what devices are running and if they have any security vulnerabilities. Finding
them might be time-consuming for an experienced network administrator and undoable
for the average home user. Network scanning software is designed for professional users
and their output might not provide all the information needed [2]. Device-specific
information like manufacturer, model and firmware version still needs to be collected
manually. Gathering information manually, devices might be missed during the process.
An automated approach can improve network security by automatically detecting and
flagging potentially vulnerable devices. Vulnerable IoT devices might not only affect the
security of the own network, but potentially also harm other internet-connected devices
as well [3]. A low-effort method to supervise a network combined with a low entry barrier
might greatly improve overall network security and can help to preserve privacy and
prevent data loss or other damages to internet-connected devices.

The main contribution of this thesis is to analyze several approaches for detecting
IoT devices in the nearby environment and applying them to an Android application.
Therefore some techniques need adaption to work within the restricted Android ecosystem.
The focus of this research lies on IP-based detection approaches, as the Bluetooth
capabilities of Android and the built-in receivers are rather limited. To present the
findings of this work an Android application has been written, that is capable of using
the described approaches. It is built using the Android 11 API, as it was the most recent
version of Android when research has been started for this work.

1

1. Introduction

The remaining of this thesis is structured as follows: In chapter 2, the necessary back-
ground, along with terms and technologies, will be described. Chapter 3 contains related
research, including the state of the art. Scientific work, essential for the methods used
in my work, is presented there. The methods found during the literature review are
put to use in chapter 4, where it is explained how the results of this work are achieved.
The actual results can be found in chapter 5, where they will be discussed and outlined.
Afterwards, these results will be finally discussed in chapter 6, including a look at possible
future work and current limitations. At the end, in chapter 7, the whole work will be
summarized and concluded.

2

CHAPTER 2
Background

This chapter is about the concepts and technologies used in this work. Also, the theoretical
background that is needed to understand the content of this thesis, will be explained.

2.1 Computer Networks
Computer networks are designed to provide connectivity among a set of computers [4].
A major part of this thesis is concerned with IP networks. Here it will be explained how
networking works and how scanning tools get their information. This thesis only uses
IPv4, therefore only topics regarding IPv4 will be discussed here.

For this work, we were mostly concerned about how network protocols work and how
technologies work together to provide useful functionality. Designing and building a
network is not of interest for this thesis.

2.1.1 OSI Network Layer Model

The OSI layer model categorizes networking functionality into seven layers [5]. OSI
stands for "Open Systems Interconnection". The layer model defines how its seven layers
interoperate to transmit data from one person to another. A visual representation of this
layer model is shown in figure 2.1. Following the purpose of the layers will be explained
including the relevance for this thesis.

Layer 1 The first layer of the OSI model is called the physical layer [7]. It represents
the physical medium that the data is going through. This can be e.g. copper, fiber, or
wireless technology.

3

2. Background

Figure 2.1: OSI 7 Layer Model [6].

Layer 2 On the second level, the data link layer is used to transfer data between two
neighboring network entities [7]. Here it is checked that no transmission errors have
occurred in the layer below [5]. Also, the MAC address, described in more detail in
section 2.1.2, is introduced here and used to address the direct neighbors in the network.

Layer 3 Routing of network packets is introduced in the third layer, the so-called
network layer [7]. Using layer three technologies it is possible, that a network packet
traverses multiple networks before reaching its destination. For routing, the IP address,
as explained in section 2.1.3, is being used.

Layer 4 The transport layer is responsible for delivering complete messages from one
endpoint to the other [5]. Too long messages will be split up into multiple chunks -
called segments - and reassembled on the other side of the connection [6]. Two important
protocols for this thesis reside in this layer: TCP and UDP [8]. Details about these
protocols follow in section 2.1.4.

Layer 5 As the name suggests, the session layer is being used to handle sessions [5][6].
This does not only include establishing, maintaining, and terminating them, but also
creating checkpoints for e.g. file transfers. That way it is not necessary to retransfer the
whole data when the session gets interrupted during transfer.

Layer 6 The presentation or translation layer transforms data from and to the applica-
tion layer (layer 7) [5]. These transformations can be translations (e.g. between different

4

2.1. Computer Networks

encodings), en-/decryption, or compression.

Layer 7 On top of the OSI layer model, the application layer can be found [5]. It is
responsible for collecting data from the user and presenting received information to the
user [6].

2.1.2 MAC Addresses
A Media Access Control (MAC) address is a 48-bit long value [9]. As mentioned before
it is used on layer two of the OSI model. For human readability, it is usually denoted as
a hexadecimal value like "aa-bb-cc-dd-ee-ff". The structure can be seen in figure 2.2.

Figure 2.2: MAC Structure [10].

Every network interface card in a computer has a globally unique MAC address [10]. It
is set permanently during the manufacturing process of the network interface card (NIC)
and can therefore also be called the physical address. Every NIC has its own physical
address, which means a computer can have multiple MAC addresses [11]. Nevertheless,
this address can be overridden by software. As denoted in figure 2.2, the type of the
MAC address can be seen in its first octet.

For this thesis, we mostly care about globally unique unicast MAC addresses. Looking at
the "organizational unique identifier" (OUI) part of the MAC address, it can be deduced
from which vendor the device in question was built. A list of OUIs and the affiliated
vendors is publicly available at [12]. Following, a few examples are given from this list:

• 60-8B-0E: Apple

5

2. Background

• 6C-5E-3B: Cisco

• 70-DA-17: Austrian Audio

It is possible that one organization has been assigned multiple OUIs. E.g. "80-C5-E6"
and "48-86-E8" are (among others) assigned to Microsoft [12].

2.1.3 IP Addresses and Subnets
IP addresses are another important aspect of modern computer networks. As mentioned
before, only IPv4 will be covered in detail for this thesis, as IPv6 is generally not used here.

Internet Protocol (IP) addresses are 32-bit values, which are unique within an IP net-
work [13]. For easier readability, the address is usually split into four parts - four times
eight bit - each ranging from 0 to 255. A valid IP address would be e.g. 192.168.0.1.
That means theoretically 232 possible valid addresses, from 0.0.0.0 to 255.255.255.255 [14].
Practically, this number of possible network devices is too big for any network. Therefore,
a mechanism called subnetting is being used, to split up this huge address space into
smaller subnets.

An IP address can be split into two parts, the network id and the host id [14]. Using
the subnet mask, it can be determined how many bits belong to the host id and the
network id respectively [13]. As the IP address, also the subnet mask is 32-bit long. It
has two common denotations. The first one is similar to the IP address, with four values
between 0 and 255. An example of an IP address with a subnet mask, translated to their
respective bit patterns, can be seen in figure 2.1.

1 11000000.10101000.01111011.10000100 − IP address
(1 9 2 . 1 6 8 . 1 2 3 . 1 3 2)

2 11111111.11111111.11111111.00000000 − Subnet mask (2 5 5 . 2 5 5 . 2 5 5 . 0)

Listing 2.1: Sample IP Address and Subnet Mask [13].

The subnet mask masks the bits from the original address that belong to the network id.
All remaining bits belong to the host id. The result can be seen in listing 2.2.

1 11000000.10101000.01111011.00000000 −
2 Network address (1 9 2 . 1 6 8 . 1 2 3 . 0)
3 00000000.00000000.00000000.10000100 −
4 Host address (0 0 0 . 0 0 0 . 0 0 0 . 1 3 2)

Listing 2.2: Result of masking with subnet mask [13].

Another way of denoting a subnet is the CIDR (Classless Inter-Domain Routing) nota-
tion [15]. In this notation, the length of the network id gets specified by the number of

6

2.1. Computer Networks

bits written after an IP address, e.g. 192.168.123.132/24 for the example above.

The number of possible hosts in a (sub-)network is determined by the 2n − 2, with n
being the number of bits used for the host id [13]. Not all possible addresses can be used
for hosts because the first address (host id all zeros) is reserved for the network id. The
last address (host id all ones) is used for broadcast.

Private and Reserved Addresses

Before 1993 IP addresses were assigned to classes, as can be seen in figure 2.3 [16]. These
classes are not technically relevant anymore, but useful for understanding which IP
addresses can be assigned to hosts and which not. Following the address ranges of the
different classes [17]:

• Class A: 0.0.0.0 -> 127.255.255.255

• Class B: 128.0.0.0 -> 191.255.255.255

• Class C: 192.0.0.0 -> 223.255.255.255

• Class D: 224.0.0.0 -> 239.255.255.255

• Class E: 240.0.0.0 -> 255.255.255.255

With every class, the remaining address space is cut in half.

Figure 2.3: Network Classes [18].

Not all IP addresses can be assigned to internet-connected devices [19]. Class D and E
addresses are reserved for special purposes [18]. Also the remaining address space can
not be freely assigned. Especially noteworthy are the loopback addresses [20] (127.0.0.0
-> 127.255.255.255) and the private address ranges [19]:

7

2. Background

• 10.0.0.0 -> 10.255.255.255

• 172.16.0.0 -> 172.31.255.255

• 192.168.0.0 -> 192.168.255.255

Private addresses are not routed and will not be assigned by IANA [19]. That means they
are not globally unique, but only valid in the local network. During our research for this
thesis, the above-mentioned private address spaces are the ones we usually encountered
during our testing.

2.1.4 TCP and UDP
Both protocols, TCP and UDP, are located on OSI layer four and provide end-to-end
transmission of data [8]. There are other protocols that work on layer four, but these
two are the most important ones for this thesis.

TCP

The Transmission Control Protocol (TCP) is used to transfer data reliably and in order
between two endpoints [21]. That means the sender gets a confirmation, that the data he
sent, has been received on the other side. TCP also automatically handles retransmissions
on errors and makes sure that fragmented data gets pieced together in the correct order
on the receiver side. Additionally TCP is a connection-oriented protocol. That means
that a connection has to be established before data can be sent.

In order to control TCP’s features and transfer needed metadata the TCP protocol header
is used [21]. How the TCP header is structured can be seen in figure 2.4. Following, an
explanation of the important fields for this thesis.

Figure 2.4: TCP Header [22].

Source/Destination Port To handle multiple connections on the same host, ports
have been introduced [21]. These allow multiple processes to simultaneously transmit
data across a network. On both sides, a TCP connection has an assigned port number.
This number is 16 bits long and therefore its range is 0 - 65536.

8

2.1. Computer Networks

Flags/Control Bits Flags are used to indicate and control connection states or transfer
additional information [23]. Following, a selection of possible flags and their meaning:

• SYN: Is set on the first packets to initialize a connection. Connection initialization
will be explained below.

• ACK: An acknowledgment flag is sent to indicate to the sender of a packet, that
the data has been successfully received.

• FIN: Transmission of data is finished. No more data will be sent.

• RST: Connection should be reset. This is usually sent if a packet with unexpected
data has been received.

As stated before, when using TCP a connection has to be established prior to data
transfer. To do so, the three-way-handshake, as seen in figure 2.5, is used.

Figure 2.5: TCP Three-Way-Handshake [23].

To open a connection, the initiating side sends a TCP message, with the SYN flag enabled,
to the desired communication partner [21]. When a service is listening on the target host,
it will reply with a packet with the SYN and ACK flags set. It is possible to split this
packet into two (one with ACK and one with SYN), but usually, this is done in one step.
The initiator responds with an ACK message one more time. After this procedure, the
connection has been successfully established. If the port is closed on the receiver system,
it will respond with an RST instead of a SYN message.

When a communication partner has sent all data and the connection is no longer needed,
the closing of the connection can be requested [21]. To do so a packet with the FIN
option is sent. This will be acknowledged (ACK) by the communication partner. The
connection will remain in a half-closed state until the second partner also sends the
FIN message to close the channel. After the final acknowledgment, the connection will
be deleted on both sides. As can be seen in figure 2.6, the procedure is similar to the
initiation sequence.

9

2. Background

Figure 2.6: TCP Finishing Connection [24].

UDP

TCP provides a lot of features for reliable communication, but these are not always
needed. When speed is prioritized over reliability for data transfer the User Datagram
Protocol (UDP) can be the better choice [25]. Also, the header, as seen in figure 2.7, is
much simpler than TCP’s.

Figure 2.7: UDP Header [22].

Source and Destination ports have basically the same meaning as for TCP, but the source
port is optional here [25]. If no answer is expected, this port can be set to zero. Also,
the checksum can be set to zero, if the sender decides not to calculate it.

Unlike TCP no connection has to be established for UDP data transfer [25]. Data is sent
to the target with no confirmation of retrieval or error correctness. Since answers are not
always sent, it is difficult to know whether a service is listening to a specific port or not.
This problem will be discussed in greater detail in section 2.4.1.

2.1.5 ICMP
The Internet Control Message Protocol (ICMP) is a protocol used to transport error
messages back to the source of a datagram [26]. It is an important part of every IP

10

2.2. Host Detection

module and therefore mandatory to implement. Nevertheless, it does not make IP reliable
as there is no guarantee that an error message is sent.

ICMP messages are sent using IP datagrams, the content is stored directly after the IP
header [26]. The first byte determines the ICMP type. Subsequent information needs to
be interpreted according to this value. Following, a selection of ICMP messages that are
important for this thesis.

Echo and Echo Reply When an echo message is received, the echo reply message is
constructed by swapping the source and destination address [26]. The type field is set to
8 for echo and to 0 for echo reply. Any received data has to be sent back to the source.
Informally this mechanism is often called ping and is used to check the reachability of a
remote device. Ping is also the name of a standard tool in many operating systems, that
sends ICMP echo messages.

Destination Unreachable The "Destination Unreachable" message is indicated by the
value 3 in the type field [26]. It can be caused by various reasons, and every reason has
its own code. This code is stored in the byte directly next to the type value. Following
possible error codes and their meaning [26]:

• 0 - net unreachable: Sent by the gateway to indicate that the target network can
not be reached.

• 1 - host unreachable: Sent by the target network gateway to indicate that the target
host can not be reached.

• 2 - protocol unreachable: Sent by the target host to indicate that it does not speak
the desired protocol.

• 3 - port unreachable: Sent by the target host to indicate that there is no service
listening on the specified port.

• 4 - fragmentation needed: Sent by a gateway to indicate that the packet is too big
for its MTU, but the do not fragment flag is set.

As stated before there is no guarantee that ICMP messages will be sent when an error
occurs [27]. It is possible that the host or gateway in question does not generate these
messages. Also, firewalls in the network path can block ICMP messages from reaching
their destination.

2.2 Host Detection
Before any classification can occur, hosts have to be found first. For this thesis, the
detection techniques need to work on the local network, without any firewall intercepting

11

2. Background

packets. This does not implicitly limit their usefulness across the internet, Nevertheless,
internet scanning was no concern for this work. The methods presented below have been
already available in the program Nmap [28] at the time of writing.

Before any hosts can be probed, the search space has to be defined. In this thesis, the
local network is scanned. How to determine the search space in the local network can be
read in section 2.1.3.

ICMP Ping Scan When sending an ICMP echo message to a remote host, an ICMP
echo reply message is expected in return. Detail about ICMP echo messages can be found
in section 2.1.5. Probing remote hosts this way is not always successful [29]. Despite this
behavior not being in line with internet standards, ping requests are often ignored or
blocked across the internet. Nevertheless, in the local network, it can be expected that
all active hosts are answering correctly to those requests.

Figure 2.8: Pinging host in local network on Linux.

A ping scan can be conducted using the system tool ping, which is included by default
on Linux, Windows, and macOS. An example of the output of this tool can be found in
figure 2.8.

TCP SYN Ping Another way to probe for an alive host, is to try to establish a TCP
connection to it [29]. As can be seen in section 2.1.4, a TCP connection is started by
sending a packet with the SYN flag set. If the target port is closed, the host under
investigation will send a packet with the RST flag set to indicate an error. Both, a
normal ACK/SYN and RST answer will reveal an alive host.

After an ACK/SYN answer, Nmap will send an RST packet, to close the connection
and not waste any resources on the target machine [29]. If the TCP handshake would
be completed by sending another ACK packet, the connection could only be deleted by
going through the entire connection termination sequence. This would take more time
and consume more networking resources.

TCP ACK Ping Instead of trying to initiate a connection, directly an ACK packet
is sent to the host under investigation [29]. If the other host is alive, it should respond
with an RST packet, as the previously sent ACK packet was unexpected in this situation.
This method has multiple advantages over the SYN scan:

12

2.3. Service Discovery in IP Networks

• No connection is established, as an ACK packet is not the correct way to initialize
a connection.

• Scanning is quicker, as only one packet has to be sent.

• Some stateless firewalls can be circumvented.

Modern stateful firewalls will block this scan, as an ACK packet without an established
connection is invalid [29]. But in the local network, without any firewall between the
hosts, this method can provide good results.

UDP Ping As explained in section 2.1.4, UDP has no connection concept. Still,
sending a message to a closed port should result in an ICMP destination unreachable
message [29], as also mentioned in 2.1.5. As the ICMP message is sent from the host
under investigation, the host in question reveals its existence in the process.

It is essential for this technique to work to hit a UDP port that is closed, otherwise, the
higher level protocol in use needs to be known, or no message will be sent in return [29].
As with the methods described before, firewalls or hosts that do not comply with the
RFC standards might lead to incomplete results.

2.3 Service Discovery in IP Networks
For this thesis, finding live hosts is not enough. By using offered services, more information
about the previously found hosts should be acquired. For user convenience, modern
home networks get automatically configured using DHCP [30]. That means assigned
IP addresses are usually unknown to a network user. Still, some devices might provide
services interesting for a particular user. To automatically find these services, service
discovery protocols are used. In this section, the two service discovery protocols used in
this thesis will be described.

2.3.1 SSDP
The Simple Service Discovery Protocol (SSDP) is part of the UPnP specification [31]. It
is used to advertise and discover services in the current network. There are many other
functions and features covered by the UPnP specification, but this section is limited to
SSDP and fetching the respective service definitions.

General Architecture

In figure 2.9, the different ways of discovering a service using SSDP can be seen. All
UPnP devices listen (per default) on UDP port 1900 for multicast messages [31]. Clients
are called control points, while servers are root devices.

Root devices use UDP multicast to advertise their services in intervals [31]. Control
points can listen to these messages and compose a list of available services and devices. If

13

2. Background

Figure 2.9: SSDP Service Discovery Architecture [31].

a control point does not want to wait, it can issue a search request to the same multicast
port, as the advertisements are sent to. The search can be narrowed by adding search
criteria. If a root device serves a matching service, it will send back a message using
unicast directly to the searching control point.

Active Query for Services

Especially interesting for this work is the possibility to query devices and services on
demand. In figure 2.10, the process from searching for a service to interacting with it can
be seen. Here the process of finding active UPnP servers in the network will be explained.

1 M−SEARCH ∗ HTTP/1.1\ r \n
2 HOST: 2 3 9 . 2 5 5 . 2 5 5 . 2 5 0 : 1 9 0 0 \ r \n
3 ST : upnp : r oo tdev i c e \ r \n
4 MX:2\ r \n
5 MAN: " ssdp : d i s c o v e r "\ r \n
6 \ r \n

Listing 2.3: MSEARCH Message [32].

First, an M-SEARCH message is sent by the control point [32]. Since the servers are not
known yet, this message is sent via UDP to the broadcast address 239.255.255.250 on

14

2.3. Service Discovery in IP Networks

Figure 2.10: Full UPnP Search [32].

port 1900. This example is about finding root devices. The full search message can be
seen in listing 2.3. The protocol in use is based on HTTP, but not fully compliant with
the standard and furthermore transmitted over UDP [31].

Devices which receive the search message and match the search criteria should send a
response directly to the host [31]. An arbitrary number of hosts can respond. An example
from the response of a home router can be seen in listing 2.4.

1 HTTP/1 .1 200 OK
2 LOCATION: http : / / 1 0 . 0 . 0 . 1 : 4 9 0 0 0 / fboxdesc . xml
3 SERVER: FRITZ ! Box 3490 UPnP/1 .0 AVM FRITZ ! Box 3490 140 . 07 . 30
4 CACHE−CONTROL: max−age=1800
5 EXT:
6 ST : upnp : r oo tdev i c e
7 USN: uuid : . . . : : upnp : r oo tdev i c e

Listing 2.4: SSDP Response.

Among all the information transferred by the server, the location header is of the most
interest for this work. It contains an URL to an extended description of the device. As it
is a normal HTTP URL, the description can be downloaded with any HTTP client. A
(shortened) description can be found in listing 2.5, taken from an AVM FRITZ!Box 3490
router.

1 <root>

15

2. Background

2 . . .
3 <device>
4 <deviceType>urn : schemas−upnp−org : dev i c e : f r i t z b o x :1</ deviceType>
5 <friendlyName>FRITZ ! Box 3490</ friendlyName>
6 <manufacturer>AVM Ber l in </manufacturer>
7 <manufacturerURL>http ://www. avm . de</manufacturerURL>
8 <modelDescr ipt ion>FRITZ ! Box 3490</ modelDescr ipt ion>
9 <modelName>FRITZ ! Box 3490</modelName>

10 <modelNumber>avme</modelNumber>
11 <modelURL>http ://www. avm . de</modelURL>
12 <UDN>uuid : . . . < /UDN>
13 . . .
14 </device>
15 </root>

Listing 2.5: Device Description.

Only the first four operations from figure 2.10 have been explained in this sample.
Interacting with via UPnP advertised services is out of scope for this thesis and therefore
will not be further explained in this chapter.

Interesting Description Fields

As can be seen in listing 2.5, a lot of identifying information can be transmitted via
the XML description files. Following selected fields and their meaning from the UPnP
specification documents [31]:

• friendlyName: Short name to display to the user. (Required)

• modelDescription: Long description of the device, for displaying to the user.
(Recommended)

• manufacturer: The manufacturer’s name. (Required)

• modelName: The model name. (Required)

• modelNumber: The model number. (Recommended)

• manufacturerURL: URL to the manufacturer’s webpage. (Allowed)

• modelURL: URL to the model’s webpage. (Allowed)

When comparing the specifications [31] to the values present in e.g. listing 2.5, it can be
seen that not all vendors fill in these fields validly and completely. Therefore information
received from these descriptions must be handled with caution.

16

2.3. Service Discovery in IP Networks

2.3.2 DNS-SD
DNS - Service Discovery is another way of finding services in a network [33]. It uses the
DNS infrastructure to search for so-called SRV entries [34]. A search request e.g. might
look like this [34]:

1 _ldap . _tcp . example . com

It can be seen that this search is composed of a service name, a protocol, and the
search domain. The complete SRV DNS entry stored by the DNS server contains more
information to fully locate a service and for load balancing [34]:

1 _Service . _Proto .Name TTL Class SRV P r i o r i t y Weight Port Target

Following an explanation of the stored fields derived from the RFC document [34]:

• _Service: Name of the service. Always starts with "_".

• _Proto: Used protocol for this service. As with the service name it always starts
with "_". There are only two possible options "TCP" for TCP-based protocols and
"UDP" for everything else (even if UDP is not in use).

• TTL and Cache: Same meaning, as for normal DNS entries. Not of special interest
for this work.

• Priority: A 16-bit unsigned number, indicating the priority of the hosts when
multiple similar entries are specified. Lower numbers have higher priorities.

• Weight: Also a 16-bit unsigned number, used for load balancing. If the priority
of two entries is the same, the one with the higher weight should be chosen more
often, relative to its value.

• Port: Same as in section 2.1.4, this value indicates the port number for the transport
protocol.

• Target: Host name of the server which provides the service in question.

The mechanism described in this section enables network devices to find services in
specific networks, only knowing their name and transport protocol. This can reduce the
need for port scanning to find services. Also, there is no guessing which service is running
on a specific host and port, as it is already defined by the given service name.

mDNS

In the local network, a mechanism called multicast DNS (mDNS) can be used instead of
classic DNS servers. It is a variant of DNS that only works locally and does not need
any specified servers [35]. The top-level domain ".local" is reserved for local use, can not

17

2. Background

be assigned globally, and has to be always resolved using mDNS. Other names can be
resolved using mDNS when no conventional server is available.

To use multicast DNS, DNS requests have to be sent to the multicast address 224.0.0.251,
using UDP with the port number 5353 [35]. Answers are usually also sent using multicast.
With little modifications, already existing DNS resolver software can be used for multicast
DNS. Nevertheless, the standard [35] describes some extra features for fully compatible
clients. These extra features will not be explained here, as they are not important for
this work.

2.4 Device Scanning
Finding ways to communicate with remote network devices is essential for this thesis. In
this section it will be explained, how network communication might be used to gather
more information about the devices connected to the local network.

2.4.1 Port Scans
In section 2.3, finding services using automatic service discovery mechanisms has been
covered. This is not always possible, as a specific device needs to support the mentioned
protocols. This section is about scanning the TCP and UDP port range on network
devices, without any helping service discovery protocol.

Many techniques presented here have similarities to those in section 2.2. Most differences
can be found in the type of responses that are expected and how they are interpreted.
As before, these techniques are already implemented in the program Nmap [36].

TCP SYN Scan As outlined in section 2.1.4, the first part of the connection initializa-
tion sequence is a TCP packet with the SYN flag set. Here the destination port matters,
as it has to be set to the port under investigation. Depending on the returned answer
multiple conclusions are possible [36]:

• ACK/SYN Packet: The port is open and waiting for connections.

• RST Packet: No service is listening to this port, it is closed.

• No response or ICMP unreachable: A firewall might be dropping the packets. The
Port has to be considered closed, as it is not possible to communicate with any
service there.

No matter which answer is received, there will be no packet sent to complete the handshake,
therefore no connection is established [37]. Since no full connection is established, there
should be no logs on scanned servers about many incoming connections. Nevertheless,
circumventing firewalls and manipulating logs are of no interest for this thesis.

18

2.4. Device Scanning

TCP Connect Scan This scanning methodology is similar to the previously described
SYN scan, but instead of using RAW sockets to send SYN packets, the system API is
used to connect to the target [36]. This makes scanning slower, as a full connection is
established and the system API also needs to be used to get information on the connection
status [38]. For an average system, the difference in traffic volume can often be neglected,
as only open ports cause additional traffic. Also, this approach has a major advantage:
No system privileges are needed for performing this scan.

UDP Scan UDP scanning significantly differs from TCP scanning [27]. No connection
is being established, as UDP is a connectionless protocol (refer to section 2.1.4). That
means, to get a response the used protocol has to be known by the scanning software.
Nmap does have scanning samples for some ports built in. Otherwise, the sent packet
will be empty. This leads to mostly different outcomes while scanning [27]:

• Answer received: The port is open. This is only possible when the used protocol is
known.

• No answer: The port might be open, but since the protocol is not known there
is no way to talk to the underlying service. This outcome is also possible when a
firewall drops the packets.

• ICMP port unreachable (code 3): As described in section 2.1.5, this message is sent
when the port is closed.

• Other ICMP messages: This port is blocked by a firewall.

Therefore, the information gained from scanning UDP ports is rather limited. This is
especially true, when the protocol is unknown that should be running on the port under
investigation, as this makes it impossible to distinguish between an open port and a
blocked port.

2.4.2 Banner Grabbing
After services have been found, some of them can be used to get information about the
remote system. Banner grabbing simply means receiving the banner data from running
services [39]. This can be done without any login credentials.

Banner grabbing is achieved by connecting to the desired service using TCP and waiting
for any data to arrive [39]. After a specific amount of time, the connection can be closed
and the banner should then already have been received. Following a few examples of
services sending banners are provided - together with procedures on how to capture them:

Telnet/SSH For Telnet and SSH, a newly established connection is enough to receive
the banner. Here an example of an SSH banner grabbed using Netcat on Linux:

19

2. Background

1 # nc scanme . nmap . org 22
2 SSH−2.0−OpenSSH_6 . 6 . 1 p1 Ubuntu−2ubuntu2 .13

Listing 2.6: Grabbing SSH banner with netcat.

It can be seen that many properties of the remote system are revealed, including the
OpenSSH version and operating system. This information could potentially be used
by an attacker, to narrow down possible exploits. In this thesis, it is used to create
fingerprints of IoT devices.

Using Telnet, the banner might look different, as usually the content of the "/etc/issue"
file is sent [40].

HTTP HTTP is a bit more complicated, as it does not automatically send data to
connecting hosts. Here any data and a newline have to be sent to retrieve information:

1 # nc scanme . nmap . org 80
2 A
3 HTTP/1 .1 400 Bad Request
4 Date : Fri , 02 Dec 2022 18 : 30 : 06 GMT
5 Server : Apache / 2 . 4 . 7 (Ubuntu)
6 Content−Length : 306
7 Connection : c l o s e
8 Content−Type : t ex t /html ; cha r s e t=i so −8859−1

Listing 2.7: Grabbing HTTP banner with netcat.

Like before the current software version (in this case Apache) and the operating system
are revealed. Nevertheless, this information can not be taken for granted, as it is possible
to spoof/change these values.

Other services might also send banners upon new connections. Gained information will
vary from service to service and is also dependent on the actual implementation installed
on the remote device.

2.5 Bluetooth
Even though IP-based networks are the main focus of this thesis, also Bluetooth devices
are of concern for us. Both, Bluetooth Classic and Bluetooth Low Energy (LE) will be
covered here.

2.5.1 Bluetooth Classic
Since 1999 Bluetooth Classic has been adopted by many vendors in a various range of
devices [41]. Up until now, many revisions have been published.

20

2.5. Bluetooth

Device Detection

Similar to IP-based networks, devices have to be found first, before they can be investi-
gated. But because of Bluetooth’s security architecture, it should - per definition - only
be possible to find devices that are in discoverable mode. Devices and software, that are
capable of sniffing Bluetooth classic connections do exist [42][43], but these procedures
are not usable with standard Bluetooth adapters as found in Android devices. In this
section, it will be explained why it is not possible to listen to foreign communications
with a standard Bluetooth adapter.

Bluetooth uses, as other communication standards as well, the 2.4GHz band [44]. But
not only a single frequency is used. Bluetooth communication hops over 79 channels.
The current frequency is determined by the master device’s MAC address and its clock
value. The clock is a 28-bit counter and wraps approximately every 23 hours. The
frequency is changed 1600 times per second, making it difficult to listen to longer parts
of communication. A visual representation of this mechanism can be seen in figure 2.11.

Figure 2.11: Frequency Hopping over Time [44].

Without knowing the master device’s clock it is impossible to know the hopping pattern
and therefore impossible to eavesdrop on a whole communication [44]. Additionally,
Bluetooth packets are not transmitted in clear text, introducing additional barriers for
listening to foreign communications. Standard Bluetooth adapters are not capable of
monitoring all channels at once. To the best of our knowledge, at the time of writing, no
attack is known enabling standard Bluetooth adapters to listen to foreign communications
around.

21

2. Background

Service Discovery

Bluetooth Classic uses the Service Discovery Protocol (SDP), to discover remote ser-
vices [45]. For this thesis, the built-in Android Bluetooth and therefore SDP implemen-
tation is used. This section is about the data structures needed to exchange service
descriptions between Bluetooth devices.
The SDP server holds a so-called service record for each registered service [45]. These can
be requested and searched by a client. Each service record contains service attributes.
One of these service attributes is the service record handle, a 32-bit number unique per
SDP server. A visual representation of how the data is organized can be seen in figure
2.12.

Figure 2.12: Stored Data for each Service [45].

There are many possible service attributes [45]. But especially interesting for this thesis
is the so called "ServiceClassIDList". As the name suggests, it contains a list of service
class IDs. These IDs are 16-bit UUIDs and indicate service types, that the advertised
service implements.

Comparing UUIDs UUIDs should be unique across all space and time [45]. Usually,
it is a 128-bit value, but as explained before there are shorter variants like the 16-bit
above. Two UUIDs of the same length can be compared directly, otherwise, the shorter
one has to be extended. From 16 to 32 bits the shorter value has to be zero-extended, to
match the bit number. For conversions to 128 bit the formula is [45]:

1 128 _bit_value = 16 _bit_value ∗ 296 + Bluetooth_Base_UUID
2 128 _bit_value = 32 _bit_value ∗ 296 + Bluetooth_Base_UUID
3
4 Bluetooth_Base_UUID = 00000000−0000−1000−8000−00805F9B34FB

2.5.2 Bluetooth Low Energy
Bluetooth Low Energy (LE) is designed to consume far less power than its classic
counterpart [41]. Since the specification has been released in 2010, Bluetooth LE has

22

2.5. Bluetooth

been used in many devices including sports and medical equipment and automation
systems.

Detecting devices for Bluetooth LE is less problematic than for Bluetooth Classic, as
many devices always send their advertisement packages. Android provides API calls for
finding nearby BLE devices and notifies the application when a device is found [46].

Generic Attribute Profile

The attribute protocol has been defined to store and read small amounts of data (little
number of octets) [45]. Each attribute is identified by an UUID. These can be self-
assigned or officially reserved as explained below in section 2.5.2. The protocol defines a
client-server architecture, while a device might hold both roles at the same time. On the
server-side attributes are stored, which can be read and written by a client.

GATT (Generic Attribute Profile) uses the attribute protocol underneath and introduces
services and characteristics [47]. Services can contain a collection of characteristics, while
those characteristics contain a single value and an arbitrary number of descriptors for the
stored value [45]. Descriptors add additional information, such that a user can understand
and use the stored value.

Assigned Numbers

As stated before, certain services and characteristics own officially assigned UUIDs [45].
This makes them recognizable across many different devices and allows for standard-
ized interfaces. These assigned numbers can be searched for on the official Bluetooth
document [48]. All assigned UUIDs are of 16-bit length. If a longer version is needed,
conversion can be done as explained above.

For this thesis, especially the following UUIDs are of interest:

• 0x180A: Device Information Service

• 0x2A29: Manufacturer Name String

• 0x2A24: Model Number String

• 0x2A28: Software Revision String

The first UUID identifies a service itself, while the others point to characteristics located
within this service.

23

CHAPTER 3
Related Work

This thesis uses and relies on concepts and ideas from other people’s research. Also, there
are many papers, that are related to this work, but their methodology is out of scope for
our work. In this chapter the related research and state of the art will be presented and
explained how it contributes to this work.

3.1 IP-based Detection
Classifying IoT devices in the local network is a nontrivial task, as they most of the time
do not simply state their type over some service. This thesis is not the first one to deal
with IoT classification. In this section, related work concerning IoT classification and
remote device detection will be presented.

3.1.1 Active Discovery
Android devices are usually highly mobile and have limited runtime due to their battery
capacity. Therefore active scanning methods are most suited for them, as they can be
launched on demand and are usually finished quickly.

In the current literature, there are many approaches for classifying network devices. One
has been presented by Sivanathan et al. [49]. In their work devices are classified based
only on their open and closed TCP ports. Before any devices can be recognized by this
method, they need to be scanned first. The whole TCP port range has to be scanned per
device, resulting in a hierarchical structure of open and closed ports for the whole set of
devices. When trying to classify a network device, this hierarchical structure is used to
determine the device type using a much smaller number of port probes. In their testing,
Sivanathan et al. have been able to distinguish 19 devices in their proposed way.

Kumar et al. [50] have to deal with similar problems in their work compared to this
thesis. A major part of their paper is dedicated to ways of detecting devices in the local

25

3. Related Work

network. For finding devices, basically mDNS, UPnP and ICMP Ping are used. These
technologies also play a major role in this thesis. Furthermore, device classification using
other properties than mentioned is also discussed in their work. E.g. the vendor name is
determined by looking up the first 24 bits of the MAC address in the IEEE OUI table.
Data gathered from mDNS or UPnP is added to further gain information. Also, many
security considerations are outlined in the paper, which are generally important in the
emerging IoT ecosystem but are not a primary concern for this thesis.

Bajpai et al. [51] also search for IoT devices in IP-based networks. Many networks consist
of combinations of IoT and non-IoT devices. To deal with this problem they have come
up with an algorithm to separate these device categories. Using a combination of UPnP
device descriptors, NetBIOS names and MAC-to-vendor mapping a specific device is
marked as IoT or non-IoT device. If this does not lead to a result Bajpai et al. suggest
using Nmap for OS identification and banner grabbing. In their work, these tasks have
been done manually. For this thesis, many of the presented approaches have been adapted
for automatic evaluation using an Android application, or for manual investigations of
network devices.

Other IoT detection research has been done in the Cern network by Agarwal et al. [52].
During their research, they developed two tools, that are - to the best of my knowledge -
not publicly available. Nevertheless, some of the internals are described in the paper.
The first uses ICMP ping to check for live devices on the network. After an active host is
detected, a reverse DNS lookup is carried out to retrieve the device’s hostname. Filtering
for IoT devices has to be done manually in the resulting list. The second tool is a Python
program that uses Selenium with a web driver to render pages that need JavaScript. It
is used to query the detected IoT devices for web pages. After the page has been fully
rendered, the tool extracts various properties from the page’s source code.

A related thesis has been published by Knabl [53] from JKU Linz. In his thesis, he
generally tries to locate network devices and then tests them for security vulnerabilities.
In an advanced view, detailed information about the detected devices is displayed. Many
of these information-gathering technologies used by Knabl are also in use in my thesis.
The main difference between Knabl’s and my thesis is that his thesis is focused on
the security aspects of IoT. Using his application, vulnerabilities should be detected
automatically and displayed to the user for further investigation. My thesis is about
recognizing the type and firmware of devices and providing a fine-grained classification
of devices in the network.

3.1.2 Security
While not an imminent concern for this thesis, security is an important part of IoT.
Manufacturers often neglect security to be able to push out new products faster into
the market. These devices sometimes never get security updates or any other form of
maintenance. Nevertheless, often the security research also contains concepts usable for
device classification.

26

3.1. IP-based Detection

In 2020 Amro [54] conducted a survey about IoT vulnerability scanning. His work is
mostly about internet scanning, which is not a concern for this thesis. But, in his work,
he reveals many services that potentially run on a high number of IoT devices. Some
of these services can potentially give away a device’s identity and type. Amongst other
tools, the search engine Shodan [55] is being used. Shodan periodically scans the internet
and grabs protocol headers and banners. Some of the search results can be used as
inspiration about what to look for on local devices.

Another IoT security paper has been published by Al-Alami et al. [56]. As before Shodan
is being used to find vulnerable services and devices on the internet. Their search has been
restricted to the public internet of Jordan, which resulted in over 40000 IoT devices under
investigation. During their research, they found multiple vulnerable services resulting
in many attackable devices. Also, some mitigations are proposed to close many of the
found vulnerabilities and therefore make the devices more secure.

3.1.3 Traffic Collection and Machine Learning
A lot of research exists about collecting traffic. This collected traffic is then analyzed to
find and classify devices around or in a particular network. This approach has various
advantages. Purely passive listening does not leave any traces and does not interrupt
ongoing operations. Also, it is possible to detect and classify devices that do not expose
any services. Nevertheless, there are also some downsides. Passive devices, only waiting
for requests, will not be detected by such methods. Also, depending on the activity of
the devices, finding them all might take a long time.

Machine Learning can be used to identify network devices based on various properties.
This technology makes it possible to add and detect devices without manual investigation.
Nevertheless, new devices will not be detected until they have been added to the machine-
learning model. Both mentioned methods - traffic collection and machine learning - did
not make it into my work. Nevertheless, in this section, I will present related research,
that contains interesting approaches to IoT classification, which uses these methods.

One approach using data collection has been researched by Guo and Heidemann [57].
They passively collect internet traffic at an open campus network and from an internet
exchange. From the recorded connections they infer what devices might have caused
them. This approach can only detect devices, which have been investigated first. In a
controlled environment, IoT devices are monitored and their outgoing connections are
recorded. If enough of these connections are also found on the data under investigation,
it is assumed that an IoT device has been found. Guo and Heidemann’s approach does
not manipulate the data in any way, it is a completely passive way of detecting and
classifying IoT devices.

Le et al. [58] used machine learning over collected traffic to identify IoT devices. In their
research, they came to the conclusion that unsupervised learning leads to overfitting of the
underlying decision model. Their results greatly improved from using expert knowledge
and manually choosing properties for training and recognition. In their opinion, these

27

3. Related Work

findings result from the great diversity of IoT devices, which makes it difficult to find
meaningful criteria for device classification.

Another approach has been researched by Khandait et al. [59]. They use deep packet
inspection (DPI) and investigate captured packets for previously determined keywords.
If the IoT device sends unique keywords, this method works very accurately. Although,
this method has some limitations. Using the described method, it is impossible to detect
devices exclusively using encrypted communication. Also, devices from the same vendor
or family often send the same keywords in their communication. This might lead to
inaccurate results. Like in the research presented before, Khandait et al. state that IoT
device detection and classification is difficult because of the wide variety of devices.

3.2 Bluetooth
This thesis also researches scanning the environment for nearby Bluetooth devices. But
just detecting them is not sufficient. The target is to find their type and their firmware
version. As with IP-based networks, this thesis is not the first work on research about
this topic. A selection of related research concerning Bluetooth will be presented here.

3.2.1 Bluetooth Classic
Bluetooth connections differ from IP-based networks in many ways. Therefore finger-
printing and classification algorithms, as used to analyze IP-based networking devices,
can not be used for Bluetooth. This section is about related work concerning Bluetooth
Classic.

Herfurt and Mulliner [60] researched Bluetooth device fingerprinting based on their MAC
addresses and advertised services. They use the service descriptors from service discovery
and the first 24 bits of the MAC address to generate a fingerprint. With this fingerprint,
it should be possible to distinguish devices and even different firmware versions of the
same device type. Even though the research has been published in 2004, Herfurt and
Mulliner’s approach to fingerprint generation is the base for the fingerprinting algorithm
in this thesis.

Listening to surrounding Bluetooth communications is a nontrivial task. Spill and
Bittau [44] developed a method to sniff on foreign Bluetooth communications. Their
method does not involve listening to all possible Bluetooth channels but provides a way
of figuring out the needed parameters. This simplifies the needed hardware and makes an
attack much more practical. Still, the hardware is specialized and - at the time of writing
- it is not possible to replicate their approach using an off-the-shelf Android device.

The impact of Bluetooth security vulnerabilities is different compared to IP-based devices
since they can only be exploited by an attacker nearby. Dunning [61] researched different
threats to Bluetooth devices and connections. As mentioned before, attacking devices is
not a target for this thesis, but Dunning’s research also is useful for understanding the

28

3.2. Bluetooth

possible limitations of my work. Nevertheless, attacking modern devices might not only
lead to them not functioning, but might also leak personal information that is stored on
e.g. smartwatches.

3.2.2 Bluetooth Low Energy
Bluetooth Low Energy is, compared to the classic variant, designed to use less energy and
therefore ensure longer battery life in situations where power is a highly limited resource.
To achieve that goal, many mechanisms work differently in this mode of operation.
Therefore, the methods and approaches often differ between the two Bluetooth variants.
This section is about related research concerning the Low Energy variant of Bluetooth.

A major difference between Bluetooth Classic and Low Energy are the GATT profiles.
While these can be implemented for Classic Bluetooth, they are mandatory in Low
Energy. Celosia and Cunche [62] use these profiles in their work to fingerprint Bluetooth
Low Energy devices. During fingerprint creation, it has to be taken into account that
some fields are subject to change (e.g. heart rate or step counter in smartwatches). When
no fingerprint is available, sometimes still valuable information can be displayed to a
user. Celosia and Cunche describe fields in GATT profiles, that allow for identification
of the device in question without any fingerprint created previously. This is especially
useful for new devices that never have been in the hands of application developers. Also,
it is impossible to fingerprint all possible devices, since the amount is enormous and new
ones are released regularly.

In another paper, Celosia and Cunche [63] research Bluetooth Low Energy’s privacy
features. Continuing advertisements from peripheral devices could make users trackable.
To prevent this, the Bluetooth standard includes privacy features that allow randomizing
the device’s MAC address. Celosia and Cunche’s research shows that this randomization
is not always correctly implemented. Also, the content of the advertisement packets often
reveals a device’s identity. Tracking devices is not part of my thesis. Nevertheless, it
is interesting for future research, that the advertisement packets alone might contain
identifying information.

Modern peripherals can expose a lot of personal data. Therefore it is important for many
users to keep this data private. Barua et al. [64] published a survey on Bluetooth Low
Energy security and privacy issues. While breaking or manipulating communication is
of no interest to this thesis, getting information from nearby devices is. Like Celosia
and Cunche, Barua et al. write - amongst other vulnerabilities - about openly available
data using GATT profiles. Depending on the devices these profiles can reveal a lot of
information about the device and its user.

29

CHAPTER 4
Methodology

This chapter deals with the methods and procedures used to answer the research questions
for this thesis. Also, the decision path to the finally applied methods will be described.
This includes problems and failed solutions. The questions I am trying to answer, with
the methods described in this section, are:

• Which properties can be used to recognize remote devices?
This includes reasoning about if these properties are good indicators for a device’s
identity.

• Which approaches/algorithms can be used to classify remote devices?
This thesis is limited to non machine-learning approaches. While machine learning
might yield good results in some scenarios, it is out of scope for my work.

• What limitation poses the Android operating system to the found approaches?
Due to security and privacy considerations, access to some of the system’s functions
is restricted. Also, different hardware and software stacks compared to traditional
desktop systems pose additional limitations.

4.1 Investigating Devices
Before any device can be recognized remotely, properties have to be found first, from
which the device can be identified. Finding these properties is a nontrivial and time-
consuming task. The accuracy of device classification is directly dependent on the quality
of the found properties. These properties should have the following characteristics:

• Unique

31

4. Methodology

• Observable

• Stable

Uniqueness is important because it ensures that there are fewer (or no) misclassifications.
That does not necessarily mean that a single property needs to be unique, but the
combination should be. Otherwise, it might be possible to mistake two devices that
(partially) share their properties.
Especially for this thesis, observability is an important characteristic. Not all possible de-
vice properties are detectable remotely. Also scanning using an Android application poses
additional restrictions to scanning capabilities. Detailed explanation about detectable
properties can be found in section 4.4.3.
Some properties, e.g. the advertised name for Bluetooth devices, are user changeable.
Since these are subject to change, they can not be considered stable. Stable properties
have a constant value across different devices of the same type and during the lifetime of
the device/firmware combination.
This section is about finding features that are usable and sensible to use for remote
classification.

4.1.1 Manual Analysis
The first approach tried and used in this thesis, is the manual analysis. Therefore the
device of interest is manually investigated using a PC and any necessary resources needed
and available. This includes any software that helps during analysis. This section contains
explanations of the steps that have been taken to analyze the devices used for testing
in this thesis. Nevertheless, this section has no claim of being exhaustive about the
possible ways of analyzing devices. The goal is to find enough good properties that
allow for the creation of a unique fingerprint. For this section, it is assumed that it is
possible to physically access the device and it is currently not needed for any production
environment.

Finding Documentation

Before doing any technical analysis, it can be useful to find and read any available
documentation. Following examples of what to look for:

• Supported Protocols (e.g. UPnP, mDNS,...)

• Way to display/find the IP address

• Available APIs

This list is not exhaustive but gives an idea of what to have an eye on when searching a
device’s documentation. The information found in this step might also be useful for the
other steps below.

32

4.1. Investigating Devices

Locating Device

Before any tests can be conducted on a new device, it has to be found on the network
first. For this part, I assume that the device is connected and has a valid IP address
configured (e.g. by using DHCP). The target of this step is to acquire the IP address
of the device under investigation. During the writing of this thesis, all tests have been
conducted in a home network environment. This means there are no firewalls in between
the devices, the amount of connects and disconnects to the network is very low and there
is no VLAN separation between parts of the network.

Figure 4.1: Network Information from a PS4.

Possible ways to discover the device’s IP address are:

Device display: Some devices provide an option to display their current network set-
tings. An example from a Playstation 4 can be seen in figure 4.1. Usually, the
device manual contains instructions on how to access this function. This method is
only possible if the device has some kind of graphical output.

Home router: Not all devices have a display built-in or can output to some external
device. Still, the DHCP server included in modern home routers might be able to
provide the wanted information. When the new device uses DHCP options [65],
it is possible to provide a name to the DHCP server. Using this name it is often
trivial to find the device in question using the router’s web interface, as can be seen
in figure 4.2.

Network scanning: If the above-mentioned approaches do not work, the device can
be found using network scanning software. A possible approach using Nmap [28]
will be described below.

33

4. Methodology

Figure 4.2: Network Information from Home Router.

All tests are conducted on a machine running Arch Linux. At the time of writing the
software is at the state of December 2022, the commands and results shown here might
not be the same for other operating systems or software versions.

Before scanning the network, the search space has to be determined. This can be done
by running the command from listing 4.1.

1 ip addr

Listing 4.1: Command to get information about the current network.

The output will be similar to the example in listing 4.2.

1 2 : enp4s0 : <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qd i s c mq
s t a t e UP group d e f a u l t q len 1000

2 l i n k / e the r b4 : 2 e : 9 9 : 0 e : 3 d :21 brd f f : f f : f f : f f : f f : f f
3 i n e t 192 . 168 . 0 . 10/24 brd 1 92 . 16 8 . 0 . 2 5 5 scope g l o b a l dynamic

n o p r e f i x r o u t e enp4s0

Listing 4.2: Information about a connected network.

On the last line, the current IP address and the subnet mask in CIDR notation can be
found (refer to 2.1.3 for details). Using Nmap no further calculations are needed. To find
live hosts in the current network, the command from listing 4.3 can be used. This will
start a ping sweep [29] in the local network and print the results to the console.

1 nmap −sP 192 . 168 . 0 . 10/24

Listing 4.3: Host discovery using Nmap.

The results contain the IP address of the live hosts, their MAC addresses and the vendor
name. The vendor name makes it usually easier to determine the device in question. The
final result might look similar to listing 4.4. To save space, unimportant lines have been
cut out.

1 Nmap scan repor t f o r 1 9 2 . 1 6 8 . 0 . 1

34

4.1. Investigating Devices

2 Host i s up (0 .00028 s l a t ency) .
3 MAC Address : 9C: 3D:CF: 1D: 7 9 : 3 0 (Netgear)
4 . . .
5 Nmap scan repor t f o r 1 92 . 16 8 . 0 . 1 0 2
6 Host i s up (0 . 75 s l a t ency) .
7 MAC Address : 30 :CD: A7 : 1 7 : 9E: B0 (Samsung E l e c t r o n i c s)
8 . . .
9 Nmap scan repor t f o r 1 9 2 . 1 6 8 . 0 . 1 0

10 Host i s up .
11 Nmap done : 256 IP addre s s e s (6 hos t s up) scanned in 5 .25

seconds

Listing 4.4: Host discovery result from Nmap.

If it is not obvious which device is the correct one, unplugging it and starting the scan
again might quickly reveal the device in question. This step also reveals one important
piece of information: The MAC address of the device, and therefore its vendor prefix.
This alone is not a unique classifier for a device type, but often a good starting point for
further analysis.

Port Scan

After the device has been located, gathering more information about the device in
question is necessary to create a fingerprint. Port scanning is one way of finding running
services on the device. The technological details have been explained in section 2.4.1.
Here it will be presented which tools to use and how to interpret the results. Both, TCP
and UDP port scans will be covered here.

Again the software Nmap [28] will be used to conduct the scans. To start the TCP port
scan, the command from listing 4.5 can be used [36].

1 nmap −sS <IP o f device> −p−

Listing 4.5: Scanning whole TCP port range with Nmap.

This will start a TCP port scan - using the SYN scanning method as described in section
2.4.1 - on the specified host, covering the whole TCP port range (1-65565). On my home
network, this scan takes less than 15 seconds. As a result the ports accepting a TCP
connection will be displayed. The results might look similar to these in listing 4.6. Again,
the results have been shortened to save space.

1 Not shown : 65525 c l o s e d tcp por t s (r e s e t)
2 PORT STATE SERVICE
3 53/ tcp f i l t e r e d domain
4 68/ tcp f i l t e r e d dhcpc
5 80/ tcp open http

35

4. Methodology

6 515/ tcp open p r i n t e r
7 631/ tcp open ipp
8 . . .
9 18188/ tcp open unknown

Listing 4.6: TCP port scan results from Nmap.

The scanned device in this example is a Samsung network printer (some lines have been
omitted). For easier analysis, Nmap also prints the names of the services usually running
on the found ports. A list of assigned ports by IANA can be found here [66]. In the
example, it can be seen that some ports usually used for printing are open. Also, a web
service is running. More information about analyzing web services can be found below in
section 4.1.1.

Launching a UDP port scan works almost similarly to TCP. But, as described in section
2.4.1, results might be less meaningful than for TCP. The scan [27] can be started with
the command from listing 4.7.

1 nmap −sU <IP o f device>

Listing 4.7: UDP port scanning using Nmap.

According to the Nmap documentation [27], scanning the whole port range might take
several hours. During the testing for this thesis, I only scanned the default port range
automatically chosen by Nmap (1000 ports). This scan took approximately three and
a half minutes on my network. As expected, the results - as seen in listing 4.8 - look
slightly different than for TCP.

1 Not shown : 992 c l o s e d udp por t s (port−unreach)
2 PORT STATE SERVICE
3 53/udp open | f i l t e r e d domain
4 68/udp open | f i l t e r e d dhcpc
5 161/udp open snmp
6 1900/udp open | f i l t e r e d upnp
7 . . .

Listing 4.8: UDP scan results from Nmap.

Again, the detected open ports can give a hint about what services are running on the
device under investigation. For some services, Nmap has test patterns (here only for port
161), that can determine if a service is actually running and the expected one [27].

Although it is possible to classify devices by only looking at their open ports [49],
analyzing services is usually necessary to receive more details about the device. More
details include certain model number, firmware version and device-specific properties
such as e.g. the supply status for printers. Nevertheless, the mechanisms and internals of
most protocols are out of scope for this thesis. The amount and complexity of possible

36

4.1. Investigating Devices

protocols is too high and also not the main focus of this work. Following, approaches
used in this thesis to get more information about services will be described.

DNS-SD over mDNS

Figure 4.3: Avahi Discovery in Home Network.

DNS-SD is a protocol allowing for service discovery using the DNS infrastructure. mDNS
enables DNS usage without any fixed servers. The mechanisms of DNS-SD and mDNS
have already been covered in more detail in section 2.3.2. Furthermore, these two protocols
enable network members to browse the network for available services [67]. One application
enabling such browsing is included in the Avahi suite [68], called "avahi-browse" [67]. For
further convenience, also a graphical version - "avahi-discover" - exists. A test scan of my
home network can be seen in figure 4.3. A lot of information can be extracted from the
presented services:

Devices A device that advertises a service over DNS-SD/mDNS, also reveals its presence
in the network. Generally, device discovery has been covered before. Nevertheless,
this mechanism can be used as an additional data source.

37

4. Methodology

Open Ports and Protocols As explained in section 2.3.2, a service definition contains
the port number and the information if the service uses TCP or something else.
Therefore, a list of open ports can be composed, e.g. for use with other classification
algorithms. Nevertheless, not all open ports need to be advertised this way, so
results might be incomplete.

Service Names When conducting a port scan, a list of open ports will be the final
result. The registered service list [66] from IANA can give hints on which service is
running on a specific port, but this is not guaranteed. With DNS-SD the service
records contain a service name. This name is often a protocol name or contains
useful information on what service is running. Since this information is directly
provided by the device under investigation, it is assumed not to be spoofed for this
work.

While for TCP, port scanning works reliably and fast, it is more problematic for UDP.
Services found through DNS-SD do not have to be scanned for. Also, more information
is revealed, than by a port scan alone. All these advantages make DNS-SD over mDNS a
useful mechanism to use for device analysis.

SSDP

As described in section 2.3.1, SSDP is a serverless discovery protocol defined in the UPnP
specifications [31]. In this thesis, it is useful for device detection and analysis.

For service detection, a helper program called "gssdp-discover" exists. It is part of the
GUPnP Gnome project [69]. To use it for root device discovery, the command as seen in
listing 4.9 can be used.

1 gssdp−d i s c o v e r −t upnp : r oo tdev i c e

Listing 4.9: Command to discover UPnP devices using SSDP.

This will send a search request, only requesting information about root devices. To end
the search, the program has to be exited. The result will look similar to listing 4.10.

1 r e s ou r c e a v a i l a b l e
2 USN: uuid : . . . : : upnp : r oo tdev i c e
3 Locat ion : http : / / 1 0 . 0 . 0 . 1 6 : 5 0 0 1 / d e s c r i p t i o n / f e t c h
4 r e sou r c e a v a i l a b l e
5 USN: uuid : . . . : : upnp : r oo tdev i c e
6 Locat ion : http : / / 1 0 . 0 . 0 . 1 : 4 9 0 0 0 / fboxdesc . xml
7 . . .

Listing 4.10: SSDP scan results.

After a few moments - less than one second on my test setup - all devices should be
displayed. The URLs provided can be fetched with any HTTP client available. Usually,

38

4.1. Investigating Devices

interesting fields from these documents have been described in section 2.3.1. But, due to
the high amount of different devices, the usefulness of specific fields can vary per device
type.

Using the SSDP, finding root devices is reliable and fast. Detecting control points in the
current network is a bigger challenge, as they only reveal themselves when they search
for services [31]. This behavior can also be seen in figure 2.9, where control points only
send messages to search for devices and services. To read these search messages, the
program Wireshark [70] can be used. Wireshark is a program that supports sniffing
packages going through a network interface. It also provides various options to analyze
the captured packets.

Figure 4.4: Wireshark Displaying Captured SSDP Packets.

In figure 4.4 an example of Wireshark with captured packets is shown. The filter options
are set to SSDP, to display only relevant packages. Over time this will reveal many
devices and their user agent strings. A captured packet might look similar to listing 4.11.

1 M−SEARCH ∗ HTTP/1 .1
2 HOST: 239 . 255 . 255 . 250 : 1900
3 MAN: " ssdp : d i s c o v e r "
4 MX: 1
5 ST : urn : d i a l −mult i s c reen −org : s e r v i c e : d i a l : 1
6 USER−AGENT: Chromium /106 . 0 . 5249 . 119 Windows

Listing 4.11: SSDP search request.

The output makes clear, that the captured packet does not originate from an IoT device,
but from a Windows PC. Not all devices send a user-agent string. E.g. the Panasonic

39

4. Methodology

DMP-UB900 Blu-Ray player (which was available to me during my test runs) does not
send this field at all.

After discovering a device matching its search criteria, a control point will usually fetch
the descriptor to learn more about the device. For testing purposes, I ran a media server
(UMS [71]) on my computer and again recorded the traffic using Wireshark. A Playstation
4 Pro has been used for this test. After launching the "Media Player" application on
the device, the Playstation uses SSDP to search for media servers and - as assumed -
fetches the descriptor from the locally running media server. The captured HTTP request
contains the content as seen in listing 4.12.

1 GET / d e s c r i p t i o n / f e t c h HTTP/1 .1
2 Host : 1 0 . 0 . 0 . 1 6 : 5 0 0 1
3 Date : Thu , 29 Dec 2022 17 : 22 : 46 GMT
4 User−Agent : MediaPlayer /4 .01 UPnP/1 .0 DLNADOC/1.50 (PlayStat ion

4 Pro)

Listing 4.12: HTTP GET request wuth user-agent.

Here also a user-agent string is revealed, stating the device type, but not the concrete
model (there are multiple submodels of the Playstation 4 Pro available) or firmware
version. Again, depending on the device under investigation, the usefulness of the result
will vary.

Using SSDP for device analysis, multiple device properties can be revealed:

Device itself As with DNS-SD over mDNS, a device sending multicast messages reveals
its existence in the process. This can be useful if other detection techniques are
unavailable or the results are incomplete.

Device descriptor Root devices provide a device descriptor, that usually contains
information about the device, including manufacturer and model. This document
usually exposes a lot of information that can be used for fingerprinting.

Device type Listening to the search messages, it might be possible to deduce which type
of device is sending them. For example, a media render will usually be searching for
media servers. Nevertheless, this type of information gain is not used in this work.

Web Services and REST-APIs

Many devices, e.g. network printers, expose web services to the connected network.
These can be used to gain a lot of information about the device under investigation. Also,
REST interfaces often can be found running on these devices, enabling other machines
on the same network to get information for various purposes, e.g. displaying them in
other places like apps.

40

4.1. Investigating Devices

Sometimes manufacturers provide documentation on how to use the provided interfaces.
This section is about partially reverse engineering these interfaces when no documentation
is provided. I do not aim to provide a full guide for reverse engineering web interfaces
here but to give a few starting points for further investigations. The whole topic is very
large and complex and out of scope for this thesis. For the investigations, Firefox - at the
time of writing version 108.0.1 - is being utilized. As testing device, a Samsung M262x
282x Series printer is investigated. Its web service - called SyncThru - is running on port
80.

Figure 4.5: Supplies Displayed in Printer’s Web Interface.

The web browser is being used to find a page displaying interesting information. Below
an incomplete list of items to search for in the printer’s web interface can be found:

• Device information (Manufacturer, Model,...)

• Firmware information (Version, Variant)

• Supply information (Toner level, Drum,...) (printer-specific)

This list is incomplete because the needed and wanted information might differ from
device to device. Also, there is no guarantee that the wanted information is provided
by the device’s web interface. As can be seen in figure 4.5, on the printer’s main page
information about the supply status can be found.

For analysis, Firefox’s web developer tools are used. With F12 these can be enabled.
Setting the filter options to XHR in the network tab will display all XMLHttpRequests
issued using JavaScript. The page has to be reloaded to record the requests. Usually,
the request fetching the wanted information is among the displayed lines after a few
moments (about 5 seconds for the printer used in this test). The displayed results might
- dependent on the device under investigation - look similar to figure 4.6.

Among other information, it can be seen that a request is sent, requesting a ".json" file.
The contents of this file are (partially) displayed on the right side. Below a cut version of
this file can be found in listing 4.13, displaying only the relevant lines for this work.

41

4. Methodology

Figure 4.6: Firefox Developer Tools.

1 {
2 i d e n t i t y : {
3 model_name : "M262x 282x S e r i e s " ,
4 host_name : "SEC30CDA7179EB0" ,
5 ip_addr : " 1 9 2 . 1 6 8 . 0 . 1 0 2 " ,
6 mac_addr : " 3 0 :CD: A7 : 1 7 : 9E: B0" ,
7 } ,
8 toner_black : {
9 opt : 1 ,

10 remaining : 0 ,
11 cnt : 2601 ,
12 newError : "C1−1150"
13 } ,
14 drum_black : {
15 opt : 1 ,
16 remaining : 94 ,
17 newError : " "
18 } ,
19 opt ions : {
20 wlan : 0 , duplex : 1
21 }
22 . . .
23 }

Listing 4.13: Printer information in JSON format.

42

4.1. Investigating Devices

It can be seen that not only the supply status but also capabilities and general system
information are transmitted. As the data is in machine-readable form (JSON), it is
easy to programmatically extract information and display it to the user. Without any
manufacturer documentation, the format and range of the provided data have to be
assumed. Again, this section does not aim to be a complete guide for reverse engineering
web interfaces but to give starting points for further investigations.

NetBIOS Names

NetBIOS is an old protocol, designed by IBM in 1983 [72]. Originally, the protocol did
not use TCP/IP for data transport, but that changed soon as TCP became more popular.
NetBIOS over TCP was standardized in 1987 [73] and the old transport protocols were
no longer mandatory from Windows 2000 upwards.

Although being an old protocol, NetBIOS over TCP can reveal some information, like
vendor and model, from a device using the NetBIOS name [74][51]. Even today, many
devices still expose a NetBIOS name. For example, the Samba software still has the
option to set a NetBIOS name [75]. Also newer versions of Windows and Windows Server
support NetBIOS [74]. Nevertheless, the usefulness of the provided information varies
from device to device. To get the NetBIOS names from a remote device, the command
from listing 4.14 can be used.

1 nmblookup −A <IP o f device>

Listing 4.14: Resolve IP address to NetBIOS names.

Nmblookup is part of the samba software [76]. For Windows a similar program, called
nbtstat [74], is available. The output of the command above will look similar to listing
4.15.

1 VUZERO <00> − B <ACTIVE>
2 . . .
3 VUPLUS <00> − <GROUP> B <ACTIVE>

Listing 4.15: NetBIOS names lookup result.

It can be seen, that the device used for this test - a VU+ Zero satellite receiver - reveals
its vendor (VUPLUS) and its concrete model (VUZERO) through its advertised NetBIOS
names. But, as stated before, not all devices expose such detailed information over this
protocol.

A major advantage of the manual fingerprint generation technique is the possibility to
analyze any device, without any restrictions regarding operating systems and firmware
image or documentation availability. Done carefully, this approach can lead to very
specific and unique fingerprints that do not easily produce misclassifications.

43

4. Methodology

4.1.2 Firmware Image Analysis
As described before the manual approach might yield good results, but is not applicable
to a large number of different devices. In this section, an automated approach will be
described using a Python program. This program takes firmware images, analyzes them
and extracts properties that can be used to automatically determine a remote device’s
type.

Targets

To speed up fingerprint generation, minimal user interaction should be necessary in order
to generate fingerprints. That means, only the source directory needs to be specified.
During the program run, no interaction with the user is needed. Any archive format
supported by the python-libarchive [77] Python library can be used with the program.
Other archive types need to be converted first. Also, raw firmware images (as produced
by e.g. the Unix tool dd) can not be used without manual work first.

The target here is to automatically find properties of devices, without the long manual
process presented in section 4.1.1. Also, the three target characteristics for properties
- as explained at the beginning of section 4.1 - have to be considered when gathering
information.

Only Linux firmware images conforming to the standard folder and file naming conven-
tions [78] will yield useful results. Also, other similar operating systems (e.g. other
unixoid systems like FreeBSD or macOS) might work, provided that the image is in a
supported archive format. Nevertheless, the program has only been tested against Linux
firmware images. Any sort of encryption will also lead to no result.

File Structure

The results are stored in a JSON-structured text file. This file can then be read by any
compatible scanning tool. Each file contains an array of fingerprints. Listing 4.16 shows
an example of a single fingerprint entry.

1 {
2 " dns_sd " : [
3 " _ssh . _tcp " ,
4 " _sftp−ssh . _tcp "
5] ,
6 " hostname " : " SampleDevice " ,
7 " t e l n e t " : " SampleDevice 1 . 0 . 1 \ n " ,
8 " ne tb i o s " : "SAMPLEDEVICE" ,
9 " upnp " : {

10 " fr iendly_name " : " Sample Device " ,
11 " manufacturer " : " Sample Manufacturer " ,
12 " model_descr ipt ion " : " Sample f o r paper "

44

4.1. Investigating Devices

13 }
14 " names " : [
15 " SampleDevice_V1 . ta r " ,
16 " SampleDevice_V2 . ta r "
17]
18 }

Listing 4.16: Sample fingerprint entry

Nearly every entry is optional. Per fingerprint, only one name in the names array is
needed, and at least one property has to be provided. Multiple names are supported,
because multiple firmware images may result in the same fingerprint. If that is the case,
both fingerprints get combined into a single one with multiple names.

Extracted Properties

In this section, the patterns used to find interesting files and information will be presented.
It will also be stated which information in the archive file is transformed to which part
of an automatically generated fingerprint.

Samba Configuration Samba is software for Microsoft Windows compatibility in
other operating systems [76]. It also implements the NetBIOS protocol. As stated before,
each NetBIOS device has its own name in the network. This name can be read over
the network. In a system image, this name can be found in the Samba configuration.
Samba configurations usually have the name "smb.conf", this is also what the fingerprint
generation software looks for. The file is structured in a key-value format, separated by
sections. An example of such a configuration file can be seen in listing 4.17. If an option
called "netbios name" is found in the file, the value is copied into the fingerprint.

1 [g l o b a l]
2 workgroup = WORKGROUP
3 ne tb i o s name = RT−AC88U−F000
4 s e r v e r s t r i n g = RT−AC88U−F000
5 unix cha r s e t = UTF8
6 . . .

Listing 4.17: smb.conf from an ASUS-RT-AC88U Firmware

Hostname When using DHCP, it is possible to send a hostname to the DHCP server [79].
This hostname is usually stored in "/etc/hostname" on UNIX machines. This file is read
by the fingerprint creation tool and the full content is written into the "hostname" field of
the fingerprint. This property is detectable when the DHCP server is connected to a DNS
server, which is capable of reversing IP addresses back to hostnames [80]. The firmware
archive may not start with the Linux system root folder as its own root. Therefore the

45

4. Methodology

tool looks for files whose path ends with "etc/hostname". That way it is also possible to
detect hostnames in nested system folders.

UPnP Descriptions UPnP descriptions are usually located in XML files. Since check-
ing all advertised services might lead to very large fingerprints, only device information
is being searched for. All devices that advertise UPnP services also supply a device
description [81]. To find these descriptions all files ending with ".xml" are checked if they
belong to the correct namespace. To do so, all XML files are checked for the header as
can be seen in listing 4.18. When this check succeeds the three fields "friendlyName",
"manufacturer" and "modelDescription" are copied to the new fingerprint as a dictionary.

1 <?xml ve r s i on ="1.0"? >
2 <root xmlns="urn : schemas−upnp−org : device −1−0">

Listing 4.18: UPnP Device Descriptor Header

Avahi Services Avahi is software that can find and advertise services on the local
network [68]. Advertised services are usually stored in "/etc/avahi/services" inside files
ending with ".service". For this work, primarily the service type (e.g. "_nfs._tcp" for a
network share) is interesting. This is also the only information that will be copied to
the generated fingerprint. As multiple services can be advertised by a single device, the
resulting output will be an array of service types that can be expected from the device.
An example service definition, advertising an HTTP service, can be found in listing 4.19.

1 <s e r v i c e −group>
2 <name rep lace −wi ldcards ="yes">%h</name>
3 <s e r v i c e >
4 <type>_http . _tcp</type>
5 <port >80</port>
6 </s e r v i c e >
7 </s e r v i c e −group>

Listing 4.19: HTTP Service Definition from a FLIR Camera

Telnet banner Despite the security implications, some devices still have a telnet
service enabled. Without any login credentials needed, the server will send the content of
the "/etc/issue.net" file [40] to any connecting client. Therefore this file is automatically
extracted from any firmware image and copied to the fingerprint as it is.

4.2 Scanning Strategies for IP-Based Networks
Before, two approaches for information gathering and generating fingerprints have been
described: manual and firmware analysis. To use these fingerprints, different scanning
strategies are being utilized. Currently, two scanning strategies are used in sequence.

46

4.2. Scanning Strategies for IP-Based Networks

First, the tree-based approach is being applied with the manually gathered information.
Any devices that could not be classified by this approach will be checked again using the
automatically generated fingerprints. In this section, the two scanning strategies will be
explained.

Device scanning assumes that the remote devices already have been detected. Network
scanning is therefore not part of any scanning strategy. Background information about
device detection can be found in section 2.2. Details about the Android implementation
are described later in section 4.4.2.

4.2.1 Tree Based Approach
As stated above the tree-based approach is used first on any alive host. It uses manually
found properties and is usually more flexible than the second scanning approach presented
below in section 4.2.2. Compared with the second approach, tree-based scanning has the
following characteristics:

Higher-quality classification Device properties are hand-picked and therefore should
provide more accurate classification, with very few false positive hits.

Low bandwidth usage Only requests necessary for the current detection step are sent.
This should minimize the network traffic necessary to classify devices.

Individual results A hit using this classification approach does only output a single
result.

Nevertheless, the amount of detectable devices does not scale very well and every device or
device type needs to be inserted manually into the application source code. As mentioned
before, a possible solution to this problem is introduced in section 4.2.2.

Detection Levels

As the name of the approach suggests, multiple detection steps can be performed on a
single device. After every detection step, the device gets assigned a detection level. The
meaning of the different detection levels can be found in table ??. Only devices with
detection levels of 1 or upwards get shown to the user.

Most interesting are the detection levels 1 to 4, as they deal with the classification of
potential IoT devices. The levels below are only used for the internal flagging of devices.

Detection Procedure

The detection sequence is separated into detection steps and pools. A pool might contain
an arbitrary number of steps but has to contain at least one. A detection step is always
part of a pool and can have another pool as a successor. This successor is used when the
detection step is successful.

47

4. Methodology

Detection Level Meaning Example
-1 Non IoT device PC/Smartphone
0 Device detected -
1 Device and vendor found HP device
2 Device type detected Printer
3 Device model detected Specific model name
4 Additional information available Supply levels

Table 4.1: Detection Levels

Based on the vendor found in detection level 1 the first pool is selected and the first
detection step is started. This means the initially selected pool is based on the MAC
address of the device under investigation. If no pool is registered for a MAC prefix, the
device remains in detection level 1. No further investigation is done by the tree-based
scanning method. But it will be looked at again by the next scanning strategy described
in section 4.2.2.

If a detection step fails, the next step in the same pool will be executed. If the step
succeeds another bit of information about a device has been found. That means that the
detection level will be increased and additional information will be stored and displayed
in the Android App. If another pool is set as the successor to a successful step, the first
step in this pool will then be started. If no next step or pool can be found the detection
sequence will be quitted. An illustration of the scanning process can be seen in figure 4.7.

Figure 4.7: Tree Based Scanning.

The detection level does not necessarily need to be increased by one. It is acceptable
that a single detection step raises the level from 1 to 3 or even 4. That can happen if, e.g.
a web server runs on the device and directly sends the model or other information to the

48

4.2. Scanning Strategies for IP-Based Networks

application. All devices reaching a detection level higher than 1 will not be investigated
by the next detection strategy described below.

Additional Information About Devices While detection level 3 means, that the
device model has been determined, a detection level of 4 indicates that even more
information about a device can be displayed. This might be all sorts of information, like
supply status from a network printer, or even screenshots from an internet-connected
satellite receiver. The Android application provides a framework for filling in this
additional information and displaying it to the application user. The way this information
is acquired is individual per device. The detection level of 4 only indicates that additional
information can be obtained, not that it is already in some form of cache.

4.2.2 Approach Using Automatically Generated Fingerprints
When no successful classification procedure is available in the tree-based approach, a
second approach, explained in this section, will be tried. Here the generated fingerprints
from section 4.1.2 are being used and compared against the actual values received from
the scanned devices. Any device that has a detection level below 2 counts as basically
unclassified and will be analyzed using the method described here. This detection method
has some advantages over the tree-based classification:

Scalability Due to the automatic generation of fingerprints, new devices can be added
quickly to the fingerprint database. This allows for a high amount of recognized
devices, with minimal manual work.

Constant effort The steps needed to classify a device are known in advance (with a few
exceptions). The data requested is the same per device. Therefore this approach is
easier to debug and maintain.

A major downside of this approach is that a device may match multiple fingerprints. In
that case, the fingerprint with the most properties stored wins, as more information could
be extracted from the corresponding firmware image. A fingerprint with less properties
is therefore considered less meaningful. Another option is that multiple firmware images
resulted in the same fingerprint. If this happens, a list of possible types will be assigned
to the device. Details about this detection strategy will be explained below.

Scanning Procedure

Compared to the tree-based scanning procedure, a more static approach is being used
here. The following steps are being executed in order to search for matches using the
automatically generated fingerprints.

Device collection As described before, only devices that have a detection level below
2 will be looked at. These are collected from the general list generated in section 2.2. As
with the tree-based approach, device detection is not part of the classification strategy.

49

4. Methodology

General data acquisition All properties described in section 4.1.2 only need to be
detected once. In this step and before any fingerprint matching occurs, all properties are
queried and stored in the local memory for further comparison. Only the DNS-SD services
need special treatment. It is not possible - with the default Android implementation - to
get all advertised services from a device at once (no browsing capabilities in the standard
API). Details about the implementation can be found in section 4.4.3.

Comparison with fingerprints In this step all found properties are compared against
the values stored in the generated fingerprints. After the comparison a value between 0
and 1 will be calculated, which indicates how well the scanned device and the fingerprint
match. A value of zero indicates no match, while a value of one indicates a perfect match.
All data points in the fingerprint must be found on the actual device. If a data point
is present in the fingerprint, but not on the actual device the result is always zero. If a
data point does not match the observed value the result is also always zero. If all data
points on the fingerprint match, the total score is calculated as:

dataPointsInFingerprint

datapointsFoundOnDevice
(4.1)

Detecting Avahi services As mentioned before, Android’s default API can not detect
all advertised DNS-SD services from a single device. Therefore each service in the
fingerprint list has to be checked individually. This means every other property will
be compared first. If all these checks succeed, the services listed in the fingerprint will
be tested sequentially. As with the other properties, detected services will be stored in
memory and not queried again in the network.

Choosing best match When all fingerprints have been checked, the one with the
highest match value, calculated as explained above, will be chosen. All names (if multiple)
stored in this fingerprint will be returned as a list. Two fingerprints can not have equal
properties, as they would have been merged.

4.3 Bluetooth Classification
The Android application not only supports scanning the current WiFi-connected IP-based
network but also the Bluetooth environment. In this section, it will be explained how
surrounding devices can be found and the strategies to classify them. Both, Bluetooth
Classic and Bluetooth Low Energy (LE) will be covered in this section.

4.3.1 Bluetooth Classic
Despite being published in 1999, the classic variant of Bluetooth is still widely in use
today [41]. To keep up with changing device and user requirements, many revisions and
changes have been published since then. As it is the older standard overall, Bluetooth
Classic will be treated first.

50

4.3. Bluetooth Classification

Detecting Devices

As explained in section 2.5.1, it is not possible to detect devices in undiscoverable mode
with an unmodified Android phone. Therefore this work is limited to discoverable devices
only.

Classification

Also for Bluetooth, the hardware address (MAC address) only references the hardware
vendor, but not the concrete model. Bluetooth devices usually advertise a name, that
can be used by a user to identify them [45]. This display name can often be changed.
Therefore both properties should not be used to identify the device model, as they do
not conform to the goal characteristics for classification properties.

The method used in this section is based on Blueprinting [60] by Herfurth and Mulliner.
In their work, SDP is used to get the advertised profiles from a remote device. After
service discovery is complete the RecHandle and the Channel are extracted from every
SDP profile. Details on the data structures used during this process can be found in
section 2.5.1. These retrieved values are then used for checksum calculation as seen in
figure 4.8.

Figure 4.8: Blueprinting checksum calculation[60].

The whole fingerprint consists of the vendor part (first 24 bits) of the MAC address and
the previously presented checksum (e.g. 00:60:57@2621543 for a Nokia 6310i) [60]. At
the time of writing, it is not possible to retrieve the necessary information on Android.
Instead, all services are identified by their UUID [82]. For my Android application, the
procedure has been modified, such that it uses the UUIDs provided by the Android API
instead of the values originally used by Herfurth and Mulliner.

For this modified procedure, first, all UUIDs are fetched from the remote device. In the
next step, they are sorted alphabetically ascending. Finally, all UUIDs get concatenated
and the resulting string is hashed with SHA256. This modern hash function ensures

51

4. Methodology

collision freeness, while still retaining a constant size for all fingerprints. The vendor part
of the MAC address is being put in front of the hash value, as in Herfurth and Mulliners
work. An example of a fingerprint from my headphones can be found in listing 4.20.

1 80 :C3 :BA;05
f4a45cb6cdc90302f47b1c745381ee382cde0e34614e55ae8b7c1885a11edc

Listing 4.20: Sennheiser Momentum True Wireless 3 - Fingerprint

Internally fingerprints are stored, like the automatically generated fingerprints from
section 4.1.2, in a JSON data structure. This data structure stores the hash value and a
device name for every data set. An example of such an entry can be seen in listing 4.21.

1 {"name " : " Sennhe i s e r Momentum True Wire l e s s 3 " , " vendorMac " :
" 8 0 : C3 :BA" , " hash " : "<Hash as above >"}

Listing 4.21: Stored Fingerprint Example.

For every detected device, the previously presented hash value is computed. After the
scan is completed, the results of all found devices will be compared to the list of known
fingerprints. If a match is found, the stored device name is displayed.

Sometimes a hardware vendor uses more than one MAC prefix. In this case, the fingerprint
would not match, even if the calculated hash values are the same. To prevent this from
happening, the MAC table is searched for the names of the device vendors (fingerprint
and device under investigation). If these names match, the fingerprint matches, even if
the MAC vendor prefixes are different.

4.3.2 Bluetooth Low Energy

Bluetooth Low Energy is used for devices that need a lower energy consumption than
classic Bluetooth [41]. Therefore, some processes are done differently for this type of
device. This section deals with classifying devices using the Low Energy variant of
Bluetooth.

Detecting Devices

Detecting devices for Bluetooth LE is less problematic than for Bluetooth Classic, as
there is no such thing as an un-/discoverable mode. If a device does not want to be
found it stops sending advertisement packages. In my testing, devices continued sending
advertisements, even after they were connected to some other device. Android provides
API calls for finding nearby BLE devices and notifies the application when a device is
found [46]. Details about the implementation can be found in section 4.4.4.

52

4.4. Android Implementation

Classification

Service discovery in Bluetooth LE works differently compared to Bluetooth Classic. As
explained before, the service discovery protocol is being used for the Classic variant of
Bluetooth. For the newer Low Energy variant, this is replaced by GATT [83]. More
information about GATT can be found in section 2.5.2. GATT uses a client-server
architecture, where the Low Energy device acts as a server, while the Android phone has
the client part. Using the GATT server not only information about advertised services
can be acquired, but also so-called properties can be read and written.

The classification method for this work has been derived from Celosia and Cunche [62].
They stated that many devices reveal much information about themselves openly via
their GATT server. Therefore, Bluetooth LE device classification does not rely on
some checksum or fingerprint, but on a standardized service called "Device Information
Service" [84]. From this service the following values are read:

• Manufacturer Name

• Model Number

• Software Revision

The used service and the values have standardized identifiers, which can be found in
the Assigned Numbers Document [48]. As the retrieved information represents what the
Android application tries to find out eventually, no further processing is needed.

4.4 Android Implementation
Before, it has been discussed which properties can be utilized to detect IoT devices in
the current environment. Also, approaches to make use of these properties have been
described. In this section, it will be presented how this knowledge is being transformed
into an Android application.

4.4.1 General Information
The Android application is developed using the IDE Android Studio in version "Dolphin".
As testing device, a OnePlus 5 [85] with LineageOS 19 (based on Android 12) [86] is
being used. The application is designed with research in mind. This means that the user
interface might not be fully polished for public release and might not adhere to Google’s
user interface guidelines. The interface is built to provide quick access to necessary
application functionality and to display information useful for the research done in this
work.

As programming language, Kotlin has been chosen and only official Android functions
are used strictly. The goal is to make the application executable on off-the-shelf Android

53

4. Methodology

phones, that do not have modified software or hardware. Therefore, no external hardware,
custom kernels, or other software modifications have been used. Also, root access is not
allowed (with a single exception explained later).

The focus of this section lies on the technical details of remote device property detection
using Android. Therefore, any code concerned with graphical output, or simple calcula-
tions and decisions are cut out from the code samples. This is done to make the samples
better understandable and to highlight the important parts of the code.

4.4.2 Device Detection
Prior to investigating, devices have to be detected first. Possible ways of device detection
have been explained in section 2.2. Since root access is unwanted, many paths described
in the mentioned section are not usable in Android. This section is about determining
the search space and how the actual search is conducted using the limited Android API.

Determining Search Space

Before scanning can start, the search space has to be determined. All addresses that
are not the standard gateway or the scanning device itself should be tested. Only IPv4
addresses are of concern for this thesis. First, the current link address of the WiFi
interface has to be determined. This is done using the code from listing 4.22.

1 va l connect iv i tyManager = getSystemServ ice (Context .
CONNECTIVITY_SERVICE) as ConnectivityManager

2 va l currentNetwork = connect iv i tyManager . act iveNetwork
3 va l l i n k P r o p e r t i e s = connect iv i tyManager . g e tL inkPrope r t i e s (

currentNetwork)
4 var myAddress : LinkAddress ? = n u l l
5 l i n k P r o p e r t i e s ! ! . l i nkAddre s s e s . forEach { cur rent −>
6 i f (cur rent . address i s Inet4Address) {
7 myAddress = cur rent
8 return@forEach
9 }

10 }

Listing 4.22: Get current WiFi IP address.

Prior to this code running, it is ensured that a WiFi network is connected. The code
uses official Android API functions to interact with system services. These API calls are
not part of the standard Java API. If somehow multiple addresses are configured, only
the first one is investigated. Determining the search space can be done as described in
section 2.1.3, but for the Android application an external library function is being used.
The SubnetUtils from the Apache Commons Net [87] library provide functions to get all
IP addresses from a IP address and subnet combination.

54

4.4. Android Implementation

After all potential IP addresses have been determined, the own address and the gateway
(also supplied by the Android API) are removed. The remaining addresses are targets for
scanning.

Device Scanning

Following the previous steps, all IP addresses are available in a string format. The
Android API provides functionality to check, if a network host is alive [88]. To speed up
device detection, coroutines are used for parallel scanning. The code used can be found
in listing 4.23.

1 fun ping (ip : Str ing , t imeout : Int = 100) : Boolean {
2 re turn InetAddress . getByName(ip) . i sReachab le (t imeout)
3 }
4
5 repeat (f i l t e r e d S e a r c h S p a c e . s i z e) { i −>
6 launch {
7 va l cur rent = f i l t e r e d S e a r c h S p a c e [i]
8 i f (ping (cur r ent)) {
9 va l dev i c e = DetectedDevice (cur r ent)

10 //UI code . . .
11 t r e eS t ra t egyCoord inato r . c l a s s i f y D e v i c e (dev i c e)
12 }
13 }
14 }

Listing 4.23: Testing devices using coroutines.

The list "filteredSearchSpace" contains the IP addresses in the search space as a list of
strings. Every entry gets investigated in its own coroutine. If an active device is found,
the first scanning strategy - the tree-based scanning from section 4.2.1 - is launched for
that device. Other methods - as described in section 2.2 - are not usable on unmodified
Android. To use them, raw rockets need to be opened, for which a program needs special
permissions to do so] [29].

Alternative Ping Function Before upgrading to LineageOS 19, the "isReachable"
method used above did not work. It always returned false, even for the own or loopback
IP addresses. To work around this restriction, the program "ping" as provided by the
system has been used. This variant can be seen in listing 4.24.

1 fun p ingA l t e rna t i v e (ip : S t r ing) : Boolean {
2 va l cmd = " ping −c 1 −W 0.1 $ ip "
3 va l p roce s s = Runtime . getRuntime () . exec (cmd)
4 i f (p roce s s . waitFor (100 , TimeUnit .MILLISECONDS)) {
5 re turn proce s s . waitFor () == 0

55

4. Methodology

6 }
7 proce s s . d e s t r oyFor c ib l y ()
8 re turn f a l s e
9 }

Listing 4.24: Device search using ping.

The "ping" program is used to issue a single ICMP ping request to the target. Despite
having a timeout of 0.1 seconds specified, the program terminates after one full second of
waiting. To get the waiting time down to the wanted value, "ping" is terminated by the
Android application after the specified waiting time. If Android terminates the program,
the scanned host is assumed to be unreachable. When the "ping" terminates in time, the
result as returned by the program is being used.

4.4.3 Property Detection
In the sections 4.1.1 and 4.1.2 detectable properties on IoT devices have been introduced.
Since Android does not allow access to all system APIs, not all scanning methods are
available like on a desktop machine. In this section, it will be explained which properties
of a remote machine can be detected and where the limits are with Android.

MAC Address

The MAC address has to be treated in a rather specific way on modern Android versions.
Since Android 10, access to the ARP table is restricted [89]. Without root access, it is
no longer possible to fetch the MAC address of network neighbors, as this information is
hidden due to privacy reasons. For this work, not being able to access the MAC addresses
from network neighbors is a significant restriction. As explained in section 4.2.1, the
MAC address is the starting point for analysis using the tree-based scanning approach.
Since the testing device is also being used as my daily driver, the software version was
not constant during the writing of this thesis. In the beginning, the Android version was
below 10. Therefore, it was possible to access the ARP table without any restrictions.
After updating Android, the tree-based approach was no longer functional. To avoid
losing an interesting approach for classification, I decided to use root to access the ARP
table anyway. This is the solely exception to the "unmodified Android" rule for this thesis.
Also, the scanning using automatically generated fingerprints - as described in section
4.2.2 - is designed to avoid using the MAC address. The code used to access the MAC
address from Android 10 upwards is shown in listing 4.25.

1 fun getMAC(ip : S t r ing) : S t r ing ? {
2 i f (! ping (ip)) { //Make sure host i s in ARP tab l e
3 re turn n u l l
4 }
5 var mac : S t r ing ? = n u l l
6 //Use root to read ARP tab l e

56

4.4. Android Implementation

7 va l p roce s s = Runtime . getRuntime () . exec (arrayOf ("/ system/ bin /
su " , "−c " , " ip neigh show "))

8 proce s s . waitFor ()
9 va l output = proce s s . inputStream . buf feredReader ()

10 output . forEachLine { l i n e −>
11 va l s p l i t = l i n e . s p l i t (" ")
12 i f (s p l i t [0] == ip) {
13 mac = s p l i t [4]
14 return@forEachLine
15 }
16 }
17 re turn mac
18 }

Listing 4.25: Get MAC address using root.

Pinging the target host ensures that the MAC address will be stored in the ARP table.
If the target host is not active, or any other error occurs, this method will not deliver
any result. After acquiring root privileges, the system program "ip" is used to list the
content of the ARP table. An example of an ARP table entry can be seen in listing 4.26.

1 1 0 . 0 . 0 . 1 dev enp0s31f6 l l a d d r 3 8 : 1 0 : d5 : 1 8 : 2 3 : 2 c REACHABLE

Listing 4.26: ARP table example entry.

Most important here are the first and the fifth column, as they represent the IP address
and the MAC address accordingly. After buffering the output from the program "ip", the
table is searched programmatically and the first matching line is returned.

Port Scanning

TCP and UDP services running on a network device need to be accessed using their
corresponding ports [21][25]. Both protocols can be used with Android using the built-in
functions. When scanning TCP ports it can be clearly distinguished between open and
closed ports, as a connection has to be established before data can be transferred [36].
Searching for open UDP ports is more complicated. No connection has to be established
and for getting responses it is necessary to know the protocol used [27]. On non-rooted
Android, there is no way to send raw data packets over the network interface [90].
Therefore, some quick ways of scanning through entire port ranges, as implemented in
Nmap, are not available.

TCP As no raw sockets are available, only the TCP connect method as seen in Nmap
[36][38] can be used. The different scanning methods have already been explained in
2.4.1. To check a port range, the Android device tries to establish a full TCP connection
with every port that should be scanned. As the Android API for sockets [91] needs to be
used, two outcomes are possible:

57

4. Methodology

Open When the socket construction succeeds, the connection is fully usable. As already
done with the TCP handshake, packets can be sent in both directions without any
firewall dropping them.

Error When the socket creation throws an exception, it is not fully clear what caused it.
ICMP error messages or timeouts are among the causes of a socket creation failure.
The Android API does not expose more information. The socket is not useable and
no communication is possible.

Despite all the limitations, it is still enough information to know if a service can be
reached or not. The code used for this functionality can be seen in listing 4.27.

1 fun isTcpPortReachable (ip : Str ing , port : Int) : Boolean {
2 re turn try {
3 va l sock = Socket (ip , port)
4 sock . c l o s e ()
5 t rue
6 } catch (e : IOException) {
7 f a l s e
8 }
9 }

Listing 4.27: TCP port check.

UDP As described in section 2.4.1, it might be difficult to get useful results for UDP
scanning. Despite the difficulties, not much information is lost when comparing the
achievable scan results from Android with those from Nmap [27]. Looking at the built-in
API for UDP communication in Android [92][93], UDP packages can be composed, sent,
and received without any restrictions. Also, as a difference to TCP, it is possible to
detect an ICMP port unreachable message when using UDP on Android. The source
code, used for testing UDP ports on Android, can be found in listing 4.28.

1 fun isUdpPortReachable (ip : Str ing , port : Int , t imeout : Long =
100L , testData : ByteArray = " PortCheck " . toByteArray ()) :
Boolean {

2 re turn try {
3 va l sock = DatagramSocket ()
4 va l addr = InetAddress . getByName(ip)
5 sock . connect (addr , port)
6 va l t e s tPacket = DatagramPacket (testData , testData . s i z e)
7 sock . send (te s tPacket)
8 s l e e p (timeout)
9 sock . send (te s tPacket)

10 sock . c l o s e ()
11 t rue

58

4.4. Android Implementation

12 } catch (e : PortUnreachableException) {
13 f a l s e
14 } catch (e : IOException) {
15 f a l s e
16 }
17 }

Listing 4.28: UDP port check.

To trigger a "PortUnreachableException" using UDP, two packets need to be sent. The
first one will be sent without any errors. When trying to send the second packet, the
exception will be thrown due to an ICMP port unreachable message received during the
waiting time in between. As stated before, there is no guarantee that an ICMP message
will be sent. If both messages can be sent without any errors, the method will return
true. This indicates that a service is listening to the port under investigation, or that all
packets are dropped silently. If any error occurs, the port is assumed to be unreachable.
In the example above, no special action is taken when an ICMP port unreachable message
is received, as for my testing the reason for unavailability is of no concern.

Service Responses

As explained before, in Android TCP and UDP connections can be established and used.
Therefore all responses coming from services, reachable with these protocols, can also be
captured [94]. Libraries can be used to simplify supporting complex protocols and gain
even more information about remote devices. This section focuses on TCP connections,
as - in my experience - most services of interest for IoT classification use this protocol.

Banner Grabbing A simple form of receiving information from a service is banner
grabbing. This approach has already been thoroughly analyzed in section 2.4.2. The
code used for Android can be found in listing 4.29.

1 fun getTcpBanner (ip : Str ing , port : Int , t imeout : Int = 100) :
S t r ing ? {

2 var data = " "
3 t ry {
4 va l sock = Socket (ip , port)
5 sock . use {
6 i t . soTimeout = timeout
7 va l inp = i t . getInputStream () . r eader ()
8 whi l e (t rue) {
9 t ry {

10 data += inp . read () . toChar ()
11 } catch (_: SocketTimeoutException) {
12 return@use
13 }

59

4. Methodology

14 }
15 }
16 } catch (e : ConnectException) {
17 re turn n u l l
18 }
19 re turn data . ifEmpty { n u l l }
20 }

Listing 4.29: TCP banner grabbing.

For banner grabbing a TCP socket is created, using the supplied IP address and port.
After that data is read until the timeout is reached. If any data has been read, it is
returned to the calling function. All opened resources are closed after use.

HTTP Many (IoT) devices expose web servers, that can be used for gathering more
information about the device in question. To aid with application development, a library
like Retrofit [95] might be adopted. Retrofit is an HTTP client, that also supports the
de-/serialization of data passed through the connection in various formats, e.g. XML and
JSON. In listing 4.30 an example is shown, demonstrating the use of Retrofit to fetch
data from a remote API.

1 va l r e t r o f i t = R e t r o f i t He l p e r . g e t In s tance (" http :// $ ip / api ")
2 va l ap i = r e t r o f i t . c r e a t e (RemoteWebApi : : c l a s s . java)
3 va l data = api . g e t I n f o () . execute () . body ()
4 i n t e r f a c e ExampleApi {
5 @GET("/ infoEndpoint ")
6 fun g e t I n f o () : Cal l<InfoResponse>
7 }

Listing 4.30: Usage example of Retrofit.

The Retrofit library allows to access information distributed using HTTP. Through
the use of annotations, the structure of the remote API is declared. Data formats are
described using the built-in Kotlin/Java data types. Describing all capabilities and the
usage of the library is out of scope for this work, nevertheless, details about the usage of
Retrofit can be read in the official documentation [95].

Device Descriptors using SSDP/UPnP

SSDP is a protocol used to advertise and find services on the local network [81]. Since
UDP multicast data transfer is being used, the protocol only works in the local network
but not across the internet. One big advantage of detecting devices using SSDP is that
only a small amount of traffic is generated during service discovery. Nevertheless, not all
devices can be found using this method, as not all IoT devices implement the protocol.
All needed networking features are fully supported by Android. During App development,

60

4.4. Android Implementation

an external library that only utilizes Java API calls for network communication has been
used [96]. It is also advertised as being fully compatible with Android. In my application,
this library is used to discover SSDP compatible devices in the current network and to
locate their device descriptors. The code used to discover the devices is shown in listing
4.31.

1 fun scanUPNP(timeout : Long = 1000) : Co l l e c t i on <SsdpService> {
2 va l d ev i c e s = mutableListOf<SsdpService >()
3 va l s sdpCl i en t = SsdpCl ient . c r e a t e ()
4 va l l i s t e n e r = ob j e c t : D i s cove ryL i s t ene r {
5 o v e r r i d e fun onServ i ceDi scovered (s e r v i c e : SsdpServ ice ?) {
6 i f (s e r v i c e != n u l l) {
7 dev i c e s . add (s e r v i c e)
8 }
9 }

10 o v e r r i d e fun onServiceAnnouncement (announcement :
SsdpServiceAnnouncement ?) {}

11 o v e r r i d e fun onFai led (ex : Exception ?) {}
12 }
13 s sdpCl i en t . d i s c o v e r S e r v i c e s (SsdpRequest . d i scoverRootDevice () ,

l i s t e n e r)
14 Thread . s l e e p (timeout)
15 s sdpCl i en t . s topDiscovery ()
16 re turn dev i c e s
17 }

Listing 4.31: Device discovery using SSDP.

This function actively searches for UPnP devices, ignoring errors or other advertisements
captured on the network. After the specified timeout the search ends and a list of found
devices is returned to the caller. Using built-in functions from Android, the descriptor
for each device is fetched and data of interest is extracted.

mDNS/DNS-SD Services

DNS-SD is another mechanism for advertising and discovering services on the network
using DNS mechanisms [33]. Using mDNS this mechanism works in the local network
without any additional (DNS) server. Like with UPnP, devices need to implement it so
that they can be found using this method. When developing for the Android platform,
support for this type of service advertising and discovering is already built into the
standard API by Google [97]. In my application, the built-in functions are used to test
devices for the presence of a specific service. The code used is shown in listing 4.32.

1 fun checkMdnsService (context : Context , s e r v i c e : Str ing , ip :
Str ing , t imeout : Long = 1000) : Boolean {

61

4. Methodology

2 va l nsdManager = context . getSystemServ ice (Context .NSD_SERVICE)
as NsdManager

3 va l addr = InetAddress . getByName(ip)
4 va l myThread = Thread . currentThread ()
5 var found = f a l s e
6 va l r e s o l v e L i s t e n e r = ob j e c t : NsdManager . Re so l v eL i s t ene r {
7 . . .
8 o v e r r i d e fun onServ iceReso lved (s e r v i c e I n f o : NsdServ i ce In fo) {
9 i f (s e r v i c e I n f o . host . equa l s (addr)) {

10 found = true
11 myThread . i n t e r r u p t ()
12 }
13 }
14 }
15 va l d i s c o v e r y L i s t e n e r = ob j e c t : NsdManager . D i s cove ryL i s t ene r

{
16 o v e r r i d e fun onDiscoveryStarted (regType : S t r ing) {}
17 o v e r r i d e fun onServiceFound (s e r v i c e : NsdServ i ce In fo) {
18 nsdManager . r e s o l v e S e r v i c e (s e r v i c e , r e s o l v e L i s t e n e r)
19 }
20 . . .
21 }
22 nsdManager . d i s c o v e r S e r v i c e s (s e r v i c e , NsdManager .

PROTOCOL_DNS_SD, d i s c o v e r y L i s t e n e r)
23 t ry {
24 Thread . s l e e p (timeout)
25 } catch (_: Inter ruptedExcept ion) {}
26 nsdManager . s t opSe rv i c eD i s cove ry (d i s c o v e r y L i s t e n e r)
27 re turn found
28 }

Listing 4.32: Service testing using DNS-SD over mDNS.

The "NsdManager" does not search for devices, but for services that have the specified
name. If a matching service is found, its location is checked against the specified IP
address. When the found one and the target address actually match, the search is
stopped, and true is returned. Since not all devices reply equally fast, a timeout can be
set. After the timeout the search is also stopped, but with a false result. It is necessary
to use this procedure, as Android’s API does not allow for browsing network services.

4.4.4 Bluetooth Device Classification
Android uses its own Bluetooth stack [98], which substantially differs from BlueZ [99], the
default in many Linux distributions. Therefore, tools available for desktop Linux systems

62

4.4. Android Implementation

do not work on Android. To use Bluetooth on an Android device, the provided API
needs to be used. Both, Bluetooth Classic and Low Energy are supported by Android’s
Bluetooth stack.

Bluetooth Classic

As mentioned before, the classification method used for my Android application is based
on Herfurt and Muliner’s work [60]. Details about the modified procedure can be seen in
section 4.3. This section is about the Android implementation of the described procedure.
In the application, Bluetooth Classic is scanned first. There is no particular reason to
prioritize one standard over the other, but it is not possible to search for both device
types at the same time.

Device Detection Before any classification can take place, devices need to be detected
first. Here the application is limited to - in Bluetooth terms - discoverable devices.
To start the discovery on Android, a filter indicating the interesting "Intents" has to
be created first. Another important part is the receiver, which handles the incoming
intents. With the filter and the receiver ready, the combination of these can be registered
to actually receive intents. The last step to actually discover devices is to use the
"BluetoothManager" to launch device discovery. The code used to do the described steps
is given in listing 4.33.

1 va l f i l t e r = I n t e n t F i l t e r (BluetoothDevice .ACTION_FOUND)
2 f i l t e r . addAction (BluetoothDevice .ACTION_UUID)
3 f i l t e r . addAction (BluetoothAdapter .ACTION_DISCOVERY_FINISHED)
4 r e g i s t e r R e c e i v e r (c l a s s i c R e c e i v e r , f i l t e r)
5 va l bluetoothManager : BluetoothManager = getSystemServ ice (

BluetoothManager : : c l a s s . java)
6 bluetoothManager . adapter ? . s t a r tD i s cove ry ()

Listing 4.33: Registering receiver for receiving intents.

The receiver has been omitted here, as its content will be explained below, together with
other steps of the fingerprinting procedure.

Service Discovery After a device has been found, service discovery can be started.
A discovered device will be reported to the receiver declared and registered above. As
is shown in listing 4.34, the receiver directly starts the service discovery for the found
device.

1 o v e r r i d e fun onReceive (context : Context , i n t e n t : In tent) {
2 when (i n t e n t . a c t i on) {
3 BluetoothDevice .ACTION_FOUND −> {
4 va l dev i c e : BluetoothDevice ? =
5 i n t e n t . ge tParce l ab l eExt ra (BluetoothDevice .EXTRA_DEVICE)

63

4. Methodology

6 dev i c e ? . fetchUuidsWithSdp ()
7 }
8 . . .
9 }

10 }

Listing 4.34: Fetch services on device discovery.

Only the part of the code dealing with found devices is listed, as it is the only substantial
part for starting service discovery. Another intent will be received when service discovery
is complete. Details about the Service Discovery Protocol(SDP) can be found in section
2.5.1.

Calculating Fingerprint When the next intent is received, all information needed to
calculate the fingerprint has been gathered. The code can be seen in listing 4.35. The
function "onReceive" is the same as in listing 4.34, but shows another section.

1 o v e r r i d e fun onReceive (context : Context , i n t e n t : In tent) {
2 when (i n t e n t . a c t i on) {
3 . . .
4 BluetoothDevice .ACTION_UUID −> {
5 va l dev i c e : BluetoothDevice ? =
6 i n t e n t . ge tParce l ab l eExt ra (BluetoothDevice .EXTRA_DEVICE)
7 va l uuids : Array<Parce lab le >? =
8 i n t e n t . getParce lab leArrayExtra (BluetoothDevice .EXTRA_UUID)
9 i f (dev i c e != n u l l && uuids != n u l l) {

10 va l hash = generateHash (uuids)
11 . . .
12 }
13 }
14 . . .
15 }
16 }

Listing 4.35: Calculate fingerprint for Bluetooth device.

The "device" variable contains information about the current remote device, including
the MAC address. In the variable "uuids" are - as the name suggests - the UUIDs of the
advertised services. This is all the information needed to calculate the fingerprint, as
described in section 4.3.1.

Bluetooth Low Energy

After the scanning of classic devices has been completed, the low-energy scan can be
started. Again, details of the underlying protocols can be found in section 2.5.2 in the

64

4.4. Android Implementation

background chapter of this work. This section aims to describe the Android implementa-
tion details and the problems that occurred on the path to a working implementation.

Device Detection Scanning for low-energy devices has many similarities with classic
Bluetooth scanning, but there are some noteworthy differences. First, the scan does
not stop automatically after a while. This means it has to be ensured that scanning
is disabled after a specified time since the search would never end otherwise. Second,
devices can appear more than once during a scan, depending on the interval of their
advertisements. The code used to control the scan is given in listing 4.36.

1 va l handler = Handler (Looper . getMainLooper ())
2 va l bluetoothManager : BluetoothManager = getSystemServ ice (

BluetoothManager : : c l a s s . java)
3 va l scanner = bluetoothManager . adapter ? . b luetoothLeScanner
4 handler . postDelayed ({
5 scanner ? . stopScan (l e R e c e i v e r)
6 Thread . s l e e p (500)
7 scanLeServ i c e s ()
8 } , SCAN_PERIOD)
9 scanner ? . s ta r tScan (l e R e c e i v e r)

Listing 4.36: Bluetooth LE device detection.

As with Bluetooth Classic, the Bluetooth manager is used to get a scanner, while a
receiver object handles detected devices. A handler is used to stop the scanning after
a specified period of time. In my opinion, the Android Bluetooth Low Energy API is
sometimes unstable and unreliable. This causes many errors, which will be partially
described below. Here, problems with the Bluetooth LE API result in 500ms sleep after
the discovery has been completed. During my testing, this was necessary in order to
avoid errors during communication with the remote devices later on. The receiver stores
found devices in a list and checks beforehand if a found device is already present in that
list.

Service Discovery After all available devices have been discovered, they are searched
for the "Device Information Service". This service - if present - provides human-readable
information about the device type and its software version. As mentioned before, the
Low Energy API of Android often causes problems:

• Generic Errors: When trying to communicate with a Bluetooth Low Energy device,
often the error 133 is being returned. This is a generic error and the only way to
solve it is to retry the operation. It has to be ensured that there are no infinite
retries, as these might cause an infinite loop.

65

4. Methodology

• Many Callbacks: Every operation results in a callback, even if the request is launched
from a separate thread already. This makes it difficult to handle responses, as the
application state has to be shared with the callback.

• Single Operations: Only a single operation per remote device can be started at
once. Trying to do multiple ones will result in errors.

To aid with these problems the library "BleGattCoroutines" [100] is being used. It
automatically takes care of retries and does not require the use of callbacks. This makes
the resulting code, as seen in listing 4.37, much easier to read and write.

1 va l s e t t i n g s = GattConnection . Connect ionSet t ings (f a l s e , f a l s e ,
true , BluetoothDevice .TRANSPORT_LE, BluetoothDevice .
PHY_LE_1M)

2 f o r (dev i c e in l e D e v i c e L i s t) {
3 va l connect ion = GattConnection (device , s e t t i n g s)
4 t ry {
5 withTimeout (5000) {
6 connect ion . connect ()
7 }
8 } catch (e : TimeoutCance l lat ionExcept ion) {
9 connect ion . c l o s e ()

10 cont inue
11 }
12 va l s e r v i c e s : L i s t <BluetoothGattServ ice >
13 try {
14 withTimeout (5000) {
15 s e r v i c e s = connect ion . d i s c o v e r S e r v i c e s ()
16 }
17 } catch (e : TimeoutCance l lat ionExcept ion) {
18 connect ion . c l o s e ()
19 cont inue
20 }
21 . . .
22 }

Listing 4.37: Service discovery for Bluetooth LE.

When defining the connection settings, it is important to set the transport method to
LE explicitly. Otherwise, devices supporting both (Classic and LE) modes will fail to
connect. The functions the library provides, do not exit automatically after a specified
timeout. This can cause infinite waits on errors. Therefore, the "withTimeout" function
shall be used to abort the Bluetooth communication when the timeout is reached. After
connecting to the GATT server on the remote device and fetching the advertised services,
it is possible to interact with the discovered services.

66

4.4. Android Implementation

Fetch Characteristics In this work, characteristics are only read. After finding the -
previously mentioned - device information service, the goal is to acquire more information
about the device under investigation. This is done by fetching the characteristics of
interest. Again, communication with the Bluetooth Low Energy device is aided by the
"BleGattCoroutines" [100] library. The code used is provided in listing 4.38.

1 f o r (c h a r a c t e r i s t i c in s e r v i c e . c h a r a c t e r i s t i c s) {
2 va l va lue : S t r ing
3 try {
4 withTimeout (5000) {
5 connect ion . r e a d C h a r a c t e r i s t i c (c h a r a c t e r i s t i c)
6 value = St r ing (c h a r a c t e r i s t i c . va lue)
7 }
8 } catch (e : TimeoutCance l lat ionExcept ion) {
9 connect ion . c l o s e ()

10 continue@deviceLoop
11 }
12 when (c h a r a c t e r i s t i c . uuid . cutTo16BitAsLong ()) {
13 0x2a29L −> { // Manufacturer Name
14 b leDev ice . vendor = value
15 }
16 . . .
17 }
18 }

Listing 4.38: Reading characteristics with Bluetooth LE.

Here it shall be assumed, that the service variable contains the device information service.
As before, for the reading of characteristics, the timeout has to be handled externally
of the used library. As mentioned in section 2.5.2, some characteristics have officially
assigned UUIDs. Therefore, based on the UUID of the fetched characteristic, the meaning
of the contained value can be determined. The gathered information can then, without
any further modification, be displayed to a user.

67

CHAPTER 5
Results

This chapter examines the results achieved by the methods described in chapter 4. Here,
the found results will be presented and explained. Later, in chapter 6, these results will
be discussed and interpreted.

5.1 Found Properties - IP-based Devices
During this work, many devices have been analyzed to find properties, usable to identify
them within a network. In this section, selected devices will be presented and it will be
specifically explained, how the detection process works for each of them. If available for a
specific device, also the gathering process for additional information will be demonstrated.
This section only covers manually analyzed devices, as there are no deviating procedures
for automatically generated fingerprints.

5.1.1 Samsung M262x 282x Printer
Samsung M262x 282x Printer is not a single printer model, but a series of devices with
different capabilities. When the Android application encounters a device that has a MAC
address starting with "30:CD:A7" (Samsung Electronics), the Samsung device pool is
used for device classification. At the time of writing, this pool only contains a single step,
which is used to detect the previously mentioned class of printers.

This type of printer advertises its presence using UPnP. In their device descriptors, these
devices have set their "friendlyName" to "Samsung M262x 282x Series". This is a very
good indicator for a device belonging to the suspected series. The code used to test for
the explained characteristic can be seen in listing 5.1.

1 va l s e r v i c e = treeSt ra t egyCoord inato r . getUPnPDeviceFromIP (
dev i c e . ip) ? : r e turn n u l l

69

5. Results

2 i f (getUPnPDescr ipt ionFie ld (s e r v i c e , " fr iendlyName ") . s tartsWith
(" Samsung M262x 282x S e r i e s ")) {

3 va l updatedDevice = SamsungM262x282xPrinter (dev i c e . ip)
4 re turn Pair (updatedDevice , nextScanPool)
5 }
6 re turn n u l l

Listing 5.1: Test for a Samsung M262x 282x printer.

When the test succeeds, an object representing a device with a higher detection level is
returned to the application controller. As described in section 4.2.1, the next scanning
pool will be started to continue with the device classification, if it is not empty. To the
best of my knowledge, the printer only reveals the model family, but not the concrete
model over the network.

As already mentioned in section 4.1.1, a web service called SyncThru is running on
this type of printer. To the best of my knowledge, there is no public documentation
available for this software. Through manual analysis, I was able to get machine-readable
information, provided in the JSON format, from this web service. Since the content
header of the HTTP response is not set correctly due to a bug, Retrofit [95] can not be
used for fetching and automatic deserialization. Therefore, two internal components of
Retrofit, OkHttp [101] for receiving data over HTTP and GSON [102] for deserialization,
need to be used manually. The used code is shown in listing 5.2.

1 va l u r l = URL(" http :// $ ip /sws/app/ in fo rmat ion / s u p p l i e s / s u p p l i e s
. j s on ")

2 va l c l i e n t = OkHttpClient ()
3 va l r eque s t : Request = Request . Bu i lder () . u r l (u r l) . bu i ld ()
4 va l c a l l = c l i e n t . newCall (r eque s t)
5 va l re sponse = c a l l . execute ()
6 va l t ex t = response . body () ? . s t r i n g ()
7 va l gson = Gson ()
8 va l data = gson . fromJson (text , SamsungSuppliesResponse : : c l a s s .

java)

Listing 5.2: Fetching data from Samsung printer.

After fetching the data as plain text, it is transformed into an object of the type
"SamsungSuppliesResponse". This class defines which properties are read from the
retrieved text and therefore defines the names and datatypes of the fields. The data
structure definition is shown in listing 5.3.

1 data c l a s s SamsungSuppliesResponse (
2 va l toner_black : SamsungSupply ,
3 va l drum_black : SamsungSupply
4)

70

5.1. Found Properties - IP-based Devices

5 data c l a s s SamsungSupply (
6 va l remaining : Int
7)

Listing 5.3: Defintion of data structure for Samsung printers.

Not all retrieved information is mapped to data fields since it is enough to fetch a
small number of values for demonstration purposes. Also, the printer I used for testing
only supported monochromatic printing, therefore many provided values had no useful
meaning.

5.1.2 VU+ Satellite Receivers
Another interesting type of device are the VU+ satellite receivers [103]. For my testing, I
used two different models: the "VU+ Solo" and "VU+ Zero", both with the VTi firmware
installed. These receivers are based on Linux and offer a variety of network services.
Among them are:

• Telnet

• Samba (Network file storage and NetBIOS)

• Web interface (with machine-readable API)

To check for this device class, the NetBIOS names are used. The code used to do so is
listed in listing 5.1.2.

1 va l names = getNetBIOSNames (dev i c e . ip)
2 i f (names != n u l l && names . conta in s ("VUPLUS")) {
3 va l model = names . f i r s t () . l owercase () . s ub s t r i ng (2)
4 . r ep l a c eF i r s tChar { i f (i t . isLowerCase ()) i t . t i t l e c a s e (Loca le .

ROOT) e l s e i t . t oS t r i ng () }
5 va l vuplusDevice = VuplusDevice (dev i c e . ip , model)
6 re turn Pair (vuplusDevice , nextScanPool)
7 }
8 re turn n u l l

These satellite receivers advertise multiple names over NetBIOS. One of them is "VU-
PLUS", the vendor name. If this name is found, the concrete model can be determined
by looking at the first name advertised, as it will contain the model name, prefixed with
"VU". As mentioned before, also a web interface is exposed. It is called "OpenWebif" and
not only exposes a graphical frontend, but also a well-documented machine interface [104].
In this work, the web interface is used to fetch the currently active TV station and -
more important for this thesis - the installed firmware version.

71

5. Results

1 va l r e t r o f i t = R e t r o f i t He l p e r . g e t In s tance (" http :// $ ip / ")
2 va l ap i = r e t r o f i t . c r e a t e (VuplusVTIApi : : c l a s s . java)
3 va l data = api . getAbout () . execute () . body ()
4
5 i n t e r f a c e VuplusVTIApi {
6 @GET("/ api /about ")
7 fun getAbout () : Cal l<VuplusVTIAboutResponse>
8 }

Listing 5.4: Getting data from VU+ receiver.

Additionally, it is possible to fetch a screenshot of the current HDMI output of the satellite
receiver. This screenshot is also served by the previously mentioned web interface. This
possibility was used to demonstrate the versatility of Android’s user interface. The code
used is shown in listing 5.5.

1 va l s c r e en sho t = ImageView (context)
2 Picas so . get () . load (" http :// $ ip / grab ? format=jpg&mode=a l l&r =720")
3 . memoryPolicy (MemoryPolicy .NO_CACHE, MemoryPolicy .NO_STORE) .

i n to (s c r e en sho t) ;
4 s c r e en sho t . layoutParams = ViewGroup . LayoutParams (MATCH_PARENT,

720)
5 layout . addView (s c r e en sho t)

Listing 5.5: Fetching screenshot from remote device.

To aid with the application development, a library called Picasso [105] has been used.
Among other features, Picasso can load images from HTTP servers and place them in
ImageView objects from Android. Screenshots from the Android application can be found
in section 5.3.1.

5.1.3 Sony PlayStation 4 (Pro)
The PlayStation 4 is a device that is difficult to detect. Presumably because of its
intended use case, it does not expose many services to the network. Also, the installed
firmware [106] is in an uncommon (probably proprietary) format, unreadable by any
standard tool. Therefore it is out of scope for this work to analyze the firmware for this
device. A port scan using Nmap ends with results as seen in listing 5.6.

1 PORT STATE SERVICE
2 9295/ tcp open armcenterhttps
3 41800/ tcp open unknown

Listing 5.6: Port scan of a PlayStation 4 Pro using Nmap.

72

5.2. Fingerprints - Bluetooth Devices

Banner grabbing on these two ports leads to a generic or no result. Nevertheless, the
TCP service on port 41800 is advertised as "_spotify-connect._tcp" using DNS-SD over
mDNS. The collected information can be transformed into code as seen in listing 5.7.

1 i f (isTcpPortReachable (dev i c e . ip , 9295) &&
2 isTcpPortReachable (dev i c e . ip , 41800) &&
3 checkMdnsService (ctx , " _spot i fy−connect . _tcp " , dev i c e . ip)) {
4 va l ps4Device = PS4Device (dev i c e . ip)
5 re turn Pair (ps4Device , nextScanPool)
6 }
7 re turn n u l l

Listing 5.7: Testing for a PlayStation 4.

Running applications might expose different ports, or send out identifiable information
(as shown before in listing 4.12). Nevertheless, this behavior has to be triggered by user
interaction and is therefore not suitable for automatic device classification. Having the
MAC address as first step for classifying devices prevents devices from other vendors to
be wrongly classified as PlayStation 4. Nevertheless, I have not found a unique indicator
to classify the PS4, nor a way to distinguish the different sub-models.

5.2 Fingerprints - Bluetooth Devices
As with IP-based network devices, many Bluetooth devices have been used for testing
throughout the writing of this work. In this section, selected fingerprints of the tested
devices will be compared and analyzed. For easier comparison, the devices will be sorted
by their vendors. Also, having the MAC address as a major distinguishing feature
between devices favors this type of sorting. Details about the fingerprinting algorithm
can be read in section 4.3.1. The beginning of this section deals with Bluetooth Classic
only. The results are presented in the following format:

• Device name

– First 24 bits of the MAC address → Registered vendor name
– Calculated hash value

Sennheiser Multiple wireless headphones from the brand Sennheiser have been tested.
The gathered results are shown below:

• Momentum True Wireless 2

– 00:1B:66 → Sennheiser electronic GmbH & Co. KG
– 0f1d271bd068db5597abfaf8b993f0350e040b02ba0a258e5ab677bb120e4c4d

73

5. Results

• Momentum True Wireless 3

– 80:C3:BA → Sennheiser Consumer Audio GmbH
– 05f4a45cb6cdc90302f47b1c745381ee382cde0e34614e55ae8b7c1885a11edc

• CX 400BT True Wireless

– 00:1B:66 → Sennheiser electronic GmbH & Co. KG
– 0f1d271bd068db5597abfaf8b993f0350e040b02ba0a258e5ab677bb120e4c4d

• CX Plus True Wireless

– 00:1B:66 → Sennheiser electronic GmbH & Co. KG
– e2eabb150b9e9c9fa7aeaa5fc4b5552b7c7207fe4e9aa6e32de766bdc6a8513e

The Momentum True Wireless 3 headphones are the newest model among them and
have a different MAC address characteristic than the other tested devices. Additionally
the registered vendor name differs, therefore MTW3 headphones are never compared to
the others during a classification run. Looking at the other fingerprints, the previous
generation, the Momentum True Wireless 2 headphones can not be distinguished from the
CX 400BT. They share the first 24 bit of the MAC address and also the same hash value,
resulting in indistinguishable fingerprints. Albeit sharing the first 24 bit of the MAC
address, the CX Plus True Wireless headphones have a different hash value compared to
the other devices.

JBL For additional testing, JBL devices have been chosen. Instead of headphones,
mostly portable speakers have been investigated. Again, the gathered results are shown
below:

• Flip 3

– F8:DF:15 → Sunitec Enterprise Co.,Ltd
– B8:69:C2 → Sunitec Enterprise Co., Ltd.
– 665eb72b41ef564d9b63dbd01cb120551878b77c3a6e50face7a98eed61321b0

• Xtreme

– F8:DF:15 → Sunitec Enterprise Co.,Ltd
– 665eb72b41ef564d9b63dbd01cb120551878b77c3a6e50face7a98eed61321b0

• Charge 5

– F8:5C:7E → Shenzhen Honesty Electronics Co.,Ltd.
– beb950fe47694d5968a9fd0e5525be8e8b23de462d3c391d77a815fdf25af162

74

5.2. Fingerprints - Bluetooth Devices

• Wave 100TWS

– 6C:47:60 → Sunitec Enterprise Co.,Ltd

– 8fb1d54c7e6974d7df62f219360b843d10bd9a27f9d8d4f8f199e4452604e3e8

The JBL Flip 3 has two entries for the vendor, because I tested two devices that are
optically identical, but have a different vendor prefix set on their MAC address. The
circumstance, that multiple devices of a single series - the two tested JBL Flip 3 portable
speakers - do advertise different vendor prefixes on their MAC addresses, makes clear
why not only these first 24 bis of the MAC address are compared, but also the registered
short name of the vendor. Nevertheless, the fingerprinting and classification algorithm
can not distinguish between the JBL Flip 3 and the JBL Xtreme speakers. Both, the
first 24 bits of the MAC address and the hash value match. The remaining two devices,
JBL Charge 5 and JBL Wave 100TWS, both have - for this test set - unique hash values
and are therefore distinguishable by the approach used in this work.

5.2.1 Bluetooth Low Energy - Device Information Service

As explained in section 4.3.2, for Bluetooth Low Energy there is no fingerprinting
algorithm used. Instead, the device information service is used if available, to fetch
information about the device and firmware installed. In this section, the tested devices
will be listed and it will be stated if they expose the desired service. The results are
shown in table 5.1. Devices that do not support Bluetooth Low Energy will are not
listed here, also not all devices used for Bluetooth Classic testing have been available
throughout the whole time of the creation of this thesis. Therefore it is possible, that
a device used before, supports Bluetooth Low Energy, but is not listed here. Most of

Device Name Device Information Service
Philips Hue Iris ✓

Pine64 PineTime ✓
JBL Charge 5 ×

Sennheiser Momentum True Wireless 3 ✓
Sennheiser CX Plus True Wireless ✓

Table 5.1: Tested Bluetooth Low Energy devices.

the tested devices (all except the JBL Charge 5) exposed the device information service.
On the PineTime smartwatch, the service was accessible all the time, without any way
to turn it off. Also, both Sennheiser headphones still advertised their presence over
Bluetooth Low Energy a few minutes after they have been enclosed in their case.

75

5. Results

5.3 Android Application
Building an Android application is a main part of this work. With this Android application,
the found approaches are tested and evaluated. This section is about the capabilities
and limitations of the built Android application.

5.3.1 Visual Appearance
A central part of many Android applications is their user interface. In this section, the
interface of the application, developed for this thesis, will be presented and explained.
The icons used in this application are not included with Android, but are taken from
Flaticon [107].

Main Page

The main page is shown on application startup. From there the two main features can
be reached: IP-based scanning and Bluetooth scanning. A screenshot of the main page
is shown in figure 5.1. The two buttons lead to the respective activities, conducting

Figure 5.1: Android application main page.

the appropriate scans. The back and home buttons work as expected and close the
application. Before starting the IP-based scan (WiFi scan), the application checks for an
active WiFi connection. It is not possible to start the new activity when no connection
is found.

76

5.3. Android Application

WiFi Scanning Page

IP-based scanning is the most important part of this thesis. Therefore, the WiFi scanning
page is also the most important page of this Android application. Here the scanning
results will be displayed in a summarized form, as is shown in figure 5.2. Each card

Figure 5.2: Android application IP-based scanning.

displayed represents a scanning result. During the scanning process, the displayed cards
can change. The following explanations refer to the results of a fully conducted scan.
Below, the possible outcomes will be explained:

Generic Device If the presence of a device has been detected, but no vendor name
is known for the detected MAC address, the device will be displayed as "Generic
Device". This card corresponds to detection level 0.

Device from ... This card basically has the same meaning as the "Generic Device" card,
but a vendor name has been found in the MAC vendor table.

Device type A scanning step found a match for an investigated device. The generic
message in the upper line is replaced by the name of the device type. This indicates
a detection level greater or equal to 2. Additionally, a custom symbol will be
displayed on the left side of the card.

Fingerprint When a device card has a fingerprint symbol on the left side, a match has
been found using the automatically generated fingerprints. When only one firmware

77

5. Results

image matches, the name is shown in the upper line of the card. If multiple images
match, the number of matching firmware images is displayed instead.

Information symbol The information symbol on the right side has different meanings,
dependent on which type of card it is displayed on. If it is on a "Device type" card,
it indicates that additional information about the device can be fetched. In this
case, it also implies a detection level of 4. On a "Fingerprint" card, the symbol
indicates that multiple firmware images match the device in question. In both cases,
the card can be clicked to open the detail page. This page will be described below.

Additionally to the cards, on the lower end of the page, a status bar is displayed. Here,
messages indicating the current progress of the scan can be read.

Details Page

As mentioned before, the detail page can provide additional information for single devices,
or a list of matching firmware images for a fingerprint match. Examples of these views
are shown in figure 5.3 for the detailed information about a single device and in figure
5.4 for the list of matching firmware images. At the top of both pages, the currently
selected card is displayed. For the single device additional information view, the page
body layout completely depends on custom code written per device. Figure 5.3 is just
a single example of what this page might look like. When viewing the details page for
an automatically generated fingerprint match, the additional information section will
contain the names of the firmware images, that match the analyzed device.

Bluetooth Scan Page

The Bluetooth scanning page is built almost similar to the WiFi scanning page. The
same card format is used to present the results, but no additional information page is
used here. Also, the status bar at the lower end is again used to indicate the current
scanning step. An example of such scanning results is shown in figure 5.5. As before,
multiple scanning outcomes are possible:

Unknown device An unknown Bluetooth Classic device will have a question mark as
its symbol. This means that no fingerprint matches the detected device.

Known Bluetooth device When a fingerprint matches a Bluetooth Classic device, the
corresponding card gets marked with the Bluetooth logo instead. On the first line,
the locally stored name from the fingerprint will be displayed, on the second line
the transmitted display name is shown.

Bluetooth Low Energy device A card with the downwards pointing arrow indicates
a found Bluetooth Low Energy device. Depending on the available information
from the device information service, the gained data will be displayed on the card.

78

5.3. Android Application

Figure 5.3: Detail page of a Samsung
printer.

Figure 5.4: Matching firmware image
information.

5.3.2 Limitations

Not all state-of-the-art approaches can be recreated using an Android application. This
section is about the limitations of scanning for IoT devices using an unmodified Android
device. As stated before, machine learning approaches were not evaluated in this work.

Passive Data Collection

In current literature, some researchers classify IoT devices by listening to transiting
network traffic. The used properties for classification range from just the destination
server, e.g. in Guo and Heidemann’s work [57], to full deep packet inspection as seen in
the work from Khandait et al. [59]. These approaches do not work on an unmodified
Android phone. Capturing packets from the internal WiFi card is not possible with
most integrated chipsets [108]. Even when external hardware is used, still a custom
kernel and root access are needed. Also, using the internet connection sharing function
of modern Android devices does not help. The own traffic can be captured using the
Android VPN API [109]. Nevertheless, during my testing, connected devices did not use
the established tunnel. Therefore, capturing packets from external devices does not work

79

5. Results

Figure 5.5: Android application Bluetooth scanning.

using unmodified Android only.

Raw Sockets

It is not possible to create raw sockets on unmodified Android [90], as special rights are
needed to do so. This impacts various aspects of remote device scanning.

Sending and receiving ICMP messages only works very limited on Android. In section
4.4.2, it is shown that ICMP echo messages can be sent and the answers can be received.
Also, when using UDP [92], the port unreachable message can be caught. To the best of
my knowledge, no other ICMP interaction is possible with unmodified Android.

Not being able to create raw sockets also affects port scanning [36] and host discovery [29].
Many aspects of this work are inspired by Nmap [28]. But without privileged system
access, many scanning approaches do not work. For host discovery, the ICMP ping scan
approach can be used utilizing the integrated "ping" program or the Android network API.
TCP ports can be scanned using the system’s connect function. All other approaches
need higher privileges. In section 2.2 and 2.4.1, the different scanning techniques have
been explained. Alternative scanning techniques often provide better speed or reduce
bandwidth consumption. Also, some scanning methods could be used to circumvent
firewalls and therefore improve scanning results.

80

5.4. Firmware Image Analysis Tool

Bluetooth Scanning

In section 2.5.1, it has been explained why it is not possible to listen to surrounding foreign
Bluetooth communications with an off-the-shelf Bluetooth adapter. This limitation does
not only affect Android, but all devices with similar hardware. Another set of restrictions
is introduced by the custom Bluetooth software stack in Android [82]. How this influences
the Android application for this work has been discussed in section 4.3.1.

5.4 Firmware Image Analysis Tool
To aid with the Android application’s device recognition capabilities, the automatic
firmware image analysis tool has been written. Implementation details can be found
in section 4.1.2. In this section, the usage and outputs of the developed tool will be
described.

Usage Before firmware analysis can be started, the firmware images under investigation
need to be collected first. For analysis, all images need to be stored in a single folder,
without any subdirectories. The firmware image analysis tool reads the folder path from
the first command line argument. At the current state of development, it is not possible
to add an already existing fingerprint results file for extension. All images, that should
be recognized with the resulting output file have to be present in the input directory.

Output The resulting fingerprints will be written to a file called "fingerprints.json" in
the current working directory. During the program run, information regarding the found
properties will be printed on the console. An example of such an output for a single
firmware image is shown in listing 5.8.

1 ∗∗
2 Analyzing : netgear−RN4220S−root . ta r
3 Found Avahi s e r v i c e at : . / e t c / avahi / s e r v i c e s /nut . s e r v i c e
4 −Se r v i c e : _nut . _tcp
5 −Port : 3493
6 Found Avahi s e r v i c e at : . / e t c / avahi / s e r v i c e s / f rontv i ew . s e r v i c e
7 −Se r v i c e : _http . _tcp
8 −Port : 80
9 Found smb c o n f i g in : . / e t c / d e f a u l t / c o n f i g / e t c /samba/smb . conf

10 Found hostname f i l e in : . / e t c / d e f a u l t / c o n f i g / e t c /hostname
11 −Hostname : readynasos
12 Found t e l n e t banner at : . / e t c / i s s u e . net
13 ∗∗

Listing 5.8: Output from firmware analysis tool.

81

5. Results

Firmware images that lead to no result during analysis will not be present in the resulting
fingerprint file. Any files or archives that do not have a supported file format will be
skipped.

82

CHAPTER 6
Discussion

In this chapter, the approaches and results from this thesis will be discussed. This
includes possible interpretations of the results and advantages or disadvantages from
different tried approaches. Because of time and resource limitations, not all interesting
aspects could be evaluated. Here I also will explain what those aspects were and how
they affect this thesis.

6.1 Device Classification and Recognized Devices
Being just a normal network member has some disadvantages for device detection. To
recognize a device, it has to expose services suitable for classification. If a device employs
a firewall that blocks access from other devices, detection algorithms might not work.
This applies to both, blocking of ICMP messages and restricting access to certain ports.

There are many benefits to being able to passively listen to device traffic. In my opinion,
the most important one is being able to detect devices that do not expose any services or,
as discussed above, block access to these services for certain devices. Another advantage
is that passively listening to traffic will not produce any warnings in firewalls or intrusion
detection systems. But there are also some downsides to just passively listening. When
listening to a network’s traffic, also traffic caused by users might be captured. This leads
to some legal (data protection laws) and ethical questions. Also, there are some technical
aspects to consider. Real-time processing of passing through traffic might need a lot
of processing power depending on the traffic volume. Storing this traffic can also be
problematic as more and more data gets collected.

Despite the downsides, active scanning from within the network also has some advantages.
No traffic needs to be stored and processed in real-time. Therefore, there are fewer privacy
considerations. Also, active scanning methods are usually faster, as it is not necessary to
wait for the device under investigation to send messages through the network. Services

83

6. Discussion

can be queried on demand and therefore might reveal information not obtainable using
just passive listening. Furthermore, encryption of communication streams can hinder
passive listening approaches.

Considering the advantages and disadvantages of the mentioned approaches, the utilized
method has to fit the desired use case. With Android, passive approaches are almost
unusable. Also, with default hardware and software, recording traffic is not possible.
Additionally, Android devices are usually very resource-constrained in terms of available
power. Therefore, active approaches are better suited for this kind of use case.

6.2 Fingerprinting Techniques
Throughout this thesis, three fingerprinting approaches have been described. In this
section, these will be discussed regarding their advantages and disadvantages.

6.2.1 Manual Analysis

Manually analyzing devices is the most flexible way of finding identifiable information.
Flexibility is the most important advantage of this approach. While automatic tools are
limited to defined structures, manual analysis leaves the determining of the structure
partially to human intuition. This can be an advantage, but also has some downsides at
the same moment. Not adhering to the same procedure every time makes it possible to
miss information, usually found using a structured approach. Human error is thereby a
factor in the quality of the resulting fingerprints.

A major problem of the manual approach is that the end result is not a fingerprint in
a machine-readable format, but the knowledge of how to presumably detect a device.
This knowledge needs to be manually transformed into code to be able to use it. This
procedure can be error-prone. Also, a considerable amount of time is needed per device
for integration into the classification algorithm. This limits the usefulness when trying to
classify a high number of devices.

Despite the downsides, manually analyzing devices is - for now - the only way of finding
additional information sources, as this is highly device-specific. Also, devices using an
uncommon operating system will rarely be supported by a firmware analysis program.
Therefore, manual analysis might be necessary from time to time.

6.2.2 Automatic Generation

While trying to solve the scalability problem, an automatic approach has been developed.
Properties often used during the manual analysis, are automatically read from a device’s
firmware image and stored combined in a single fingerprint file. During this analysis, no
human interaction is needed. Therefore, it is theoretically possible to analyze a large
number of devices, needing a fraction of the time needed when doing manual analysis.

84

6.2. Fingerprinting Techniques

As mentioned before, at the current state of development, only Linux-based firmware
images are supported. This design decision has been made, because Linux-based systems
usually adhere to a common folder structure and use standardized and well-known
software. These common properties make it easier to recognize patterns and obtain
useful information. While other operating systems are also of interest, time constraints
prevented me from supporting other systems as well. As a downside, this also limits the
subset of compatible devices. Devices, which do not run on a Linux-based operating
system, can not be analyzed. Therefore, very small devices, too resource-constrained to
run Linux, have to be analyzed manually. This is also true for any other device running
another - maybe custom - operating system.

The static nature of the analysis limits the amount of collectible information. No special
device properties are taken into account. Nevertheless, depending on the firmware image,
device type, concrete model or even the firmware version can be determined using the
collected information. Also, the set of analyzed properties is consistent, leading to reliable
and reproducible results.

6.2.3 Bluetooth
Herfurt and Mulliner’s [60] approach for Bluetooth device fingerprinting can not be used
on Android as is. The record handle, a key aspect of their fingerprinting strategy, is not
exposed to software running on Android devices. For this thesis, I modified the algorithm
to use the service UUIDs instead. Since these are - as described in section 2.5.1 - not
always chosen freely, the ability to distinguish devices might suffer. Also, the approach
has been published in 2004, when the number of different Bluetooth products was lower
than today.

During my testing, the adapted algorithm was often not able to distinguish different
devices belonging to the same device family. This can be an indication, that some devices
use the same or at least similar firmware. Devices across different generations could
usually be distinguished. A new generation of a device usually introduces new features,
which need to be advertised using additional service UUIDs. Thereby, analyzing the
newer device results in another hash value than the older one.

Another aspect, not covered in the original work from Herfurt and Mulliner, is that
device vendors might release devices that are the same model, but have different first
24 bits in their MAC address. This problem has been coped for in my work by not
only comparing MAC addresses, but also the registered vendor names. This solves the
problem in some cases, but several vendors have multiple address blocks registered with
a slightly differently pronounced name. Since the comparison is just based on equality of
the two strings, the comparison fails in that case.

Bluetooth Low Energy

For this work, there is no fingerprinting strategy implemented for Bluetooth Low Energy
devices. Instead, the wanted information is read directly from the device. This approach

85

6. Discussion

does not need any fingerprint database or device analysis before being usable with a
device. Therefore, it is not necessary to update the developed application when new
devices are released, as they can be identified as long as they expose the desired service.

There are also some downsides to this approach. First, it can not be ensured by me
or any other application developer, that the values returned by the devices are correct
and useful. Also, not all devices have the device information service implemented and
therefore can not be classified using this method.

Another interesting aspect of this method is the lack of data security. There is no
password or other form of protection, leaving the data information service and often
other services as well open to access from nearby third parties. If hardware vendors react
to this threat, it might be possible that the approach used in this thesis does not work
for future devices.

6.3 IP-based Scanning Approaches
To make use of the found properties, scanning strategies are needed. For this thesis, two
have been implemented in the Android application. This section is about their properties,
advantages and disadvantages.

6.3.1 Tree Based Approach
The tree-based approach offers high flexibility through custom-written code for each
detection step. Utilizing the different detection levels also partial classifications are
possible. For difficult-to-classify devices, determining only the device type might be the
only possible option. On the other hand, for some devices much more information can
be obtainable. For demonstration purposes, the details page in the Android application
has been created for allowing as much flexibility as possible. Depending on the device
type various data can be displayed there.

But there are not only advantages to this approach. As with the manual fingerprint
generation, a lot of time-consuming manual work is needed to add a step to the detection
tree. Maintenance will become more and more difficult as the tree grows. Also, bugs will
be difficult to find, as there is more code to verify. Newly released devices will not be
recognizable as long as no application update is being rolled out. The advantages and
disadvantages of this approach are similar to those discussed above for the manual device
analysis. This is partly because these two parts are working together closely for device
classification.

Since Android 10 this approach is pretty much unusable, as the MAC address is used as
the starting point for device analysis. Because of privacy reasons, the hardware addresses
of the nearby network devices are hidden in modern Android versions. For this work, root
access has been used to circumvent this restriction. When the application is developed
further, the focus should be more on the second classification approach described below,
as it fully works without any Android modifications.

86

6.4. Future Work

6.3.2 Classification Using Automatically Generated Fingerprints
The number of different IoT devices is growing constantly. To keep up with this
development device analysis needs to be automated. These automatically generated
fingerprints have a fixed set of possible properties, suitable for automated scanning. This
approach has several advantages. The number of steps used for the classification process
is known in advance. Also, there is only one procedure for every device. This helps
with code maintenance and finding errors. No root access is needed for this approach,
therefore it still can be used beyond Android 10.

Nevertheless, there are also some downsides. Partially the approach is limited by the
fingerprint generation software. When no fingerprint can be found automatically, it will
not be recognized by this method. While fingerprints can also be manually inserted into
the database, this contradicts the design goals. Also, it will not be possible to classify all
existing IoT devices based on the predefined feature set, that is checked when using this
method.

The classification result, produced by the automatic approach, does not always contain
only one detected device, but also a set can be returned. The reason is the limited
possible feature set, which is predefined by the analyzed properties from the fingerprint
creation tool. This design choice has been made to be able to classify more devices, at
the cost of sometimes less meaningful results.

6.4 Future Work
Due to time and resource constraints, not all interesting aspects could be paid attention
to in this thesis. This section is about possible future research that could extend this
work and improve its capabilities.

In my work, machine learning was out of scope. Nevertheless, in the literature, some
interesting approaches can be found for device classification using machine learning and
artificial intelligence. Since Android devices are usually very constrained in terms of
energy and processing power when compared to wall-powered machines, it has to be
determined which of these approaches can be ported to Android. Thereby the new
machine learning Android APIs [110] can help.

In my opinion, this work would benefit greatly from improvements at automatic fingerprint
generation. Improvements in this area would make the classification more reliable and
versatile, enabling the Android application to detect a greater number of devices. These
improvements can be of various forms. Being able to analyze other operating systems
than Linux opens the detection algorithm to a wider variety of devices. Also, some
firmware images are encrypted or in an uncommon format. Future research could also
deal with these kinds of problems.

Another part of this thesis, suffering from many restrictions, is Bluetooth scanning. In my
testing, the fingerprinting algorithm for Bluetooth Classic did not always work reliably.

87

6. Discussion

This is one part where future research could take over. But also for Bluetooth Low
Energy, some questions remain unanswered. Future research for Bluetooth Low Energy
could focus on creating fingerprints when the device information service is not accessible.
Also, Android’s support for Low Energy devices has some severe issues. Improvements
there could also be beneficial to many applications.

88

CHAPTER 7
Conclusion

In this work, I have researched how a specialized Android application can detect IoT
devices in the nearby environment. The newly developed application has two main
parts: IP-based network and Bluetooth scanning, while Bluetooth can be divided into
the Classic and Low Energy variants. As an addition, a firmware analysis tool has been
developed, capable of automatically scanning Linux-based firmware images.

IP-based scanning is mostly restricted to active methods. This makes it possible to detect
and classify devices that have network services running. Limitations occur mostly due
to software reasons, as Android only allows TCP and UDP connections. In many cases,
this is still enough to accurately classify a remote device. Also, active scanning methods
quickly lead to results. Further improvements would be most promising at the automatic
fingerprint generation, where an improvement would benefit the accuracy and total count
of detectable devices.

On the other hand, Bluetooth scanning is severely limited by hardware restrictions, as
the built-in hardware of modern Android devices is not capable of listening to foreign
surrounding traffic. Despite the advancements in research about this topic, capturing
foreign traffic still requires special hardware. Nevertheless, device fingerprinting makes
it possible to distinguish devices or device categories, without looking at their display
names, as long as they are in discoverable mode. Future work might include improving
that fingerprinting algorithm to be able to distinguish similar devices more reliably.

As Bluetooth Low Energy has a device information service standardized, analyzing LE
devices often leads to good results for this work. As long as the GATT server on the
device in question implements the service, classification works accurately and reliably.
This mentioned service also exposes information about the currently installed firmware
version of a device. One major advantage of this approach is that no fingerprint is needed,
therefore also new devices work without any change to the application.

89

List of Figures

2.1 OSI 7 Layer Model [6]. 4
2.2 MAC Structure [10]. 5
2.3 Network Classes [18]. 7
2.4 TCP Header [22]. 8
2.5 TCP Three-Way-Handshake [23]. 9
2.6 TCP Finishing Connection [24]. 10
2.7 UDP Header [22]. 10
2.8 Pinging host in local network on Linux. 12
2.9 SSDP Service Discovery Architecture [31]. 14
2.10 Full UPnP Search [32]. 15
2.11 Frequency Hopping over Time [44]. 21
2.12 Stored Data for each Service [45]. 22

4.1 Network Information from a PS4. 33
4.2 Network Information from Home Router. 34
4.3 Avahi Discovery in Home Network. 37
4.4 Wireshark Displaying Captured SSDP Packets. 39
4.5 Supplies Displayed in Printer’s Web Interface. 41
4.6 Firefox Developer Tools. 42
4.7 Tree Based Scanning. 48
4.8 Blueprinting checksum calculation[60]. 51

5.1 Android application main page. 76
5.2 Android application IP-based scanning. 77
5.3 Detail page of a Samsung printer. 79
5.4 Matching firmware image information. 79
5.5 Android application Bluetooth scanning. 80

91

List of Tables

4.1 Detection Levels . 48

5.1 Tested Bluetooth Low Energy devices. 75

93

Bibliography

[1] State of iot 2021: Number of connected iot devices growing 9% to 12.3 billion
globally, cellular iot now surpassing 2 billion, https://iot-analytics.com/
number-connected-iot-devices/, Last accessed: 2022-03-16.

[2] Chapter 15. nmap reference guide, https://nmap.org/book/man.html,
Last accessed: 2022-03-16.

[3] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the mirai botnet”,
in 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC:
USENIX Association, Aug. 2017, pp. 1093–1110, isbn: 978-1-931971-40-9. [Online].
Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/antonakakis.

[4] L. L. Peterson and B. S. Davie, Computer networks: a systems approach. Elsevier,
2007.

[5] Layers of osi model, https://www.geeksforgeeks.org/layers-of-osi-
model/, Last accessed: 2022-11-09.

[6] What is the osi model, https://www.cloudflare.com/learning/ddos/
glossary/open- systems- interconnection- model- osi/, Last ac-
cessed: 2022-11-09.

[7] J. Day and H. Zimmermann, “The osi reference model”, Proceedings of the IEEE,
vol. 71, no. 12, pp. 1334–1340, 1983. doi: 10.1109/PROC.1983.12775.

[8] What is layer 4 of the osi model?, https : / / www . a10networks . com /
glossary/what- is- layer- 4- of- the- osi- model/, Last accessed:
2022-11-09.

[9] What is a mac address, https://www.guru99.com/what- is- mac-
address.html, Last accessed: 2022-11-10.

[10] Introduction of mac address in computer network, https://www.geeksforgeeks.
org/introduction-of-mac-address-in-computer-network/, Last
accessed: 2022-11-10.

[11] What is a mac address, https://whatismyipaddress.com/mac-address,
Last accessed: 2022-11-10.

95

https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://nmap.org/book/man.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.geeksforgeeks.org/layers-of-osi-model/
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/
https://doi.org/10.1109/PROC.1983.12775
https://www.a10networks.com/glossary/what-is-layer-4-of-the-osi-model/
https://www.a10networks.com/glossary/what-is-layer-4-of-the-osi-model/
https://www.guru99.com/what-is-mac-address.html
https://www.guru99.com/what-is-mac-address.html
https://www.geeksforgeeks.org/introduction-of-mac-address-in-computer-network/
https://www.geeksforgeeks.org/introduction-of-mac-address-in-computer-network/
https://whatismyipaddress.com/mac-address

[12] Organizationaly unique identifiers, https://standards-oui.ieee.org/
oui/oui.txt, Last accessed: 2022-11-10.

[13] Understand tcp/ip addressing and subnetting basics, https://learn.microsoft.
com/en- us/troubleshoot/windows- client/networking/tcpip-
addressing-and-subnetting, Last accessed: 2022-11-10.

[14] Structure and types of ip address, https://www.geeksforgeeks.org/
structure-and-types-of-ip-address/, Last accessed: 2022-11-10.

[15] Understanding cidr subnet mask notation, https://docs.netgate.com/
pfsense/en/latest/network/cidr.html, Last accessed: 2022-11-10.

[16] Cidr - classless inter-domain routing, https://www.elektronik-kompendium.
de/sites/net/2011231.htm, Last accessed: 2022-11-11.

[17] Ipv4-netzklassen, https://www.elektronik-kompendium.de/sites/
net/2011221.htm, Last accessed: 2022-11-11.

[18] Introduction of classful ip addressing, https://www.geeksforgeeks.org/
introduction-of-classful-ip-addressing/, Last accessed: 2022-11-10.

[19] Private address ranges, https://www.ibm.com/docs/en/networkmanager/
4.2.0?topic=translation-private-address-ranges, Last accessed:
2022-11-11.

[20] What is a loopback address, https://www.geeksforgeeks.org/what-is-
a-loopback-address/, Last accessed: 2022-11-11.

[21] W. Eddy, “Rfc 9293 transmission control protocol (tcp)”, 2022.
[22] Tcp vs udp – what is the difference between tcp and udp, https :/ /www .

softwaretestinghelp.com/tcp-vs-udp/, Last accessed: 2022-11-15.
[23] Tcp flags, https://www.keycdn.com/support/tcp-flags, Last accessed:

2022-11-16.
[24] Tcp connection termination, https://www.geeksforgeeks.org/tcp-

connection-termination/, Last accessed: 2022-11-17.
[25] J. Postel, “User datagram protocol”, Tech. Rep., 1980.
[26] J. Postel, “Internet control message protocol”, Tech. Rep., 1981.
[27] Udp scan, https://nmap.org/book/scan-methods-udp-scan.html,

Last accessed: 2022-09-15.
[28] Nmap: The network mapper, https://nmap.org/, Last accessed: 2022-09-15.
[29] Host discovery techniques, https://nmap.org/book/host-discovery-

techniques.html, Last accessed: 2022-11-23.
[30] R. Droms, Rfc2131: Dynamic host configuration protocol, 1997.
[31] Upnp standards & architecture, https://openconnectivity.org/developer/

specifications/upnp-resources/upnp/, Last accessed: 2022-11-24.

96

https://standards-oui.ieee.org/oui/oui.txt
https://standards-oui.ieee.org/oui/oui.txt
https://learn.microsoft.com/en-us/troubleshoot/windows-client/networking/tcpip-addressing-and-subnetting
https://learn.microsoft.com/en-us/troubleshoot/windows-client/networking/tcpip-addressing-and-subnetting
https://learn.microsoft.com/en-us/troubleshoot/windows-client/networking/tcpip-addressing-and-subnetting
https://www.geeksforgeeks.org/structure-and-types-of-ip-address/
https://www.geeksforgeeks.org/structure-and-types-of-ip-address/
https://docs.netgate.com/pfsense/en/latest/network/cidr.html
https://docs.netgate.com/pfsense/en/latest/network/cidr.html
https://www.elektronik-kompendium.de/sites/net/2011231.htm
https://www.elektronik-kompendium.de/sites/net/2011231.htm
https://www.elektronik-kompendium.de/sites/net/2011221.htm
https://www.elektronik-kompendium.de/sites/net/2011221.htm
https://www.geeksforgeeks.org/introduction-of-classful-ip-addressing/
https://www.geeksforgeeks.org/introduction-of-classful-ip-addressing/
https://www.ibm.com/docs/en/networkmanager/4.2.0?topic=translation-private-address-ranges
https://www.ibm.com/docs/en/networkmanager/4.2.0?topic=translation-private-address-ranges
https://www.geeksforgeeks.org/what-is-a-loopback-address/
https://www.geeksforgeeks.org/what-is-a-loopback-address/
https://www.softwaretestinghelp.com/tcp-vs-udp/
https://www.softwaretestinghelp.com/tcp-vs-udp/
https://www.keycdn.com/support/tcp-flags
https://www.geeksforgeeks.org/tcp-connection-termination/
https://www.geeksforgeeks.org/tcp-connection-termination/
https://nmap.org/book/scan-methods-udp-scan.html
https://nmap.org/
https://nmap.org/book/host-discovery-techniques.html
https://nmap.org/book/host-discovery-techniques.html
https://openconnectivity.org/developer/specifications/upnp-resources/upnp/
https://openconnectivity.org/developer/specifications/upnp-resources/upnp/

[32] Exploring upnp with python, https://www.electricmonk.nl/log/2016/
07/05/exploring-upnp-with-python/, Last accessed: 2022-11-24.

[33] Dns service discovery (dns-sd), http://www.dns-sd.org/, Last accessed:
2022-10-09.

[34] A. Gulbrandsen, P. Vixie, and L. Esibov, “A dns rr for specifying the location of
services (dns srv)”, Tech. Rep., 2000.

[35] S. Cheshire and M. Krochmal, “Rfc 6762: Multicast dns”, Internet Engineering
Task Force (IETF), 2013.

[36] Port scanning techniques, https://nmap.org/book/man-port-scanning-
techniques.html, Last accessed: 2022-09-28.

[37] Tcp syn (stealth) scan (-ss), https://nmap.org/book/synscan.html, Last
accessed: 2022-12-01.

[38] Tcp connect scan (-st), https://nmap.org/book/scan-methods-connect-
scan.html, Last accessed: 2022-12-01.

[39] What is banner grabbing, https://securitytrails.com/blog/banner-
grabbing, Last accessed: 2022-12-02.

[40] Issue.net(5) - linux man page, https://linux.die.net/man/5/issue.net,
Last accessed: 2022-09-15.

[41] The difference between classic bluetooth and bluetooth low energy, https://
blog.nordicsemi.com/getconnected/the-difference-between-
classic-bluetooth-and-bluetooth-low-energy, Last accessed: 2022-
10-27.

[42] M. Cominelli, F. Gringoli, P. Patras, M. Lind, and G. Noubir, “Even black cats
cannot stay hidden in the dark: Full-band de-anonymization of bluetooth classic
devices”, in 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 534–
548. doi: 10.1109/SP40000.2020.00091.

[43] M. Chernyshev, C. Valli, and M. Johnstone, “Revisiting urban war nibbling:
Mobile passive discovery of classic bluetooth devices using ubertooth one”, IEEE
Transactions on Information Forensics and Security, vol. 12, no. 7, pp. 1625–1636,
2017. doi: 10.1109/TIFS.2017.2678463.

[44] D. Spill and A. Bittau, “Bluesniff: Eve meets alice and bluetooth.”, WooT, vol. 7,
pp. 1–10, 2007.

[45] S. Bluetooth, “Bluetooth core specification v5.3”, Specification of the Bluetooth
System, p. 3085, 2021.

[46] Find ble devices - android developers, https://developer.android.com/
guide/topics/connectivity/bluetooth/find-ble-devices, Last
accessed: 2022-10-28.

[47] Gatt, https://learn.adafruit.com/introduction-to-bluetooth-
low-energy/gatt, Last accessed: 2022-12-11.

97

https://www.electricmonk.nl/log/2016/07/05/exploring-upnp-with-python/
https://www.electricmonk.nl/log/2016/07/05/exploring-upnp-with-python/
http://www.dns-sd.org/
https://nmap.org/book/man-port-scanning-techniques.html
https://nmap.org/book/man-port-scanning-techniques.html
https://nmap.org/book/synscan.html
https://nmap.org/book/scan-methods-connect-scan.html
https://nmap.org/book/scan-methods-connect-scan.html
https://securitytrails.com/blog/banner-grabbing
https://securitytrails.com/blog/banner-grabbing
https://linux.die.net/man/5/issue.net
https://blog.nordicsemi.com/getconnected/the-difference-between-classic-bluetooth-and-bluetooth-low-energy
https://blog.nordicsemi.com/getconnected/the-difference-between-classic-bluetooth-and-bluetooth-low-energy
https://blog.nordicsemi.com/getconnected/the-difference-between-classic-bluetooth-and-bluetooth-low-energy
https://doi.org/10.1109/SP40000.2020.00091
https://doi.org/10.1109/TIFS.2017.2678463
https://developer.android.com/guide/topics/connectivity/bluetooth/find-ble-devices
https://developer.android.com/guide/topics/connectivity/bluetooth/find-ble-devices
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt
https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt

[48] Specifications - assigned numbers, https://www.bluetooth.com/specifications/
assigned-numbers/, Last accessed: 2022-10-28.

[49] A. Sivanathan, H. H. Gharakheili, and V. Sivaraman, “Can we classify an iot device
using tcp port scan?”, in 2018 IEEE International Conference on Information and
Automation for Sustainability (ICIAfS), 2018, pp. 1–4. doi: 10.1109/ICIAFS.
2018.8913346.

[50] D. Kumar, K. Shen, B. Case, et al., “All things considered: An analysis of {iot}
devices on home networks”, in 28th USENIX security symposium (USENIX
Security 19), 2019, pp. 1169–1185.

[51] P. Bajpai, A. K. Sood, and R. J. Enbody, “The art of mapping iot devices in
networks”, Network Security, vol. 2018, no. 4, pp. 8–15, 2018, issn: 1353-4858.
doi: https://doi.org/10.1016/S1353-4858(18)30033-3. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S1353485818300333.

[52] S. Agarwal, P. Oser, and S. Lueders, “Detecting iot devices and how they put
large heterogeneous networks at security risk”, Sensors, vol. 19, no. 19, p. 4107,
Sep. 2019, issn: 1424-8220. doi: 10.3390/s19194107. [Online]. Available:
http://dx.doi.org/10.3390/s19194107.

[53] K. K. Knabl, Design, implementation and evaluation of a mobile security scanner
app for smart home users, eng, 2020. [Online]. Available: https://resolver.
obvsg.at/urn:nbn:at:at-ubl:1-35509.

[54] A. Amro, “Iot vulnerability scanning: A state of the art”, in Computer Security,
S. Katsikas, F. Cuppens, N. Cuppens, et al., Eds., Cham: Springer International
Publishing, 2020, pp. 84–99, isbn: 978-3-030-64330-0.

[55] Shodan search engine, https://www.shodan.io/, Last accessed: 2022-12-16.
[56] H. Al-Alami, A. Hadi, and H. Al-Bahadili, “Vulnerability scanning of iot devices

in jordan using shodan”, in 2017 2nd International Conference on the Applications
of Information Technology in Developing Renewable Energy Processes & Systems
(IT-DREPS), 2017, pp. 1–6. doi: 10.1109/IT-DREPS.2017.8277814.

[57] H. Guo and J. Heidemann, “Ip-based iot device detection”, in Proceedings of the
2018 Workshop on IoT Security and Privacy, Budapest, Hungary: Association for
Computing Machinery, 2018, pp. 36–42, isbn: 9781450359054. doi: 10.1145/
3229565.3229572. [Online]. Available: https://doi.org/10.1145/
3229565.3229572.

[58] F. Le, S. Calo, and D. Verma, “Risks and challenges of training classifiers for iot”,
in Internet of Things – ICIOT 2021, B. Tekinerdogan, Y. Wang, and L.-J. Zhang,
Eds., Cham: Springer International Publishing, 2022, pp. 15–28.

98

https://www.bluetooth.com/specifications/assigned-numbers/
https://www.bluetooth.com/specifications/assigned-numbers/
https://doi.org/10.1109/ICIAFS.2018.8913346
https://doi.org/10.1109/ICIAFS.2018.8913346
https://doi.org/https://doi.org/10.1016/S1353-4858(18)30033-3
https://www.sciencedirect.com/science/article/pii/S1353485818300333
https://www.sciencedirect.com/science/article/pii/S1353485818300333
https://doi.org/10.3390/s19194107
http://dx.doi.org/10.3390/s19194107
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-35509
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-35509
https://www.shodan.io/
https://doi.org/10.1109/IT-DREPS.2017.8277814
https://doi.org/10.1145/3229565.3229572
https://doi.org/10.1145/3229565.3229572
https://doi.org/10.1145/3229565.3229572
https://doi.org/10.1145/3229565.3229572

[59] P. Khandait, N. Hubballi, and B. Mazumdar, “Iothunter: Iot network traffic clas-
sification using device specific keywords”, IET Networks, vol. 10, no. 2, pp. 59–75,
2021. doi: https://doi.org/10.1049/ntw2.12007. eprint: https:
//ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/
ntw2.12007. [Online]. Available: https://ietresearch.onlinelibrary.
wiley.com/doi/abs/10.1049/ntw2.12007.

[60] M. Herfurt and C. Mulliner, “Remote device identification based on bluetooth
fingerprinting techniques”, Trifinite Group, White Paper, 2004.

[61] J. Dunning, “Taming the blue beast: A survey of bluetooth based threats”, IEEE
Security & Privacy, vol. 8, no. 2, pp. 20–27, 2010. doi: 10.1109/MSP.2010.3.

[62] G. Celosia and M. Cunche, “Fingerprinting bluetooth-low-energy devices based on
the generic attribute profile”, London, United Kingdom: Association for Comput-
ing Machinery, 2019, pp. 24–31, isbn: 9781450368384. doi: 10.1145/3338507.
3358617. [Online]. Available: https://doi.org/10.1145/3338507.
3358617.

[63] G. Celosia and M. Cunche, “Saving private addresses: An analysis of privacy issues
in the bluetooth-low-energy advertising mechanism”, in Proceedings of the 16th
EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, ser. MobiQuitous ’19, Houston, Texas, USA: Association
for Computing Machinery, 2020, pp. 444–453, isbn: 9781450372831. doi: 10.
1145/3360774.3360777. [Online]. Available: https://doi.org/10.1145/
3360774.3360777.

[64] A. Barua, M. A. Al Alamin, M. S. Hossain, and E. Hossain, “Security and privacy
threats for bluetooth low energy in iot and wearable devices: A comprehensive
survey”, IEEE Open Journal of the Communications Society, vol. 3, pp. 251–281,
2022. doi: 10.1109/OJCOMS.2022.3149732.

[65] S. Alexander, R. Droms, D. Options, and B. V. Extensions, Ietf rfc 2132, 1997.
[66] Service name and transport protocol port number registry, https://www.iana.

org/assignments/service-names-port-numbers/service-names-
port-numbers.xhtml, Last accessed: 2022-12-26.

[67] Avahi-browse(1) - linux man page, https://linux.die.net/man/1/avahi-
browse, Last accessed: 2022-12-27.

[68] Welcome to avahi, https://www.avahi.org, Last accessed: 2022-09-15.
[69] Gupnp - gnome wiki, https://wiki.gnome.org/Projects/GUPnP, Last

accessed: 2022-12-29.
[70] Wireshark - go deep. https://www.wireshark.org/, Last accessed: 2022-12-

31.
[71] Universal media server, https://www.universalmediaserver.com/, Last

accessed: 2022-12-31.

99

https://doi.org/https://doi.org/10.1049/ntw2.12007
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ntw2.12007
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ntw2.12007
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/ntw2.12007
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ntw2.12007
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ntw2.12007
https://doi.org/10.1109/MSP.2010.3
https://doi.org/10.1145/3338507.3358617
https://doi.org/10.1145/3338507.3358617
https://doi.org/10.1145/3338507.3358617
https://doi.org/10.1145/3338507.3358617
https://doi.org/10.1145/3360774.3360777
https://doi.org/10.1145/3360774.3360777
https://doi.org/10.1145/3360774.3360777
https://doi.org/10.1145/3360774.3360777
https://doi.org/10.1109/OJCOMS.2022.3149732
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://linux.die.net/man/1/avahi-browse
https://linux.die.net/man/1/avahi-browse
https://www.avahi.org
https://wiki.gnome.org/Projects/GUPnP
https://www.wireshark.org/
https://www.universalmediaserver.com/

[72] Netbios - network basic input/output system, https://www.elektronik-
kompendium.de/sites/net/0907221.htm, Last accessed: 2023-01-03.

[73] N. W. Group et al., “Protocol standard for a netbios service on a tcp/udp transport:
Concepts and methods”, IETF RFC 1001, 1987.

[74] Nbtstat, https://learn.microsoft.com/en-us/windows-server/
administration/windows-commands/nbtstat, Last accessed: 2022-09-19.

[75] Smb.conf, https://www.samba.org/samba/docs/current/man-html/
smb.conf.5.html, Last accessed: 2023-01-03.

[76] Samba - opening windows to a wider world, https://www.samba.org/, Last
accessed: 2022-09-06.

[77] Python-libarchive, https://pypi.org/project/python-libarchive/,
Last accessed: 2022-09-19.

[78] Filesystem hierarchy standard, https://refspecs.linuxfoundation.org/
FHS_3.0/fhs/index.html, Last accessed: 2022-09-19.

[79] Dhcp-options(5) - linux man page, https://linux.die.net/man/5/dhcp-
options, Last accessed: 2022-09-06.

[80] What is reverse dns and how does it work?, https://phoenixnap.com/kb/
reverse-dns-lookup, Last accessed: 2022-09-06.

[81] Upnp technical basics: Upnp device architecture (uda), http://upnp.org/
resources/documents/UPnP_UDA_tutorial_July2014.pdf, Last ac-
cessed: 2022-09-06.

[82] Bluetoothdevice - android developers, https://developer.android.com/
reference/android/bluetooth/BluetoothDevice, Last accessed: 2022-
10-27.

[83] Einführung in bluetooth generisches attributprofil (gatt), https://www.bluetooth.
com/de/bluetooth-resources/intro-to-bluetooth-gap-gatt/,
Last accessed: 2022-10-28.

[84] Device information service 1.1, https://www.bluetooth.com/specifications/
specs/device-information-service-1-1/, Last accessed: 2022-10-28.

[85] Oneplus 5, https://www.oneplus.com/global/5, Last accessed: 2023-01-
10.

[86] Lineageos, https://lineageos.org/, Last accessed: 2023-01-10.
[87] Apache commons net, https://commons.apache.org/proper/commons-

net/, Last accessed: 2023-01-10.
[88] Inetaddress, https://developer.android.com/reference/java/net/

InetAddress, Last accessed: 2023-01-11.
[89] Restriction on access to /proc/net filesystem, https://developer.android.

com/about/versions/10/privacy/changes#proc-net-filesystem,
Last accessed: 2022-09-21.

100

https://www.elektronik-kompendium.de/sites/net/0907221.htm
https://www.elektronik-kompendium.de/sites/net/0907221.htm
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/nbtstat
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/nbtstat
https://www.samba.org/samba/docs/current/man-html/smb.conf.5.html
https://www.samba.org/samba/docs/current/man-html/smb.conf.5.html
https://www.samba.org/
https://pypi.org/project/python-libarchive/
https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://linux.die.net/man/5/dhcp-options
https://linux.die.net/man/5/dhcp-options
https://phoenixnap.com/kb/reverse-dns-lookup
https://phoenixnap.com/kb/reverse-dns-lookup
http://upnp.org/resources/documents/UPnP_UDA_tutorial_July2014.pdf
http://upnp.org/resources/documents/UPnP_UDA_tutorial_July2014.pdf
https://developer.android.com/reference/android/bluetooth/BluetoothDevice
https://developer.android.com/reference/android/bluetooth/BluetoothDevice
https://www.bluetooth.com/de/bluetooth-resources/intro-to-bluetooth-gap-gatt/
https://www.bluetooth.com/de/bluetooth-resources/intro-to-bluetooth-gap-gatt/
https://www.bluetooth.com/specifications/specs/device-information-service-1-1/
https://www.bluetooth.com/specifications/specs/device-information-service-1-1/
https://www.oneplus.com/global/5
https://lineageos.org/
https://commons.apache.org/proper/commons-net/
https://commons.apache.org/proper/commons-net/
https://developer.android.com/reference/java/net/InetAddress
https://developer.android.com/reference/java/net/InetAddress
https://developer.android.com/about/versions/10/privacy/changes#proc-net-filesystem
https://developer.android.com/about/versions/10/privacy/changes#proc-net-filesystem

[90] Raw(7) — linux manual page, https://man7.org/linux/man-pages/
man7/raw.7.html, Last accessed: 2022-09-28.

[91] Socket, https://developer.android.com/reference/java/net/
Socket, Last accessed: 2023-01-12.

[92] Datagramsocket, https://developer.android.com/reference/java/
net/DatagramSocket, Last accessed: 2023-01-14.

[93] Datagrampacket, https://developer.android.com/reference/java/
net/DatagramPacket, Last accessed: 2023-01-14.

[94] Connect to the network, https://developer.android.com/training/
basics/network-ops/connecting, Last accessed: 2022-09-28.

[95] Retrofit - a type-safe http client for android and java, https://square.github.
io/retrofit/, Last accessed: 2023-01-15.

[96] Ssdp-client, https://github.com/resourcepool/ssdp-client, Last
accessed: 2022-10-08.

[97] Use network service discovery, https://developer.android.com/training/
connect-devices-wirelessly/nsd, Last accessed: 2022-10-09.

[98] Bluetooth - android open source project, https://source.android.com/
docs/core/connect/bluetooth, Last accessed: 2023-01-17.

[99] Bluez - official linux bluetooth protocol stack, http://www.bluez.org/, Last
accessed: 2023-01-17.

[100] Blegattcoroutines, https://github.com/Beepiz/BleGattCoroutines,
Last accessed: 2023-01-18.

[101] Overview - okhttp, https://square.github.io/okhttp/, Last accessed:
2023-01-22.

[102] Github - google/gson, https://github.com/google/gson, Last accessed:
2023-01-22.

[103] Home - vuplus, https://www.vuplus.de/, Last accessed: 2023-01-23.
[104] Openwebif api documentation, https://github.com/E2OpenPlugins/

e2openplugin - OpenWebif / wiki / OpenWebif - API - documentation,
Last accessed: 2023-01-23.

[105] Picasso, https://square.github.io/picasso/, Last accessed: 2023-01-23.
[106] So aktualisierst du die systemsoftware auf einer ps4-konsole, https://www.

playstation.com/de-de/support/hardware/ps4/system-software/,
Last accessed: 2023-01-22.

[107] Vector icons and stickers - png, svg, eps, psd and css, https://www.flaticon.
com/, Last accessed: 2023-01-25.

[108] Wireless cards and nethunter, https://www.kali.org/docs/nethunter/
wireless-cards/, Last accessed: 2023-01-26.

101

https://man7.org/linux/man-pages/man7/raw.7.html
https://man7.org/linux/man-pages/man7/raw.7.html
https://developer.android.com/reference/java/net/Socket
https://developer.android.com/reference/java/net/Socket
https://developer.android.com/reference/java/net/DatagramSocket
https://developer.android.com/reference/java/net/DatagramSocket
https://developer.android.com/reference/java/net/DatagramPacket
https://developer.android.com/reference/java/net/DatagramPacket
https://developer.android.com/training/basics/network-ops/connecting
https://developer.android.com/training/basics/network-ops/connecting
https://square.github.io/retrofit/
https://square.github.io/retrofit/
https://github.com/resourcepool/ssdp-client
https://developer.android.com/training/connect-devices-wirelessly/nsd
https://developer.android.com/training/connect-devices-wirelessly/nsd
https://source.android.com/docs/core/connect/bluetooth
https://source.android.com/docs/core/connect/bluetooth
http://www.bluez.org/
https://github.com/Beepiz/BleGattCoroutines
https://square.github.io/okhttp/
https://github.com/google/gson
https://www.vuplus.de/
https://github.com/E2OpenPlugins/e2openplugin-OpenWebif/wiki/OpenWebif-API-documentation
https://github.com/E2OpenPlugins/e2openplugin-OpenWebif/wiki/OpenWebif-API-documentation
https://square.github.io/picasso/
https://www.playstation.com/de-de/support/hardware/ps4/system-software/
https://www.playstation.com/de-de/support/hardware/ps4/system-software/
https://www.flaticon.com/
https://www.flaticon.com/
https://www.kali.org/docs/nethunter/wireless-cards/
https://www.kali.org/docs/nethunter/wireless-cards/

[109] Vpn - android developers, https://developer.android.com/guide/
topics/connectivity/vpn, Last accessed: 2023-01-26.

[110] Machine learning - android developers, https://developer.android.com/
ml, Last accessed: 2023-01-30.

102

https://developer.android.com/guide/topics/connectivity/vpn
https://developer.android.com/guide/topics/connectivity/vpn
https://developer.android.com/ml
https://developer.android.com/ml

	Abstract
	Contents
	Introduction
	Background
	Computer Networks
	Host Detection
	Service Discovery in IP Networks
	Device Scanning
	Bluetooth

	Related Work
	IP-based Detection
	Bluetooth

	Methodology
	Investigating Devices
	Scanning Strategies for IP-Based Networks
	Bluetooth Classification
	Android Implementation

	Results
	Found Properties - IP-based Devices
	Fingerprints - Bluetooth Devices
	Android Application
	Firmware Image Analysis Tool

	Discussion
	Device Classification and Recognized Devices
	Fingerprinting Techniques
	IP-based Scanning Approaches
	Future Work

	Conclusion
	List of Figures
	List of Tables
	Bibliography

